1SMB2EZ6.8~1SMB2EZ100 GLASS PASSIVATED JUNCTION SILICON ZENER DIODES VOLTAGE 6.8 to 100 Volts POWER 2.0 Watts SMB/DO-214AA Unit: inch (mm) FEATURES • Low profile package .155(3.94) .130(3.30) • Built-in strain relief • Plastic package has Underwriters Laboratory Flammability Classification 94V-O .083(2.11) • Typical ID less than 1.0µA above 11V .075(1.91) • Low inductance .185(4.70) .160(4.06) • High temperature soldering : 260°C /10 seconds at terminals Case: JEDEC DO-214AA, Molded plastic over passivated junction Terminals: Solder plated, solderable per MIL-STD-750, Method 2026 .083(2.13) MECHANICALDATA .012(.305) .006(.152) .096(2.44) • Pb free product are available : 99% Sn can meet RoHS environment substance directive request .050(1.27) .030(0.76) Polarity: Indicated by cathode band .008(.203) .002(.051) .220(5.59) .200(5.08) Standard packing: 12mm tape (E1A-481) Weight: 0.003 ounce, 0.093 gram MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25°C ambient temperature unless otherwise specified. Parameter Symbol Value Units Peak Pulse Power Dissipation on TA=50O C (Notes A) Derate above 70O C PD 2.0 24.0 W atts mW/ O C Peak Forward Surge Current 8.3ms single half sine-wave superimposed on rated load (JEDEC method) IFSM 15 Amps TJ,TSTG -55 to + 150 Operating Junction and Storage Temperature Range O C NOTES: A.Mounted on 5.0mm2 (.013mm thick) land areas. B.Measured on 8.3ms, and single half sine-wave or equivalent square wave ,duty cycle=4 pulses per minute maximum STAD-JUL.16.2005 PAGE . 1 1SMB2EZ6.8~1SMB2EZ100 N o m i na l Ze ne r V o l t a g e Part Number V Z @ IZT No m. V Max. Reverse Leakage Current M a x i m u m Z e n e r Im p e d a n c e Z ZT @ IZT IZT Z ZK @ IZK IZK IR @VR M i n. V M a x. V O hm s mA O hm s mA µA V Marking C ode P a cka g e 2.0 watt Zener Diodes 1SMB2EZ6.8 6.8 6.46 7.14 2 73.5 700 1.00 5.00 4.00 2006 SMB 1SMB2EZ7.5 7.5 7.13 7.88 2 66.5 700 0.50 5.00 5.00 2007 SMB 1SMB2EZ8.2 8.2 7.79 8.61 2 61.0 700 0.50 5.00 6.00 2008 SMB 1SMB2EZ8.7 8.7 8.27 9.14 2 58.0 700 0.50 4.00 6.60 20A 8 SMB 1SMB2EZ9.1 9.1 8.65 9.56 3 55.0 700 0.50 3.00 7.00 2009 SMB 1SMB2EZ10 10 9..50 10.50 4 50.0 700 0.25 3.00 7.60 2010 SMB 1SMB2EZ11 11 10.45 11.55 4 45.5 700 0.25 1.00 8.40 2011 SMB 1SMB2EZ12 12 11.40 12.60 5 41.5 700 0.25 1.00 9.10 2012 SMB 1SMB2EZ13 13 12.35 13.65 5 38.5 700 0.25 0.50 9.90 2013 SMB 1SMB2EZ14 14 13.30 14.70 6 35.7 700 0.25 0.50 10.60 2014 SMB 1SMB2EZ15 15 14.25 15.75 7 33.4 700 0.25 0.50 11.40 2015 SMB 1SMB2EZ16 16 15.20 16.80 8 31.2 700 0.25 0.50 12.20 2016 SMB 1SMB2EZ17 17 16.15 17.85 9 29.4 750 0.25 0.50 13.00 2017 SMB 1SMB2EZ18 18 17.10 18.90 10 27.8 750 0.25 0.50 13.70 2018 SMB 1SMB2EZ19 19 18.05 19.95 11 26.3 750 0.25 0.50 14.40 2019 SMB 1SMB2EZ20 20 19.00 21.00 11 25.0 750 0.25 0.50 15.20 2020 SMB 1SMB2EZ22 22 20.90 23.10 12 22.8 750 0.25 0.50 16.70 2022 SMB 1SMB2EZ24 24 22.80 25.20 13 20.8 750 0.25 0.50 18.20 2024 SMB 1SMB2EZ25 25 23.75 26.25 14 20.0 750 0.25 0.50 19.00 2025 SMB 1SMB2EZ27 27 25.65 