Data Sheet No. PD60166 revS IR2136/IR21362/IR21363/IR21365/ IR21366/IR21367/IR21368 (J&S) & (PbF) 3-PHASE BRIDGE DRIVER Features • • • • • • • • • • • • Floating channel designed for bootstrap operation Packages Fully operational to +600V Tolerant to negative transient voltage - dV/dt immune Gate drive supply range from 10 to 20V (IR2136/IR21368), 11.5 to 20V (IR21362) or 12 to 20V (IR21363/IR21365/ IR21366/IR21367) Undervoltage lockout for all channels 28-Lead SOIC Over-current shutdown turns off all six drivers Independent 3 half-bridge drivers 28-Lead PDIP Matched propagation delay for all channels Cross-conduction prevention logic 44-Lead PLCC w/o 12 leads Lowside outputs out of phase with inputs. High side outputs out of phase (IR2136/IR21363/IR21365/ Feature Comparison: IR2136/IR21362/IR21363/ IR21366/IR21367/IR21368) or in phase IR21365/IR21366/IR21367/IR21368 (IR21362) with inputs. 3.3V logic compatible Part IR2136 IR21362 IR21363 IR21365 IR21366 IR21367 IR21368 Lower di/dt gate driver for Input Logic HIN, LIN HIN/LIN HIN, LIN HIN, LIN HIN, LIN HIN, LIN HIN,LIN better noise immunity 400ns Ton (typ.) 400ns 250ns 400ns 400ns 400ns 250ns Externally programmable Toff (typ.) 380ns 380ns 180ns 380ns 380ns 380ns 180ns delay for automatic fault VIH (typ.) 2.7V 2.0V 2.0V 2.7V 2.7V 2.7V 2.0V clear VIL (typ.) 1.7V 1.3V 1.3V 1.7V 1.7V 1.7V 1.3V Also available LEAD-FREE Vitrip+ 4.3V 4.3V 0.46V 0.46V 0.46V 0.46V 4.3V UV CC/BS+ 8.9V UV CC/BS- 8.2V Description 10.4V 9.4V 11.2V 11.0V 11.2V 11.0V 11.2V 11.0V 11.2V 11.0V 8.9V 8.2V The IR2136/IR21362/IR21363/IR21365/IR21366/IR21367/IR21368(J&S) are high votage, high speed power MOSFET and IGBT drivers with three independent high and low side referenced output channels for 3-phase applications. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS or LSTTL outputs, down to 3.3V logic. A current trip function which terminates all six outputs can be derived from an external current sense resistor. An enable function is available to terminate all six outputs simultaneously. An open-drain FAULT signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred. Overcurrent fault conditions are cleared automatically after a delay programmed externally via an RC network connected to the RCIN input. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operates up to 600 volts. Typical Connection up to 600V VCC HIN1,2,3 / HIN1,2,3 LIN1,2,3 VCC HIN1,2,3 / HIN1,2,3 VB1,2,3 LIN1,2,3 HO1,2,3 FAULT (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. EN FAULT EN VS1,2,3 TO LOAD RCIN ITRIP VSS LO1,2,3 COM IR2136(2)(3)(5)(6)(7)(8) GND www.irf.com 1 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VS VBS VHO VCC VSS VLO1,2,3 VIN VFLT dV/dt PD RthJA TJ TS TL Definition High side offset voltage High side floating supply voltage High side floating output voltage Low side and logic fixed supply voltage Logic ground Low side output voltage Input voltage LIN,HIN,ITRIP, EN, RCIN FAULT output voltage Allowable offset voltage slew rate Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient (28 lead PDIP) (28 lead SOIC) ( 44leadPLCC) (28 lead PDIP) (28 lead SOIC) (44 lead PLCC) Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) Min. Max. VB1,2,3 - 25 -0.3 VS1,2,3 - 0.3 -0.3 VCC - 25 -0.3 VSS - 0.3 VB1,2,3 + 0.3 625 VB1,2,3 + 0.3 25 VCC + 0.3 VCC + 0.3 