Data Sheet No. PD60139J IR2105 HALF BRIDGE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout 5V Schmitt-triggered input logic Cross-conduction prevention logic Internally set deadtime High side output in phase with input Match propagation delay for both channels Product Summary VOFFSET 600V max. IO+/- 130 mA / 270 mA VOUT 10 - 20V ton/off (typ.) 680 & 150 ns Deadtime (typ.) 520 ns Packages Description The IR2105 is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates from 10 to 600 volts. 8 Lead PDIP 8 Lead SOIC Typical Connection up to 600V VCC V CC IN IN COM LO VB HO VS TO LOAD IR2105 Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition Min. Max. Units VB High side floating absolute voltage -0.3 625 VS High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side and logic fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 VIN Logic input voltage -0.3 VCC + 0.3 dVs/dt PD RthJA Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient — 50 (8 Lead DIP) — 1.0 (8 Lead SOIC) — 0.625 (8 Lead DIP) — 125 (8 Lead SOIC) — 200 TJ Junction temperature — 150 TS Storage temperature -55 150 TL Lead temperature (soldering, 10 seconds) — 300 V V/ns W °C/W °C Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol Definition VB High side floating supply absolute voltage VS High side floating supply offset voltage Min. Max. V S + 10 VS + 20 Note 1 600 VHO High side floating output voltage VS VB VCC Low side and logic fixed supply voltage 10 20 VLO Low side output voltage 0 VCC VIN Logic input voltage 0 VCC TA Ambient temperature -40 125 Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. 2 www.irf.com IR2105 Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, C L = 1000 pF and TA = 25°C unless otherwise specified. Symbol ton toff tr tf Definition Min. Typ. Max. Units Test Conditions Turn-on propagation delay — 680 820 VS = 0V Turn-off propagation delay — 150 220 VS = 600V Turn-on rise time — 100 170 — 50 90 DT Turn-off fall time Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off 400 520 650 MT Delay matching, HS & LS turn-on/off — — 60 ns Static Electrical Characteristics VBIAS (VCC , VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, V TH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol Definition Min. Typ. Max. Units Test Conditions VIH Logic “1” (HO) & Logic “0” (LO) Input Voltage 3 — — VIL Logic “0” (HO) & Logic “1” (LO) Input Voltage — — 0.8 VOH High Level Output Voltage, VBIAS - VO — — 100 VOL Low Level Output Voltage, VO — — 100 ILK Offset Supply Leakage Current — — 50 V mV VCC = 10V to 20V VCC = 10V to 20V IO = 0A IO = 0A VB = VS = 600V VIN = 0V or 5V IQBS Quiescent VBS Supply Current — 30 55 IQCC Quiescent VCC Supply Current — 150 270 IIN+ Logic “1” Input Bias Current — 3 10 V IN = 5V IIN- VIN = 0V Logic “0” Input Bias Current — — 1 VCCUV+ VCC Supply Undervoltage Positive Going Threshold 8 8.9 9.8 VCCUV- VCC Supply Undervoltage Negative Going Threshold 7.4 8.2 9 IO+ Output High Short Circuit Pulsed Current 130 210 — IO- Output Low Short Circuit Pulsed Current 270 360 — µA V mA www.irf.com VIN = 0V or 5V VO = 0V PW ≤ 10 µs VO = 15V PW ≤ 10 µs 3 IR2105 Functional Block Diagram VB HV LEVEL SHIFT DEAD