IRF IR2105

Data Sheet No. PD60139J
IR2105
HALF BRIDGE DRIVER
Features
• Floating channel designed for bootstrap operation
•
•
•
•
•
•
•
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout
5V Schmitt-triggered input logic
Cross-conduction prevention logic
Internally set deadtime
High side output in phase with input
Match propagation delay for both channels
Product Summary
VOFFSET
600V max.
IO+/-
130 mA / 270 mA
VOUT
10 - 20V
ton/off (typ.)
680 & 150 ns
Deadtime (typ.)
520 ns
Packages
Description
The IR2105 is a high voltage, high speed power
MOSFET and IGBT driver with dependent high and
low side referenced output channels. Proprietary
HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic
input is compatible with standard CMOS or LSTTL
outputs. The output drivers feature a high pulse
current buffer stage designed for minimum driver
cross-conduction. The floating channel can be used
to drive an N-channel power MOSFET or IGBT in
the high side configuration which operates from 10
to 600 volts.
8 Lead PDIP
8 Lead SOIC
Typical Connection
up to 600V
VCC
V CC
IN
IN
COM
LO
VB
HO
VS
TO
LOAD
IR2105
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
Min.
Max.
Units
VB
High side floating absolute voltage
-0.3
625
VS
High side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side and logic fixed supply voltage
-0.3
25
VLO
Low side output voltage
-0.3
VCC + 0.3
VIN
Logic input voltage
-0.3
VCC + 0.3
dVs/dt
PD
RthJA
Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25°C
Thermal resistance, junction to ambient
—
50
(8 Lead DIP)
—
1.0
(8 Lead SOIC)
—
0.625
(8 Lead DIP)
—
125
(8 Lead SOIC)
—
200
TJ
Junction temperature
—
150
TS
Storage temperature
-55
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
Definition
VB
High side floating supply absolute voltage
VS
High side floating supply offset voltage
Min.
Max.
V S + 10
VS + 20
Note 1
600
VHO
High side floating output voltage
VS
VB
VCC
Low side and logic fixed supply voltage
10
20
VLO
Low side output voltage
0
VCC
VIN
Logic input voltage
0
VCC
TA
Ambient temperature
-40
125
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS.
2
www.irf.com
IR2105
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, C L = 1000 pF and TA = 25°C unless otherwise specified.
Symbol
ton
toff
tr
tf
Definition
Min. Typ. Max. Units Test Conditions
Turn-on propagation delay
—
680
820
VS = 0V
Turn-off propagation delay
—
150
220
VS = 600V
Turn-on rise time
—
100
170
—
50
90
DT
Turn-off fall time
Deadtime, LS turn-off to HS turn-on &
HS turn-on to LS turn-off
400
520
650
MT
Delay matching, HS & LS turn-on/off
—
—
60
ns
Static Electrical Characteristics
VBIAS (VCC , VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, V TH and IIN parameters are referenced to
COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
Logic “1” (HO) & Logic “0” (LO) Input Voltage
3
—
—
VIL
Logic “0” (HO) & Logic “1” (LO) Input Voltage
—
—
0.8
VOH
High Level Output Voltage, VBIAS - VO
—
—
100
VOL
Low Level Output Voltage, VO
—
—
100
ILK
Offset Supply Leakage Current
—
—
50
V
mV
VCC = 10V to 20V
VCC = 10V to 20V
IO = 0A
IO = 0A
VB = VS = 600V
VIN = 0V or 5V
IQBS
Quiescent VBS Supply Current
—
30
55
IQCC
Quiescent VCC Supply Current
—
150
270
IIN+
Logic “1” Input Bias Current
—
3
10
V IN = 5V
IIN-
VIN = 0V
Logic “0” Input Bias Current
—
—
1
VCCUV+
VCC Supply Undervoltage Positive Going
Threshold
8
8.9
9.8
VCCUV-
VCC Supply Undervoltage Negative Going
Threshold
7.4
8.2
9
IO+
Output High Short Circuit Pulsed Current
130
210
—
IO-
Output Low Short Circuit Pulsed Current
270
360
—
µA
V
mA
www.irf.com
VIN = 0V or 5V
VO = 0V
PW ≤ 10 µs
VO = 15V
PW ≤ 10 µs
3
IR2105
Functional Block Diagram
VB
HV
LEVEL
SHIFT
DEAD
TIME
IN
Q
R
PULSE
FILTER
HO
S
PULSE
GEN
VS
UV
DETECT
VCC
LO
DEAD
TIME
COM
Lead Definitions
Lead
Symbol Description
IN
Logic input for high and low side gate driver outputs (HO and LO), in phase with HO
VB
High side floating supply
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side and logic fixed supply
LO
Low side gate drive output
COM
Low side return
Lead Assignments
COM
COM
5
LO
4
5
LO
8 Lead PDIP
8 Lead SOIC
IR2105
IR2105S
www.irf.com
IR2105
www.irf.com
8 Lead PDIP
01-3003 01
8 Lead SOIC
01-0021 08
5
IR2105
IN
IN(LO)
50%
50%
IN(HO)
ton
toff
tr
90%
HO
LO
HO
LO
Figure 1. Input/Output Timing Diagram
tf
90%
10%
10%
Figure 2. Switching Time Waveform Definitions
IN (LO)
50%
50%
50%
IN
LO
90%
HO
HO
10%
10%
DT
LO
50%
IN (HO)
DT
MT
MT
90%
90%
10%
LO
Figure 3. Deadtime Waveform Definitions
6
HO
Figure 4. Delay Matching Waveform Definitions
www.irf.com
1400
1400
1200
1200
Turn-On Delay Time (ns)
Turn-On Delay Time (ns)
IR2105
1000
Max.