lower of (VSS + 15) or VCC + 0.3) VCC + 0.3 50 1.5 1.6 2.0 83 78 63 150 150 300 VSS - 0.3 — — — — — — — — -55 — Units V V/ns W °C/W °C Recommended Operating Conditions The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The VS offset rating is tested with all supplies biased at 15V differential. Symbol VB1,2,3 VS1,2,3 VHO1,2,3 VLO1,2,3 VCC VSS VFLT VRCIN Definition High side floating supply voltage High side floating supply offset voltage High side output voltage Low side output voltage Low side and logic fixed supply voltage Logic ground FAULT output voltage RCIN input voltage Min. IR2136(8) IR21362 IR2136(3)(5)(6)(7) IR2136(8) IR21362 IR2136(3)(5)(6)(7) Max. Units VS1,2,3 +10 VS1,2,3 +20 VS1,2,3 +11.5 VS1,2,3 +20 VS1,2,3 +12 VS1,2,3 +20 Note 1 600 VS1,2,3 VB1,2,3 0 VCC 10 20 11.5 20 12 20 -5 5 VSS VCC VSS VCC V Note 1: Logic operational for VS of COM -5V to COM +600V. Logic state held for VS of COM -5V to COM -VBS. (Please refer to the Design Tip DT97-3 for more details). Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode. 2 www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) Recommended Operating Conditions cont. The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The VS offset rating is tested with all supplies biased at 15V differential. Symbol VITRIP VIN TA Min. Max. ITRIP input voltage Logic input voltage LIN , HIN (IR2136,IR21363(5)(6)(7)(8)), HIN(IR21362), EN Definition VSS VSS +5 VSS VSS +5 Ambient temperature -40 125 Units V o C Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode. Static Electrical Characteristics VBIAS (VCC, VBS 1,2,3) = 15V unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six channels (HS1,2,3 and LS1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3 and are applicable to the respective output leads: HO1,2,3 and LO1,2,3. Symbol VIH VIL VEN,TH+ VEN,THVIT,TH+ VIT,HYS VRCIN,TH+ VRCIN,HYS VOH VOL VCCUV+ VBSUV+ www.irf.com Definition Logic “0” input voltage LIN1,2,3, HIN1,2,3 IR2136(3)(5) Logic “1” input voltage HIN1,2,3 IR21362 Logic “0” input voltage LIN1,2,3, HIN1,2,3 IR21366(7)(8) Logic “1” input voltage LIN1,2,3, HIN1,2,3 IR2136(3)(5) Logic “0” input voltage HIN1,2,3 IR21362 Logic “0” input voltage LIN1,2,3, HIN1,2,3 IR21366(7)(8) EN positive going threshold EN negative going threshold ITRIP positive going threshold IR2136(2)(3)(6) IR21365(7)(8) ITRIP input hysteresis IR2136(2)(3)(6) IR21365(7)(8) RCIN positive going threshold RCIN input hysteresis High level output voltage, VBIAS - VO Low level output voltage, VO VCC and VBS supply undervoltage IR2136(8) positive going threshold IR21362 IR21363(5)(6)(7) Min. Typ. Max. Units Test Conditions 3.0 — — 2.5 — — — — 0.8 — — 0.8 — — — 0.8 3 — 0.37 3.85 0.46 4.30 0.55 4.75 — — — — — — 8.0 9.6 10.6 0.07 .15 8 3 0.9 0.4 8.9 10.4 11.1 — — — — 1.4 0.6 9.8 11.2 11.6 V IO = 20 mA IO = 20 mA 3 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) Static Electrical Characteristics cont. VBIAS (VCC, VBS1,2,3) = 15V unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six channels (HS1,2,3 and LS1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3 and are applicable to the respective output leads: HO1,2,3 and LO1,2,3. Symbol VCCUVVBSUVVCCUVH VBSUVH Definition Min. Typ. Max. Units Test Conditions VCC and VBS supply undervoltage negative going threshold IR2136(8) IR21362 