TIME IN Q R PULSE FILTER HO S PULSE GEN VS UV DETECT VCC LO DEAD TIME COM Lead Definitions Lead Symbol Description IN Logic input for high and low side gate driver outputs (HO and LO), in phase with HO VB High side floating supply HO High side gate drive output VS High side floating supply return VCC Low side and logic fixed supply LO Low side gate drive output COM Low side return Lead Assignments COM COM 5 LO 4 5 LO 8 Lead PDIP 8 Lead SOIC IR2105 IR2105S www.irf.com IR2105 www.irf.com 8 Lead PDIP 01-3003 01 8 Lead SOIC 01-0021 08 5 IR2105 IN IN(LO) 50% 50% IN(HO) ton toff tr 90% HO LO HO LO Figure 1. Input/Output Timing Diagram tf 90% 10% 10% Figure 2. Switching Time Waveform Definitions IN (LO) 50% 50% 50% IN LO 90% HO HO 10% 10% DT LO 50% IN (HO) DT MT MT 90% 90% 10% LO Figure 3. Deadtime Waveform Definitions 6 HO Figure 4. Delay Matching Waveform Definitions www.irf.com 1400 1400 1200 1200 Turn-On Delay Time (ns) Turn-On Delay Time (ns) IR2105 1000 Max. 800 600 Typ. 400 200 800 Typ. 600 400 200 0 0 -50 -25 0 25 50 75 Temperature (oC) 100 10 125 12 16 18 20 Figure 6B. Turn-On Time vs Voltage 500 Turn-Off Delay Time (ns) 500 400 300 Max . 200 100 Ty p. 400 300 Max . 200 Ty p. 100 0 0 -50 -25 0 25 50 75 100 10 125 Temperature (oC) 14 16 18 20 Figure 7B. Turn-Off Time vs Voltage 500 Turn-On Rise Time (ns) 500 400 300 200 12 VBIAS Supply Voltage (V) Figure 7A. Turn-Off Time vs Temperature Turn-On Rise Time (ns) 14 VBIAS Supply Voltage (V) Figure 6A. Turn-On Time vs Temperature Turn-Off Delay Time (ns) Max. 1000 Max. 100 400 300 Max. 200 100 Typ. Typ. 0 -50 0 -25 0 25 50 75 Temperature (oC) Figure 9A. Turn-On Rise Time vs Temperature www.irf.com 100 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 9B. Turn-On Rise Time vs Voltage 7 IR2105 200 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 200 150 100 Max. Typ. 50 Max. 100 Typ. 50 0 0 -50 -25 0 25 50 75 Temperature ( oC) 100 10 125 Figure 10A. Turn Off Fall Time vs Temperature 140 0 140 0 120 0 120 0 100 0 800 Max . 600 Ty p. 400 100 0 Max . 800 600 Ty p . 400 0 -5 0 -2 5 0 25 50 75 100 125 10 12 Temperature (oC) 16 18 20 Figure 11B. Deadtime vs Voltage 8 7 7 6 6 Input Voltage (V) 8 5 4 14 VBIAS Supply Voltage (V) Figure 11A. Deadtime vs Temperature Input Voltage (V) 20 200 0 Min. 3 2 1 5 4 Min. 3 2 1 Temperature (oC) 0 -50 -25 0 25 50 0 75 100 Temperature (oC) Figure12A. Logic "1" (HO) & Logic "0" (LO) Input Voltage vs Temperature 8 18 Min. Min. 200 12 14 16 VBIAS Supply Voltage (V) Figure 10B. Turn Off Fall Time vs Voltage Deadtime (ns) Deadtime (ns) 150 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 12B. Logic "1" (HO) & Logic "0" (LO) Input Voltage vs Voltage www.irf.com 4 4 3.2 3.2 Input Voltage (V) Input Voltage (V) IR2105 2.4 1.6 Max . 0.8 2.4 1.6 Max. 0.8 0 0 - 50 - 25 0 25 50 75 10 0 12 5 10 12 Temperature (oC) Figure 13A. Logic "0"(HO) & Logic "1"(LO) Input Voltage vs Temperature High Level Output Voltage (V) High Level Output Voltage (V) 0.8 0.6 0.4 Max . 0 20 1 0.8 0.6 0.4 0.2 Max. 