IRF IR2112

Data Sheet No. PD60026-R
IR2112(S) & (PbF)
HIGH AND LOW SIDE DRIVER
Features
• Floating channel designed for bootstrap operation
• Fully operational to +600V
• Tolerant to negative transient voltage
dV/dt immune
• Gate drive supply range from 10 to 20V
• Undervoltage lockout for both channels
• 3.3V logic compatible
•
•
•
•
•
Separate logic supply range from 3.3V to 20V
Logic and power ground ±5V offset
CMOS Schmitt-triggered inputs with pull-down
Cycle by cycle edge-triggered shutdown logic
Matched propagation delay for both channels
Outputs in phase with inputs
Also available LEAD-FREE
Product Summary
VOFFSET
600V max.
IO+/-
200 mA / 420 mA
VOUT
10 - 20V
ton/off (typ.)
125 & 105 ns
Delay Matching
30 ns
Packages
Description
The IR2112(S) is a high voltage, high speed power
MOSFET and IGBT driver with independent high and
16-Lead SOIC
low side referenced output channels. Proprietary HVIC
(wide body)
14-Lead PDIP
and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL outputs, down
to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver crossconduction. Propagation delays are matched to simplify use in high frequency applications. The floating
channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which
operates up to 600 volts.
Typical Connection
up to 600V
HO
VDD
VDD
VB
HIN
HIN
VS
SD
SD
LIN
LIN
VCC
VSS
VSS
COM
VCC
TO
LOAD
LO
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only.
Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IR2112(S) & (PbF)
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured
under board mounted and still air conditions. Additional information is shown in Figures 28 through 35.
Symbol
Definition
VB
High Side Floating Supply Voltage
VS
Min.
Max.
-0.3
625
Units
High Side Floating Supply Offset Voltage
VB - 25
VB + 0.3
VHO
High Side Floating Output Voltage
VS - 0.3
VB + 0.3
VCC
Low Side Fixed Supply Voltage
-0.3
25
VLO
Low Side Output Voltage
-0.3
VCC + 0.3
VDD
Logic Supply Voltage
-0.3
VSS + 25
VSS
Logic Supply Offset Voltage
VCC - 25
VCC + 0.3
Logic Input Voltage (HIN, LIN & SD)
VIN
dVs/dt
PD
RTHJA
V
VSS - 0.3
VDD + 0.3
Allowable Offset Supply Voltage Transient (Figure 2)
—
50
Package Power Dissipation @ TA ≤ +25° C
Thermal Resistance, Junction to Ambient
(14 Lead DIP)
—
1.6
(16 Lead SOIC)
—
1.25
(14 Lead DIP)
—
75
(16 Lead SOIC)
—
100
TJ
Junction Temperature
—
150
TS
Storage Temperature
-55
150
TL
Lead Temperature (Soldering, 10 seconds)
—
300
V/ns
W
°C/W
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommended conditions. The VS and V SS offset ratings are tested with all supplies biased at 15V differential. Typical
ratings at other bias conditions are shown in Figures 36 and 37.
Symbol
Min.
Max.
VB
High Side Floating Supply Absolute Voltage
Definition
VS + 10
VS + 20
VS
High Side Floating Supply Offset Voltage
Note 1
600
VB
VHO
High Side Floating Output Voltage
VS
VCC
Low Side Fixed Supply Voltage
10
20
VLO
Low Side Output Voltage
0
VCC
VDD
Logic Supply Voltage
VSS
Logic Supply Offset Voltage
VIN
TA
VSS + 3
VSS + 20
-5 (Note 2)
5
Logic Input Voltage (HIN, LIN & SD)
VSS
VDD
Ambient Temperature
-40
125
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
Note 2: When VDD < 5V, the minimum VSS offset is limited to -VDD.
2
www.irf.com
IR2112(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, CL = 1000 pF, TA = 25°C and VSS = COM unless otherwise specified. The dynamic
electrical characteristics are measured using the test circuit shown in Figure 3.