IR21363(5)(6)(7) VCC and VBS supply undervoltage IR2136 7.4 8.6 10.4 0.3 8.2 9.4 10.9 0.7 9.0 10.2 11.4 — lockout hysteresis 1.0 0.2 — 70 1.6 5.2 200 — — 50 120 2.3 5.5 300 VIN, CLAMP ILIN+ Input bias current (LOUT = HI) IR2136(2)(3)(5) 0.5 — — — — 4.9 — 0 1 Input bias current (LOUT = LO) IR21366(7)(8) IR2136(2)(3)(5) — ILIN- — 100 220 IR21366(7)(8) IR2136(3)(5) — 0 1 — 200 300 30 100 ILK IQBS IQCC IHIN+ IHIN- IR21362 IR21363(5) Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Input clamp voltage (HIN, LIN, ITRIP and EN) Input bias current (HOUT = HI) IR21362 — IR21366(7)(8) IR2136(3)(5) — 0 1 — 100 220 IR21362(6)(7)(8) — 0 1 Input bias current (HOUT = LO) V µA mA V VB1,2,3=VS1,2,3=600V VIN = 0V or 5V IIN =100µA VLIN = 5V VLIN = 0V VHIN = 5V µA VHIN = 0V IITRIP+ “high” ITRIP input bias current — 30 100 IITRIP- “low” ITRIP input bias current — 0 1 VITRIP = 0V IEN+ “high” ENABLE input bias current — 30 100 VENABLE= 5V IEN- “low” ENABLE input bias current — 0 1 VENABLE = 0V RCIN input bias current — 0 1 VRCIN = 0V or 15V IRCIN IO+ Output high short circuit pulsed current 120 200 — IO- Output low short circuit pulsed current 250 350 — RON,RCIN RCIN low on resistance — 50 100 RON,FLT FAULT low on resistance — 50 100 4 VITRIP = 5V mA VO=0V, PW ≤ 10 µs VO=15V, PW ≤10 µs Ω www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) Dynamic Electrical Characteristics VCC = VBS = VBIAS = 15V, VS1,2,3 = VSS = COM, TA = 25oC and CL = 1000 pF unless otherwise specified. Symbol ton Definition Min. Turn-on propagation delay IR2136(2)(3)(5)(8) IR21366(7) toff Turn-off propagation delay IR2136(2)(3)(5)(8) IR21366(7) tr Turn-on rise time tf tEN Turn-off fall time ENABLE low to output Typ. Max. Units Test Conditions 300 425 — 250 550 — 250 400 550 — 180 — — 125 190 — 50 75 IR2136(2)(3)(5)(8) 300 450 600 IR21366(7) shutdown propagation delay VIN = 0 & 5V nS VIN, VEN = 0V or 5V 100 250 400 ITRIP to output shutdown propagation delay 500 750 1000 VITRIP = 5V ITRIP blanking time 100 150 — VIN = 0V or 5V ITRIP to FAULT propagation delay 400 600 800 VIN = 0V or 5V Input filter time (HIN, LIN, EN) 100 200 — VIN = 0 & 5V FAULT clear time RCIN: R=2meg, C=1nF 1.3 1.65 2 DT Deadtime 220 290 360 MT Matching delay ON and OFF — 40 75 Matching delay, max (ton,toff) - min (ton,toff), (ton,toff are applicable to all 3 channels) — 25 70 Output pulse width matching, PWin -PWout (fig.2) — 40 75 tITRIP tbl VITRIP = 5V tFLT VITRIP = 5V tFILIN (IR2136(2)(3)(5)(8) only) tFLTCLR mS VIN = 0V or 5V VITRIP = 0V MDT PM VIN = 0 & 5V nS External dead time >400nsec NOTE: For high side PWM, HIN pulse width must be ≥ 1µsec VCC <UVCC VBS X ITRIP X ENABLE X FAULT 0 (note 1) LO1,2,3 0 HO1,2,3 0 15V <UVBS 0V 5V high imp LIN1,2,3 0 15V 15V 0V 5V high imp LIN1,2,3 15V 15V 5V 0 (note 2) 0 0 15V 15V >VITRIP 0V 0V high imp 0 0 HIN1,2,3 Note: A shoot-through prevention logic prevents LO1,2,3 and HO1,2,3 for each channel from turning on simultaneously. Note 1: UVCC is not latched, when VCC>UVCC, FAULT returns to high impedance. Note 2: When ITRIP <VITRIP, FAULT returns to high-impedance after RCIN pin becomes greater than 8V (@ VCC = 15V) www.irf.com 5 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) Functional Block Diagram INPUT NOISE FILTER HIN1 LIN1 INPUT NOISE FILTER HIN2 INPUT NOISE FILTER LIN2 INPUT NOISE FILTER HIN3 