800
600
Typ.
400
200
800
Typ.
600
400
200
0
0
-50
-25
0
25
50
75
Temperature (oC)
100
10
125
12
16
18
20
Figure 6B. Turn-On Time vs Voltage
500
Turn-Off Delay Time (ns)
500
400
300
Max .
200
100
Ty p.
400
300
Max .
200
Ty p.
100
0
0
-50
-25
0
25
50
75
100
10
125
Temperature (oC)
14
16
18
20
Figure 7B. Turn-Off Time vs Voltage
500
Turn-On Rise Time (ns)
500
400
300
200
12
VBIAS Supply Voltage (V)
Figure 7A. Turn-Off Time vs Temperature
Turn-On Rise Time (ns)
14
VBIAS Supply Voltage (V)
Figure 6A. Turn-On Time vs Temperature
Turn-Off Delay Time (ns)
Max.
1000
Max.
100
400
300
Max.
200
100
Typ.
Typ.
0
-50
0
-25
0
25
50
75
Temperature (oC)
Figure 9A. Turn-On Rise Time
vs Temperature
www.irf.com
100
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 9B. Turn-On Rise Time
vs Voltage
7
IR2105
200
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)
200
150
100
Max.
Typ.
50
Max.
100
Typ.
50
0
0
-50
-25
0
25
50
75
Temperature ( oC)
100
10
125
Figure 10A. Turn Off Fall Time
vs Temperature
140 0
140 0
120 0
120 0
100 0
800
Max .
600
Ty p.
400
100 0
Max .
800
600
Ty p .
400
0
-5 0
-2 5
0
25
50
75
100
125
10
12
Temperature (oC)
16
18
20
Figure 11B. Deadtime vs Voltage
8
7
7
6
6
Input Voltage (V)
8
5
4
14
VBIAS Supply Voltage (V)
Figure 11A. Deadtime vs Temperature
Input Voltage (V)
20
200
0
Min.
3
2
1
5
4
Min.
3
2
1
Temperature (oC)
0
-50
-25
0
25
50
0
75
100
Temperature (oC)
Figure12A. Logic "1" (HO) & Logic "0" (LO)
Input Voltage vs Temperature
8
18
Min.
Min.
200
12
14
16
VBIAS Supply Voltage (V)
Figure 10B. Turn Off Fall Time vs Voltage
Deadtime (ns)
Deadtime (ns)
150
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 12B. Logic "1" (HO) & Logic "0" (LO)
Input Voltage vs Voltage
www.irf.com
4
4
3.2
3.2
Input Voltage (V)
Input Voltage (V)
IR2105
2.4
1.6
Max .
0.8
2.4
1.6
Max.
0.8
0
0
- 50
- 25
0
25
50
75
10 0
12 5
10
12
Temperature (oC)
Figure 13A. Logic "0"(HO) & Logic "1"(LO)
Input Voltage vs Temperature
High Level Output Voltage (V)
High Level Output Voltage (V)
0.8
0.6
0.4
Max .
0
20
1
0.8
0.6
0.4
0.2
Max.
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (oC)
Figure 14A. High Level Output vs Temperature
14
16
Vcc Supply Voltage (V)
18
20
Figure 14B. High Level Output vs Voltage
1
1
Low Level Output Voltage (V)
Low Level Output Voltage (V)
18
Figure 13B. Logic "0"(HO) & Logic "1"(LO)
Input Voltage vs Voltage
1
0.2
14
16
Vcc Supply Voltage (V)
0.8
0.6
0.4
0.2
Max .