Symbol
Definition
Figure Min. Typ. Max. Units Test Conditions
ton
Turn-On Propagation Delay
7
—
125
180
VS = 0V
toff
Turn-Off Propagation Delay
8
—
105
160
VS = 600V
tsd
Shutdown Propagation Delay
9
—
105
160
tr
Turn-On Rise Time
10
—
80
130
tf
Turn-Off Fall Time
11
—
40
65
Delay Matching, HS & LS Turn-On/Off
—
—
—
30
MT
ns
VS = 600V
Static Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters
are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are
referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
Definition
Figure Min. Typ. Max. Units Test Conditions
VIH
Logic “1” Input Voltage
12
9.5
—
—
VIL
Logic “0” Input Voltage
13
—
—
6.0
VOH
High Level Output Voltage, VBIAS - VO
14
—
—
100
VOL
Low Level Output Voltage, VO
15
—
—
100
ILK
Offset Supply Leakage Current
16
—
—
50
V
mV
IO = 0A
IO = 0A
VB = VS = 600V
IQBS
Quiescent VBS Supply Current
17
—
25
60
VIN = 0V or VDD
IQCC
Quiescent VCC Supply Current
18
—
80
180
VIN = 0V or VDD
IQDD
Quiescent VDD Supply Current
19
—
2.0
5.0
IIN+
Logic “1” Input Bias Current
20
—
20
40
VIN = VDD
IIN-
21
22
—
7.4
—
8.5
1.0
9.6
VIN = 0V
23
7.0
8.1
9.2
24
7.6
8.6
9.6
25
7.2
8.2
9.2
IO+
Logic “0” Input Bias Current
VBS Supply Undervoltage Positive Going
Threshold
VBS Supply Undervoltage Negative Going
Threshold
VCC Supply Undervoltage Positive Going
Threshold
VCC Supply Undervoltage Negative Going
Threshold
Output High Short Circuit Pulsed Current
26
200
250
—
IO-
Output Low Short Circuit Pulsed Current
27
420
500
—
VBSUV+
VBSUVVCCUV+
VCCUV-
www.irf.com
µA
VIN = 0V or VDD
V
mA
VO = 0V, VIN = VDD
PW ≤ 10 µs
VO = 15V, VIN = 0V
PW ≤ 10 µs
3
IR2112(S) & (PbF)
Functional Block Diagram
VB
UV
DETECT
VDD
HV
LEVEL
SHIFT
R Q
S
VDD /VCC
LEVEL
SHIFT
HIN
R
R
PULSE
FILTER
Q
HO
S
PULSE
GEN
VS
SD
VCC
UV
DETECT
VDD /VCC
LEVEL
SHIFT
LIN
S
LO
R Q
DELAY
COM
VSS
Lead Definitions
Symbol
Description
VDD
Logic supply
HIN
Logic input for high side gate driver output (HO), in phase
SD
Logic input for shutdown
LIN
Logic input for low side gate driver output (LO), in phase
VSS
Logic ground
VB
High side floating supply
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side supply
LO
Low side gate drive output
COM
Low side return
Lead Assignments
14 Lead DIP
16 Lead SOIC (Wide Body)
IR2112
IR2112S
Part Number
4
www.irf.com
IR2112(S) & (PbF)
<50 V/ns
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test
Circuit
50%
50%
HIN
LIN
ton
toff
tr
90%
HO
LO
Figure 3. Switching Time Test Circuit
tf
90%
10%
10%
Figure 4. Switching Time Waveform Definition
HIN
LIN
50%
50%
50%
SD
LO
HO
tsd
HO
LO
10%
90%
MT
MT
90%
LO
Figure 5. Shutdown Waveform Definitions
www.irf.com
HO
Figure 6. Delay Matching Waveform Definitions
5
IR2112(S) & (PbF)
250
Turn-On Delay Time (ns)
Turn-On Delay Time (ns)
250
200
Max.
150
100
Typ.
50
150
100
Typ.
50
0
0
-50
-25
0
25
50
Temperature
75
10
100 125
12
18
20
Turn-Off Delay Time (ns)
250
300
Max.
200
Typ.
100
0
200
Max.
150
100
Typ.
50
0
0
2
4
6
8
10 12 14 16 18 20
-50
-25
VDD Supply Voltage (V)
0
25
50
75
100
Figure 7C. Turn-On Time vs. VDD Supply Voltage
Figure 8A. Turn-Off Time vs. Temperature
250
400
200
Max.
150
100
Typ.