INPUT NOISE FILTER IR2136/21363/21365 DEADTIME & SHOOT-THROUGH PREVENTION VSS/COM LEVEL SHIFTER HV LEVEL SHIFTER VB1 SET RESET LATCH DRIVER UV DETECT HO1 VS1 VB2 DEADTIME & SHOOT-THROUGH PREVENTION VSS/COM LEVEL SHIFTER HV LEVEL SHIFTER SET RESET LATCH DRIVER UV DETECT HO2 VS2 VB3 INPUT NOISE FILTER LIN3 DEADTIME & SHOOT-THROUGH PREVENTION VSS/COM LEVEL SHIFTER HV LEVEL SHIFTER SET RESET LATCH DRIVER UV DETECT VS3 VSS VCC INPUT NOISE FILTER EN ITRIP HO3 + - 0.5V UV DETECT VSS/COM LEVEL SHIFTER DELAY DRIVER LO1 VSS/COM LEVEL SHIFTER DELAY DRIVER LO2 VSS/COM LEVEL SHIFTER DELAY DRIVER LO3 INPUT NOISE FILTER S Q SET R DOMINANT LATCH RCIN FAULT COM 6 www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) Functional Block Diagram IR21362 INPUT NOISE FILTER HIN1 LIN1 INPUT NOISE FILTER HIN2 INPUT NOISE FILTER VB1 VSS/COM LEVEL SHIFTER DEADTIME & SHOOT-THROUGH PREVENTION HV LEVEL SHIFTER SET RESET LATCH DRIVER UV DETECT HO1 VS1 VB2 LIN2 INPUT NOISE FILTER HIN3 INPUT NOISE FILTER LIN3 INPUT NOISE FILTER VSS/COM LEVEL SHIFTER DEADTIME & SHOOT-THROUGH PREVENTION HV LEVEL SHIFTER SET RESET LATCH DRIVER UV DETECT HO2 VS2 VB3 VSS/COM LEVEL SHIFTER DEADTIME & SHOOT-THROUGH PREVENTION HV LEVEL SHIFTER SET RESET LATCH DRIVER UV DETECT VS3 VSS VCC UV DETECT INPUT NOISE FILTER EN ITRIP HO3 + - 0.5V VSS/COM LEVEL SHIFTER DELAY DRIVER LO1 VSS/COM LEVEL SHIFTER DELAY DRIVER LO2 VSS/COM LEVEL SHIFTER DELAY DRIVER LO3 INPUT NOISE FILTER S R SET DOMINANT LATCH Q RCIN FAULT COM www.irf.com 7 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) Functional Black Diagram IR21366/IR21367/IR21368 HIN1 DEADTIME & SHOOT-THROUGH PREVENTION LIN1 VSS/COM LEVEL SHIFTER VB1 HV LEVEL SHIFTER SET RESET LATCH DRIVER UV DETECT HO1 VS1 VB2 HIN2 DEADTIME & SHOOT-THROUGH PREVENTION LIN2 VSS/COM LEVEL SHIFTER HV LEVEL SHIFTER SET RESET LATCH DRIVER UV DETECT HO2 VS2 VB3 HIN3 DEADTIME & SHOOT-THROUGH PREVENTION LIN3 VSS/COM LEVEL SHIFTER HV LEVEL SHIFTER SET RESET LATCH DRIVER UV DETECT VS3 VSS VCC INPUT NOISE FILTER EN ITRIP HO3 + - UV DETECT VSS/COM LEVEL SHIFTER DELAY DRIVER LO1 VSS/COM LEVEL SHIFTER DELAY DRIVER LO2 VSS/COM LEVEL SHIFTER DELAY DRIVER LO3 INPUT NOISE FILTER S Q SET R DOMINANT LATCH RCIN FAULT COM 8 www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) Lead Definitions Symbol Description VCC Low side and logic fixed supply VSS Logic Ground HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase (IR2136/IR21363(5)(6)(7)(8) HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), in phase (IR21362) LIN1,2,3 FAULT Logic inputs for low side gate driver outputs (LO1,2,3), out of phase Indicates over-current (ITRIP) or low-side undervoltage lockout has occured. Negative logic, open-drain output EN COM Logic input to enable I/O functionality. Positive logic, i.e. I/O logic functions when ENABLE is high. No effect on FAULT and not latched Analog input for overcurrent shutdown. When active, ITRIP shuts down outputs and activates FAULT and RCIN low. When ITRIP becomes inactive, FAULT stays active low for an externally set time TFLTCLR, then automatically becomes inactive (open-drain high impedance). External RC network input used to define FAULT CLEAR delay, TFLTCLR, approximately equal to R*C. When RCIN>8V, the FAULT pin goes back into open-drain high-impedance Low side gate driver return