0
0.8
0.6
0.4
0.2
Max.
0
- 50
- 25
0
25
50
75
Temperature (oC)
Figure 15A. Low Level Output
vs Temperature
www.irf.com
100
125
10
12
14
16
18
20
Vcc Supply Voltage (V)
Figure 15B. Low Level Output vs Voltage
9
IR2105
Offset Supply Leakge Current (µA)
Offset Supply Leakge Current (µA)
500
400
300
200
100
Max.
0
-50
-25
0
25
50
75
100
500
400
300
200
Max.
100
0
0
125
200
Temperature (oC)
Figure 16A. Offset Supply Current
vs Temperature
VBS Supply Current (µA)
VBS Supply Current (µA)
800
150
12 0
90
60
Max .
30
120
90
60
Max.
30
Ty p.
Typ.
0
0
- 50
- 25
0
25
50
75
10 0
12 5
10
12
Temperature (oC)
18
20
VCC Supply Current (µA)
700
600
500
400
Max.
200
100
16
Figure 17B. VBS Supply Current vs Voltage
700
300
14
VBS Floating Supply Voltage (V)
Figure 17A. VBS Supply Current
vs Temperature
VCC Supply Current (µA)
600
Figure 16B. Offset Supply Current vs Voltage
15 0
Typ.
0
600
500
400
300
Max.
200
100
Typ.
0
-50
-25
0
25
50
75
Temperature (oC)
Figure 18A. Vcc Supply Current
vs Temperature
10
400
VB Boost Voltage (V)
100
125
10
12
14
16
Vcc Supply Voltage (V)
18
20
Figure 18B. Vcc Supply Current vs Voltage
www.irf.com
IR2105
30
Logic “1” Input Current (µA)
Logic “1” Input Current (µA)
30
25
20
15
Ma x .
10
Max
5
Ty p .
25
20
15
Ma x .
10
5
Ty p .
0
0
-50
-25
0
25
50
75
10 0
10
12 5
12
o
Temperature ( C)
Figure 19A. Logic "1" Input Current
vs Temperature
18
20
5
Logic “0” Input Current (µA)
Logic “0” Input Current (µA)
16
Figure 19B. Logic "1" Input Current
vs Voltage
5
4
3
2
Max.
1
0
-50
4
3
2
Max.
1
0
-25
0
25
50
75
100
125
10
12
Temperature (oC)
14
16
Vcc Supply Voltage (V)
18
20
Figure 20B. Logic "0" Input Current vs Voltage
Figure 20A. Logic "0" Input Current vs
Temperature
11
11
Max .
VCC UVLO Threshold -(V)
VCC UVLO Threshold +(V)
14
Vcc Supply Voltage (V)
10
Ty p.
9
Min .
8
7
6
-50
-25
0
25
50
75
10 0
Temperature (oC)
Figure 21A. Vcc Undervoltage Threshold(+)
vs Temperature
www.irf.com
12 5
10
Max.
9
Typ.
Typ.
8
7 Min.
6
-50
-25
0
25
50
75
100
125
Temperature (oC)
Figure 21B. Vcc UndervoltageThreshold (-)
vs Temperature
11
IR2105
500
Output Source Current (mA)
Output Source Current (mA)
50 0
40 0
Ty p.
30 0
20 0
10 0
Min.
0
400
300
200
Typ.
100
Min.
-50
-25
0
25
50
75
10 0
10
12 5
12
14
16
VBIAS Supply Voltage (V)
Temperature (oC)
Figure 22A. Output Source Current
vs Temperature
Output Sink Current (mA)
Output Sink Current (mA)
20
700
600
Ty p .
400
300
18
Figure 22B. Output Source Current
vs Voltage
700
500
Min.
0
Min.
200
100
600
500
400
Typ.
300
200
Min.
100
0
0
- 50
- 25
0
25
50
Temperature (oC)
75
100
Figure 23A. Output Sink Current
vs Temperature
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 23B. Output Sink Current
vs Voltage
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 322 3331
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171-0021 Tel: 8133 983 0086
IR HONG KONG: Unit 308, #F, New East Ocean Centre, No. 9 Science Museum Road, Tsimshatsui East, Kowloon, Hong
Kong Tel: (852) 2803-7380
Data and specifications subject to change without notice. 11/29/99
12
www.irf.com