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (oC) Figure 14A. High Level Output vs Temperature 14 16 Vcc Supply Voltage (V) 18 20 Figure 14B. High Level Output vs Voltage 1 1 Low Level Output Voltage (V) Low Level Output Voltage (V) 18 Figure 13B. Logic "0"(HO) & Logic "1"(LO) Input Voltage vs Voltage 1 0.2 14 16 Vcc Supply Voltage (V) 0.8 0.6 0.4 0.2 Max . 0 0.8 0.6 0.4 0.2 Max. 0 - 50 - 25 0 25 50 75 Temperature (oC) Figure 15A. Low Level Output vs Temperature www.irf.com 100 125 10 12 14 16 18 20 Vcc Supply Voltage (V) Figure 15B. Low Level Output vs Voltage 9 IR2105 Offset Supply Leakge Current (µA) Offset Supply Leakge Current (µA) 500 400 300 200 100 Max. 0 -50 -25 0 25 50 75 100 500 400 300 200 Max. 100 0 0 125 200 Temperature (oC) Figure 16A. Offset Supply Current vs Temperature VBS Supply Current (µA) VBS Supply Current (µA) 800 150 12 0 90 60 Max . 30 120 90 60 Max. 30 Ty p. Typ. 0 0 - 50 - 25 0 25 50 75 10 0 12 5 10 12 Temperature (oC) 18 20 VCC Supply Current (µA) 700 600 500 400 Max. 200 100 16 Figure 17B. VBS Supply Current vs Voltage 700 300 14 VBS Floating Supply Voltage (V) Figure 17A. VBS Supply Current vs Temperature VCC Supply Current (µA) 600 Figure 16B. Offset Supply Current vs Voltage 15 0 Typ. 0 600 500 400 300 Max. 200 100 Typ. 0 -50 -25 0 25 50 75 Temperature (oC) Figure 18A. Vcc Supply Current vs Temperature 10 400 VB Boost Voltage (V) 100 125 10 12 14 16 Vcc Supply Voltage (V) 18 20 Figure 18B. Vcc Supply Current vs Voltage www.irf.com IR2105 30 Logic “1” Input Current (µA) Logic “1” Input Current (µA) 30 25 20 15 Ma x . 10 Max 5 Ty p . 25 20 15 Ma x . 10 5 Ty p . 0 0 -50 -25 0 25 50 75 10 0 10 12 5 12 o Temperature ( C) Figure 19A. Logic "1" Input Current vs Temperature 18 20 5 Logic “0” Input Current (µA) Logic “0” Input Current (µA) 16 Figure 19B. Logic "1" Input Current vs Voltage 5 4 3 2 Max. 1 0 -50 4 3 2 Max. 1 0 -25 0 25 50 75 100 125 10 12 Temperature (oC) 14 16 Vcc Supply Voltage (V) 18 20 Figure 20B. Logic "0" Input Current vs Voltage Figure 20A. Logic "0" Input Current vs Temperature 11 11 Max . VCC UVLO Threshold -(V) VCC UVLO Threshold +(V) 14 Vcc Supply Voltage (V) 10 Ty p. 9 Min . 8 7 6 -50 -25 0 25 50 75 10 0 Temperature (oC) Figure 21A. Vcc Undervoltage Threshold(+) vs Temperature www.irf.com 12 5 10 Max. 9 Typ. Typ. 8 7 Min. 6 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 21B. Vcc UndervoltageThreshold (-) vs Temperature 11 IR2105 500 Output Source Current (mA) Output Source Current (mA) 50 0 40 0 Ty p. 30 0 20 0 10 0 Min. 0 400 300 200 Typ. 100 Min. -50 -25 0 25 50 75 10 0 10 12 5 12 14 16 VBIAS Supply Voltage (V) Temperature (oC) Figure 22A. Output Source Current vs Temperature Output Sink Current (mA) Output Sink Current (mA) 20 700 600 Ty p . 400 300 18 Figure 22B. Output Source Current vs Voltage 700 500 Min. 0 Min. 200 100 600 500 400 Typ. 300 200 Min. 100 0 0 - 50 - 25 0 25 50 Temperature (oC) 75 100 Figure 23A. Output Sink Current vs Temperature 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 23B. Output Sink Current vs Voltage WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo, Japan 171-0021 Tel: 8133 983 0086 IR HONG KONG: Unit 308, #F, New East Ocean Centre, No. 9 Science Museum Road, Tsimshatsui East, Kowloon, Hong Kong Tel: (852) 2803-7380 Data and specifications subject to change without notice. 11/29/99 12 www.irf.com