VB1,2,3 HO1,2,3 High side floating supply High side gate driver outputs VS1,2,3 LO1,2,3 High voltage floating supply returns Low side gate driver output ITRIP RCIN Note: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode. www.irf.com 9 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) VS1 26 HIN3 25 5 LIN1 VB2 24 6 LIN2 HO2 23 7 LIN3 8 FAULT 9 ITRIP VB3 20 10 VS1 HIN2 4 HO1 3 VB1 HO1 27 VCC VB1 28 HIN1 HIN1 VCC HIN2 1 2 HIN3 Lead Assignments 6 5 4 3 43 42 41 7 LIN1 8 LIN2 9 37 VB2 LIN3 10 36 HO2 VS2 22 IR2136 11 21 EN HO3 19 11 RCIN VS3 18 12 VSS 13 COM LO1 16 14 LO3 LO2 15 FAULT 35 13 ITRIP EN 31 16 30 4 HIN3 25 5 LIN1 VB2 24 6 LIN2 HO2 23 7 LIN3 8 FAULT 9 ITRIP LO2 LO1 HO1 VS1 6 5 4 3 43 42 41 VS1 26 HIN3 25 5 LIN1 VB2 24 6 LIN2 HO2 23 7 LIN3 8 FAULT 9 ITRIP VB3 20 10 EN HO3 19 11 RCIN VS3 18 12 VSS 13 COM LO1 16 14 LO3 LO2 15 VS2 22 21 17 28 lead SOIC (wide body) IR2136/IR21363(5)(6)(7)(8) (S) 7 LIN1 8 LIN2 9 37 VB2 LIN3 10 36 HO2 11 35 VS2 VS2 22 FAULT HIN2 4 VS3 IR2136/IR21363(5)(6)(7)(8) (J) VB1 VS1 26 25 VCC HIN2 24 HIN1 3 23 HIN2 HO1 27 22 HIN3 VB1 28 HIN1 21 3 HO3 44 Lead PLCC w/o 12 leads IR2136/IR21363(5)(6)(7)(8) 1 VCC 20 VSS 28 Lead PDIP 2 19 LO3 29 18 COM 17 HO1 27 VB3 17 RCIN VB1 28 HIN1 IR2136 14 15 VCC VS2 IR2136 44 LEAD PLCC w/o 12 LEADS 12 1 2 1 VCC VB1 28 2 HIN1 HO1 27 3 HIN2 VS1 26 4 HIN3 25 5 LIN1 VB2 24 6 LIN2 HO2 23 7 LIN3 VS2 22 8 FAULT 9 ITRIP 12 21 21 13 VB3 20 ITRIP 10 EN HO3 19 11 RCIN VS3 18 14 15 EN 14 LO3 LO2 15 17 29 19 VSS 18 IR21362 10 HO3 19 11 RCIN VS3 18 HO3 12 VSS RCIN 28 Lead PDIP 10 EN VB3 20 21 22 23 24 13 COM LO1 16 14 LO3 LO2 15 25 44 Lead PLCC w/o 12 leads IR21362J 17 VS3 LO1 LO1 16 30 LO2 13 COM 16 LO3 17 31 COM 12 VSS VB3 20 28 lead SOIC (wide body) IR21362S www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) HIN1,2,3 HIN1,2,3 LIN1,2,3 EN ITRIP FAULT RCIN HO1,2,3 LO1,2,3 Figure 1. Input/Output Timing Diagram LIN1,2,3 50% 50% 50% HIN1,2,3 EN PW IN ten LIN1,2,3 50% 50% HIN1,2,3 90% HO1,2,3 ton tr toff tf PW OUT HO1,2,3 LO1,2,3 90% 10% 10% Figure 2. Switching Time Waveforms www.irf.com LO1,2,3 90% Figure 3. Output Enable Timing Waveform 11 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) LIN1,2,3 HIN1,2,3 LIN1,2,3 50% 50% 50% 50% HIN1,2,3 50% LO1,2,3 50% DT HO1,2,3 DT 50% 50% Figure 4. Internal Deadtime Timing Waveforms Vrcin,th+ RCIN ITRIP FAULT 50% 50% 50% tflt 50% 90% tfltclr Any output titrip Figure 5. ITRIP/RCIN Timing Waveforms HIN/LIN on off t in,fil on off U t in,fil on off high HO/LO low Figure 5.5 Input Filter Function 12 www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 1000 Turn-on Propagation Delay (ns) Turn-on Propagation Delay (ns) 1000 800 600 M ax. 400 Typ. M in. 200 0 800 M ax. 600 Typ. 400 M in. 200 0 -50 -25 0 25 50 75 100 10 125 12 14 Temperature ( C) 18 20 Figure 6B. Turn-on Propagation Delay vs. Supply Voltage Figure 6A. Turn-on Propagation Delay vs. Temperature 1000 Turn-off Propagation Delay (ns) 1000 Turn-on Propagation Delay (ns) 16 Supply Voltage (V) o 800 M ax. 600 Typ. 400 M in. 200 800 600 M ax. 400 Typ. M in. 200 0 0 3 3.5 4 4.5 Input Voltage (V) Figure 6C. Turn-on Propagation Delay vs. Input Voltage www.irf.com 5 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 7A. Turn-off Propagation Delay vs. Temperature 13 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 