28.35 18 18.5 750 0.25 0.50 20.60 2027 SMB 1SMB2EZ28 28 26.60 29.40 18 17.0 750 0.25 0.50 21.30 2028 SMB 1SMB2EZ30 30 28.50 31.50 20 16.6 1000 0.25 0.50 22.50 2030 SMB 1SMB2EZ33 33 31.35 34.65 23 15.1 1000 0.25 0.50 25.10 2033 SMB 1SMB2EZ36 36 34.20 37.80 25 13.9 1000 0.25 0.50 27.40 2036 SMB 1SMB2EZ39 39 37.05 40.95 30 12.8 1000 0.25 0.50 29.70 2039 SMB 1SMB2EZ43 43 40.85 45.15 35 11.6 1500 0.25 0.50 32.70 2043 SMB 1SMB2EZ47 47 44.65 49.35 40 10.6 1500 0.25 0.50 35.80 2047 SMB 1SMB2EZ51 51 48.45 53.55 48 9.8 1500 0.25 0.50 38.80 2051 SMB 1SMB2EZ56 56 53.20 58.80 55 9.0 2000 0.25 0.50 42.60 2056 SMB 1SMB2EZ60 60 57.00 63.00 58 8.5 2000 0.25 0.50 45.60 2060 SMB 1SMB2EZ62 62 58.90 65.10 60 8.1 2000 0.25 0.50 47.10 2062 SMB 1SMB2EZ68 68 64.60 71.40 75 7.4 2000 0.25 0.50 51.70 2068 SMB 1SMB2EZ75 75 71.25 78.75 90 6.7 2000 0.25 0.50 56.00 2075 SMB 1SMB2EZ82 82 77.90 86.10 100 6.1 3000 0.25 0.50 62.20 2082 SMB 1SMB2EZ87 87 82.65 91.35 120 5.8 3000 0.25 0.50 66.10 2087 SMB 1SMB2EZ91 91 86.45 95.55 125 5.5 3000 0.25 0.50 69.20 2091 SMB 1SMB2EZ100 100 95.00 105.00 175 5.0 3000 0.25 0.50 76.00 2100 SMB STAD-JUL.16.2005 PAGE . 2 1SMB2EZ6.8~1SMB2EZ100 1 2 3 APPLICATION NOTE: Since the actual voltage available from a given zener diode is temperature dependent, it is necessary to determinejunction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended: Lead Temperature, T L , should be determined from: T L = q LA P D + T A O q L A is the lead-to-ambient thermal resistance ( C/W) and Pd is the power dissipation. The value for q L A will vary and depends on the device mounting method. q L A is generally 30-40 OC/W for the various clips and tie points in common use and for printed circuit board wiring. The temperature of the lead can also be measured using a thermocouple placed on the lead as close as possible to the tie point. The thermal mass connected to the tie point is normally large enough so that it will not significantly respond to heat surges generated in the diode as a result of pulsed operation once steady-state conditions are achieved. Using the measured value of TL, the junction temperature may be determined by: T J = T L + D T JL D T JL is the increase in junction temperature above the lead temperature and may be found from Figure 2 for a train of power pulses or from Figure 10 for dc power. D T JL = q J L P D For worst-case design, using expected limits of I Z , limits of P D and the extremes of T J ( D T J ) may be estimated. Changes in voltage, V Z , can then be found from: DV = qVZ DTJ q V Z , the zener voltage temperature coefficient, is found from Figures 5 and 6. Under high power-pulse operation, the zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible. Data of Figure 2 should not be used to compute surge capa-bility. Surge limitations are given in Figure 3. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 3 be exceeded. STAD-JUL.16.2005 PAGE . 3 1SMB2EZ6.8~1SMB2EZ100 RANGE 4 6 5 7 8 STAD-JUL.16.2005 PAGE . 4