50
0
10
12
14
16
125
Temperature (°C)
18
20
VCC /VBS Supply Voltage (V)
Figure 8B. Turn-Off Time vs. VCC/VBS Supply Voltage
Turn-OFF Delay Time (ns)
Turn-Off Delay Time (ns)
16
Figure 7B. Turn-On Time vs. VCC/VBS Supply Voltage
400
6
14
VCC /VBS Supply Voltage (V)
Figure 7A. Turn-On Time vs. Temperature
Turn-On Delay Time (ns)
Max .
200
300
Max.
200
100
Typ.
0
0
2
4
6
8
10 12 14 16 18 20
VDD Supply Voltage (V)
Figure 8C. Turn-Off Time vs. VDD Supply Voltage
www.irf.com
IR2112(S) & (PbF)
250
Shutdown Delay Time (ns)
Shutdown Delay Time (ns)
250
200
Max.
150
100
Typ.
50
0
-50
-25
0
25
50
75
100
200
Max.
150
100
Typ.
50
0
10
125
14
18
20
Figure 9B. Shutdown Delay Time
vs. VCC/VBS Supply Voltage
Figure 9A. Shutdow n Time vs. Temperature
250
Turn-On rise Time (ns)
400
300
Max.
200
100
Typ.
2
4
6
8
10
12
14
16
18
200
150
Max.
100
50
Typ.
0
-50
0
0
20
-25
0
V D D S upply V oltage (V )
25 50 75
Temperature (°C)
100 125
Figure 10A. Turn-On Rise Time vs. Temperature
Figure 9C. Shutdown Time vs. VDD Supply Voltage
250
125
Turn-On Fall Time (ns)
Turn-On Rise Time (ns)
16
VCC /VBS Supply Voltage (V)
Temperature (°C)
S hutdow n D elay Tim e (ns)
12
200
Max.
150
100
Typ.
50
100
75
Max.
50
25
Typ.
0
0
10
12
14
16
18
20
-50
-25
0
25
50
75
100
125
Tem perature (°C)
VBIAS Supply Voltage (V)
Figure 10B. Turn-On Rise Time vs. Voltage
www.irf.com
Figure 11A Turn-On Fall Time vs. Temperature
7
IR2112(S) & (PbF)
15
Logic "1" Input Threshold (V)
T u rn -O ff F a ll T im e (n s )
125
100
Max.
75
50
Typ.
25
0
10
12
14
16
V B IA S S u p p ly V o lta g e (V )
18
12
Min.
9
6
3
0
-50
50
75
100 125
15
Figure 12A. Logic “I” Input Threshold
vs. Temperature
Logic "0" Input Threshold (V)
12
9
3
6
Min.
12
9
Max.
6
3
0
0
L o g ic " 1 " In p u t T re s h o ld
25
15
2 .5
5
7 .5
10
V D D L o g ic
1 2 .5
15
1 7 .5
20
-5 0
-2 5
0
25
50
75
100
125
Te m p e ra t u re (°C )
S u p p ly V o lta g e (V )
Figure 13A. Logic “0” Input Threshold
vs. Temperature
15
Figure 12B. Logic “I” Input Threshold
vs. Voltage
6
9
12
H igh Level O utput V oltage (V )
1
3
Max.
0
Logic " 0 " Input Treshold (V)
0
Temperature (°C)
Figure 11B. Turn-Off Fall Time vs. Voltage
2.5
5
7.5
10
12.5
15
17.5
VDD Logic Supply Voltage (V)
Figure 13B. Logic “0” Input Threshold
vs. Voltage
8
-25
20
20
0.8
0.6
0.4
M ax.
0.2
0
-50
-25
0
25
50
75
100
125
T e m p e ra tu re
Figure 14A. High Level Output vs. Temperature
www.irf.com
1
Low Level Output Voltage (V)
H igh L eve l O utpu t V olta ge (V )
IR2112(S) & (PbF)
0.8
0.6
0.4
M a x.
0.2
0
10
12
14
16
18
1
0.8
0.6
0.4
Max.
0.2
0
-50
20
-25
V B A IS S upply V otage (V )
0.6
0.4
Max.
0.2
0
16
18
20
Offset Supply Leakage Current (uA)
Low Level Output Voltage (V)
0.8
14
75
100
125
500
400
300
200
Max.