1000 Turn-off Propagation Delay (ns) Turn-off Propagation Delay (ns) 1000 800 M ax. 600 Typ. 400 M in. 200 800 M ax. 600 Typ. 400 M in. 200 0 0 10 12 14 16 18 3 20 3.5 Figure 7B. Turn-off Propagation Delay vs. Supply Voltage 4.5 5 Figure 7C. Turn-off Propagation Delay vs. Input Voltage 400 400 Turn-on Rise Time (ns) Turn-on Rise Time (ns) 4 Input Voltage (V) Supply Voltage (V) 300 200 M ax. 100 300 M ax. 200 Typ. 100 Typ. 0 0 -50 -25 0 25 50 75 100 o Temperature ( C) Figure 8A. Turn-on Rise Time vs. Temperature 14 125 10 12 14 16 18 20 Supply Voltage (V) Figure 8B. Turn-on Rise Time vs. Supply Voltage www.irf.com 200 200 150 150 Turn-off Fall Time (ns) Turn-off Fall Time (ns) IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 100 M ax. 50 100 M ax. Typ. 50 Typ. 0 0 -50 -25 0 25 50 75 100 10 125 12 16 18 20 Figure 9B. Turn-off Fall Time vs. Supply Voltage Figure 9A. Turn-off Fall Time vs. Temperature 1000 EN to Output Shutdown Time (ns) 1000 EN to Output Shutdown Time (ns) 14 Supply Voltage (V) Temperature (oC) 800 600 M ax. Typ. 400 M in. 200 800 M ax. 600 Typ. 400 M in. 200 0 0 -50 -25 0 25 50 75 100 Temperature (oC) Figure 10A. EN to Output Shutdown Time vs. Temperature www.irf.com 125 10 12 14 16 18 20 Supply Voltage (V) Figure 10B. EN to Output Shutdown Time vs. Supply Voltage 15 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 1500 ITRIP to Output Shutdown Time (ns) EN to Output Shutdown Time (ns) 1000 800 M ax. 600 Typ. 400 M in. 200 0 3 3.5 4 4.5 1200 M ax. 900 Typ. 600 M in. 300 0 -50 5 -25 0 ITRIP to FAULT Indication Time (ns) ITRIP to Output Shutdown Time (ns) 1200 M ax. 600 M in. 300 0 100 125 1200 1000 800 M ax. 600 Typ. 400 M in. 200 0 10 12 14 16 18 Supply Voltage (V) Figure 11B. ITRIP to Output Shutdown Time vs. Supply Voltage 16 75 Figure 11A. ITRIP to Output Shutdown Time vs. Temperature 1500 Typ. 50 Temperature ( C) Figure 10C. EN to Output Shutdown Time vs. EN Voltage 900 25 o EN Voltage (V) 20 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 12A. ITRIP to FAULT Indication Time vs. Temperature www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 3.0 1200 FAULT Clear Time (ms) Fault Indication Time (ns) 1000 M ax. 800 Typ. 600 M in. 400 200 2.5 M ax. 2.0 Typ. 1.5 M in. 1.0 0.5 0 10 12 14 16 18 -50 20 -25 0 Figure 12B. ITRIP to FAULT Indication Time vs. Supply Voltage 75 100 125 600 500 Dead Time (ns) 2.5 Fault Clear Time (ms) 50 Fig13A. FAULT Clear Time vs. Temperature 3.0 2.0 25 Temperature (oC) Supply Voltage (V) M ax. Typ. 1.5 M in. 1.0 400 M ax. 300 Typ. M in. 200 100 0 0.5 10 12 14 16 18 20 Supply Voltage (V) Figure 13B. FAULT Clear Time vs. Supply Voltage www.irf.com -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 14A. Dead Time vs. Temperature 17 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 600 Logic "0" Input Threshold (V) 6 500 Dead Time (ns) M ax. 400 Typ. 300 M in. 200 100 5 4 M ax. 3 2 1 0 0 10 12 14 16 18 20 -50 -25 0 Supply Voltage (V) 100 125 Figure 15A. Logic "0" Input Threshold vs. Temperature 6 Logic "1" Input Threshold (V) Logic "0" Input Threshold (V) 75 Temperature ( C) 6 5 4 M ax. 2 1 0 5 4 3 2 M in. 1 0 10 12 14 16 18 Supply Voltage (V) Figure 15B. Logic "0" Input Threshold vs. Supply Voltage 18 50 o Figure 14B. Dead Time Time vs. Supply Voltage 3 25 20 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 16A. Logic "1" Input Threshold vs. Temperature www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) ITRIP Positive Going Threshold (mV Logic "1" Input Threshold (V) 6 5 4 3 2 M in. 1 12 14 16 18 700 600 M ax. 500 Typ. 400 M in. 300 200 -50 0 10 800 20 -25 0 Supply Voltage (V) ITRIP Positive Going Threshold (V ITRIP Positive Going Threshold (mV Typ. 400 M in. 300 200 10 12 14 16 18 Supply Voltage (V) Figure 17B. ITRIP Positive Going Threshold vs. Supply Voltage (IR2136/21362/21363/IR21366 Only) www.irf.com 100 125 Figure 17A. ITRIP Positive Going Threshold vs. Temperature (IR2136/21362/21363/IR21366 Only) 700 500 75 Temperature ( C) 800 M ax. 50 o Figure 16B. Logic "1" Input Threshold vs. Supply Voltage 600 25 20 5.5 5.0 M ax. 4.5 Typ. 4.0 M in. 3.5 3.0 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 17C. ITRIP Positive Going Threshold vs. Temperature (IR21365/IR21367/IR21368 Only) 19 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 3.0 High Level Output Voltage (V) ITRIP Positive Going Threshold (V 5.5 5.0 M ax. 4.5 Typ. 4.0 M in. 3.5 3.0 2.5 2.0 1.5 M ax. 1.0 Typ. 0.5 0.0 12 14 16 18 20 -50 -25 0 75 100 125 Temperature ( C) Figure 18A. High Level Output vs. Temperature Figure 17D. ITRIP Positive Going Threshold vs. Supply Voltage (IR21365/IR21367/IR21368 Only) 3.0 1.2 Low Level Output Voltage (V) High Level Output Voltage (V) 50 o Supply Voltage (V) 2.5 2.0 M ax. 1.5 Typ. 1.0 0.5 0.0 1.0 0.8 0.6 M ax. 0.4 Typ. 0.2 0.0 10 12 14 16 18 Supply Voltage (V) Figure 18B. High Level Output vs. Supply Voltage 20 25 20 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 19A. Low Level Output vs. Temperature www.irf.com Low Level Output Voltage (V) 1.2 1.0 0.8 M ax. 0.6 0.4 Typ. 0.2 0.0 10 12 14 16 18 20 Supply Voltage (V) V CC or V BS Undervoltage Lockout (+) (V IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 12 11 10 M ax. 9 Typ. M in. 8 7 -50 9 M ax. Typ. 8 M in. 7 6 -50 -25 0 25 50 75 100 Temperature (oC) Figure 21. VCC or VBS Undervoltage (-) vs. Temperature (IR2136/IR21368 Only) www.irf.com 125 25 50 75 100 125 Figure 20. VCC or VBS Undervoltage (+) vs. Temperature (IR2136/IR21368 Only) VCC or VBS Undervoltage Lockout (+) (V) V CC or V BS Undervoltage Lockout (-) (V) 10 0 Temperature (oC) Figure 19B. Low Level Output vs. Supply Voltage 11 -25 13 12 M ax. 11 Typ. 10 M in. 9 8 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 22. VCC or VBS Undervoltage (+) vs. Temperature (IR21362 Only) 21 12 11 M ax. 10 Typ. 9 M in. 8 7 -50 -25 0 25 50 75 100 125 Temperature (oC) Offset Supply Leakage Current ( µA) V CC or V BS Undervoltage Lockout (-) (V) M ax. Typ. M in. 10 0 25 50 75 100 125 Temperature ( oC) Figure 25. V CC or V BS Undervoltage (-) vs. Temperature (IR21363/21365/IR21366/IR21367 Only) 22 M ax. Typ. 11 M in. 10 -50 -25 0 25 50 75 100 125 Temperature ( C) 12 -25 12 Figure 24. V CC or V BS Undervoltage (+) vs. Temperature (IR21363/21365/IR21366/IR21367 Only) 13 9 -50 13 o Figure 23. VCC or VBS Undervoltage (-) vs. Temperature (IR21362 Only) 11 V CC or V BS Undervoltage Lockout (+) (V) VCC or V BS Undervoltage Lockout (-) (V) IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 500 400 300 200 100 M ax. 0 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 26A. Offset Supply Leakage Current vs. Temperature www.irf.com 500 250 