100
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
VBIAS Supply Votage (V)
Figure 15B. Low Level Output vs. Voltage
Figure 16A. Offset Supply Current vs.
Temperature
500
100
VBS Supply Current (uA)
Offset Supply Leakage Current (uA)
50
Figure 15A. Low Level Output vs. Temperature
1
12
25
Temperature (°C)
Figure 14B. High Level Output vs. Voltage
10
0
400
300
200
M ax .
100
80
60
Max.
40
20
Typ.
0
0
100
200
300
400
500
600
V B B oos t V oltage (v)
Figure 16B. Offset Supply Current vs. Voltage
www.irf.com
0
-50
-25
0
25
50
75
100
125
Tem perature (°C )
Figure 17A. VBS Supply Current vs. Temperature
9
IR2112(S) & (PbF)
300
80
M ax .
60
40
250
Vcc Supply Current (uA)
VBS Supply Current (uA)
100
Typ.
20
200
Max.
150
100
50
0
Typ.
0
10
12
14
16
18
20
-5 0
-2 5
0
V B S Floating S upply V oltage (V )
250
200
Max.
150
100
Typ.
50
100
125
10
Max.
8
6
Typ.
4
2
0
0
10
12
14
16
18
-50
20
-25
0
Figure 18B. VCC Supply Current vs. Voltage
Logic "1 " Input Bias Current (uA)
10
8
Max.
4
2
Typ.
0
2
4
6
8 10 12 14 16
VDD Logic Supply Voltage (V)
50
75
100
125
Figure 19A. VDD Supply Current vs. Temperature
12
6
25
Temperature (°C)
Vcc Fixed Supply Voltage (V)
VDD Supply Current (uA)
75
12
VDD Supply Current (uA)
Vcc Supply Current (uA)
300
18
Figure 19B. VDD Supply Current vs. VDD Voltage
10
50
Figure 18A. VCC Supply Current vs. Temperature
Figure 17B. VBS Supply Current vs. Voltage
0
25
T e m p e ra t u re (° C )
20
100
80
60
Max.
40
20
Typ.
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 20A. Logic “I” Input Current vs. Temperature
www.irf.com
IR2112(S) & (PbF)
5
80
60
Max.
40
20
Typ.
0
0
2
4
6
8
10 12 14 16
V D D L o g ic S u p p ly V o lta g e (V )
18
20
4
3
2
Max.
1
0
4
6
8
3
2
Max.
1
0
-50
-25
25
50
75
100
125
11
10
Max.
9
Typ.
8
Min.
7
6
-50
10 12 14 16 18 20
-25
0
25
50
75
100
125
Temperature (°C)
VDD Supply Voltage (V)
Figure 21B. Logic “0” Input Current vs. VDD Voltage
Figure 22. VBS Undervoltage (+) vs. Temperature
11
11
10
Max.
9
Typ.
8
Min.
7
6
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 23. VBS Undervoltage (-) vs. Temperature
www.irf.com
Vcc Undervoltage Lockout +(V)
VBS Undervoltage Lockout -(V)
0
Figure 21A. Logic “0” Input Current vs. Temperature
VBS Undervoltage Lockout +(V)
Logic "0" Input Bias Current (uA)
5
2
4
Temperature (°C)
Figure 20B. Logic “1” Input Current vs. VDD Voltage
0
Logic "0" Input Bias Current (uA)
Logic " 1" Input Bias Current (uA)
100
10
Max.
9
Typ.
8
Min.
7
6
-50
-25
0
25
50
75
100
125
Temperature
(°C)
Figure 24. VCC Undervoltage (-) vs. Temperature
11
IR2112(S) & (PbF)
500
Output source Current (mA)
VCC Undervoltage Lockout - (V)
11
10
Max.
9
Typ.
8
Min.
7
400
300
Typ.
200
Min.
100
0
6
-50
-25
0
25
50
75
100
-50
125
-25
Figure 25. VCC Undervoltage (-) vs. Temperature
25
50
75
100
125
Figure 26A. Output Source Current vs. Temperature
500
750
Output Sink Current (mA)
Output source Current (mA)
0
Tem perature (°C )
Tem perature (°C)
400
Typ.
300
Min.
200
100
0
10
12
14
16
18
20
600
Typ.
450
300
Min.
150
0
-50
VBIAS Supply Voltage (V)
-25
0
25
50
75
100
125
Temperature (°C)
Figure 26B. Output Source Current vs. Voltage
Figure 27A. Output Sink Current vs. Temperature
Output Sink Current (mA)
750
600
Typ.
450
300
Min.
150
0
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 27B. Output Sink Current vs. Voltage
12
www.irf.com
IR2112(S) & (PbF)
150
150
320V
125
320V
100
75
140V
10V
50
Junction Temperature (°C)
Junction Temperature (°C)
125
25
140V
75
10V
50
25
0
1E+2
100
0
1E+3
1E+4
1E+5
1E+6
1E+2
1E+3
Frequency (Hz)
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 28. IR2112 TJ vs. Frequency (IRFBC20)
Ω, VCC = 15V
RGATE = 33Ω
Figure 29. IR2112 TJ vs. Frequency (IRFBC30)
Ω, VCC = 15V
RGATE = 22Ω
320V
150
320V 140V 10V
150
125
125
100
10V
75
50
Junction Temperature (°C)
Junction Temperature (°C)
140V
25
100
75
50
25
0
0
1E+2
1E+3
1E+4
1E+5
1E+6
1E+2
1E+3
Frequency (Hz)
Figure 30. IR2112 TJ vs. Frequency (IRFBC40)
Ω, VCC = 15V
RGATE = 15Ω
140V
125
100
140V
75
10V
50
25
Junction Temperature (°C)
Junction Temperature (°C)
1E+6
320V
150
320V
125
100
75
10V
50
25
0
0
1E+3
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 32. IR2112S TJ vs. Frequency (IRFBC20)
Ω, VCC = 15V
RGATE = 33Ω
www.irf.com
1E+5
Figure 31. IR2112 TJ vs. Frequency (IRFPE50)
Ω, VCC = 15V
RGATE = 10Ω
150
1E+2
1E+4
Frequency (Hz)
1E+2
1E+3
1E+4
1E+5
1E+6
Frequency (Hz)
Figure 33. IR2112S TJ vs. Frequency (IRFBC30)
Ω, VCC = 15V
RGATE = 22Ω
13
IR2112(S) & (PbF)
320V
150
320V 140V 10V
150
140V
10V
125
Junction Temperature (°C)
Junction Temperature (°C)
125
100
75
50
25
100
75
50
25
0
0
1E+2
1E+3
1E+4
1E+5
1E+6
1E+2
1E+3
Frequency (Hz)
0.0
1E+6
20.0
VSS Logic Supply Offset Voltage (V)
-3.0
VS Offset Supply Voltage (V)
1E+5
Figure 35. IR2112S TJ vs. Frequency (IRFPE50)
Ω, VCC = 15V
RGATE = 10Ω
Figure 34. IR2112S TJ vs. Frequency (IRFBC40)
Ω, VCC = 15V
RGATE = 15Ω
Typ.
-6.0
-9.0
-12.0
-15.0
16.0
12.0
8.0
Typ.
4.0
0.0
10
12
14
16
18
VBS Floating Supply Voltage (V)
Figure 36. Maximum VS Negative Offset vs.
VBS Supply Voltage
14
1E+4
Frequency (Hz)
20
10
12
14
16
18
20
VCC Fixed Supply Voltage (V)
Figure 37. Maximum VSS Positive Offset vs.
VCC Supply Voltage
www.irf.com
IR2112(S) & (PbF)
Case outline
14-Lead PDIP
16-Lead SOIC (wide body)
www.irf.com
01-6010
01-3002 03 (MS-001AC)
01 6015
01-3014 03 (MS-013AA)
15
IR2112(S) & (PbF)
LEADFREE PART MARKING INFORMATION
Part number
Date code
IRxxxxxx
YWW?
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
Basic Part (Non-Lead Free)
14-Lead PDIP IR2112 order IR2112
16-Lead SOIC IR2112S order IR2112S
Leadfree Part
14-Lead PDIP IR2112 order IR2112PbF
16-Lead SOIC IR2112S order IR2112SPbF
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
This product has been qualified per industrial level
Data and specifications subject to change without notice. 4/2/2004
16
www.irf.com
This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.