400 200 VBS Supply Current (µA) Offset Supply Leakage Current ( A) IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 300 200 100 150 M ax. 100 50 Typ. M ax. 0 0 100 200 300 400 500 -50 600 -25 0 75 100 125 Figure 27A. VBS Supply Current vs. Temperature 250 5 VCC Supply Current (mA) VBS Supply Current ( A) 50 o Figure 26B. Offset Supply Leakage Current vs. VB Boost Voltage 200 150 100 25 Temperature ( C) V B Boost Voltage (V) M ax. 50 4 3 2 1 M ax. Typ. Typ. 0 0 10 12 14 16 18 VBS Floating Supply Voltage (V) Figure 27B. VBS Supply Current vs. 20 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 28A. VCC Supply Current vs. Temperature VBS Floating Supply Voltage www.irf.com 23 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 800 Logic "1" Input Current ( µA) VCC Supply Current (mA) 5 4 3 2 1 M ax. Typ. 600 400 200 M ax. Typ. 0 0 10 12 14 16 18 -50 20 -25 0 50 75 100 125 Temperature ( C) Figure 28B. VCC Supply Current vs. Figure 29A. Logic "1" Input Current vs. Temperature (IR2136/21363/21365 and IR21362 Low Side Only) VCC Supply Voltage 300 Logic "1" Input Current ( µA) 800 Logic "1" Input Current ( A) 25 o Supply Voltage (V) 600 400 M ax. 200 250 200 150 100 50 M ax. Typ. Typ. 0 0 10 12 14 16 18 20 Supply Voltage (V) Figure 29B. Logic "1" Input Current vs. Supply Voltage (IR2136/21363/21365 and IR21362 Low Side Only) 24 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 29C. Logic "1" Input Current vs. Temperature (IR21362 High Side Only) www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 600 Logic "0" Input Current ( µA) Logic "1" Input Current ( A) 300 250 200 150 M ax. 100 50 Typ. 500 400 300 200 M ax. 100 Typ. 0 0 10 12 14 16 18 -50 20 -25 0 50 75 100 125 Temperature ( C) Figure 29D. Logic "1" Input Current vs. Supply Voltage (IR21362 High Side Only) Figure 30A. Logic "0" Input Current vs. Temperature (IR2136/21363/21365 and IR21362 Low Side Only) 600 4 Logic "0" Input Current ( µA) Logic "0" Input Current ( A) 25 o Supply Voltage (V) 500 400 300 200 M ax. 100 3 2 M ax. 1 Typ. Typ. 0 0 10 12 14 16 18 20 Supply Voltage (V) Figure 30B. Logic "0" Input Current vs. Supply Voltage (IR2136/21363/21365 and IR21362 Low Side Only) www.irf.com -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 30C. Logic "0" Input Current vs. Temperature (IR21362 High Side Only) 25 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 250 "High" ITRIP Current ( µA) Logic "0" Input Current ( A) 4 3 2 M ax. 1 200 150 100 50 Typ. Typ. 0 0 10 M ax. 12 14 16 18 -50 20 -25 0 50 75 100 125 o Temperature ( C) Supply Voltage (V) Figure 31A. "High" ITRIP Current vs. Temperature Figure 30D. Logic "0" Input Current vs. Supply Voltage (IR21362 High Side Only) 4 "Low" ITRIP Current (µA) 250 "High" ITRIP Current ( A) 25 200 150 M ax. 100 50 Typ. 3 2 M ax. 1 Typ. 0 0 10 12 14 16 18 20 Supply Voltage (V) Figure 31B. "High" ITRIP Current vs. Supply Voltage 26 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 32A. "Low" ITRIP Current vs. Temperature www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 200 "High" IEN Current (µA) "Low" ITRIP Current ( A) 4 3 2 M ax. 1 150 M ax. 100 50 Typ. Typ. 0 0 10 12 14 16 18 20 -50 -25 0 Supply Voltage (V) 50 75 100 125 o Figure 32B. "Low" ITRIP Current vs. Supply Voltage Figure 33A. "High" IEN Current vs. Temperature 4 250 200 "Low" IEN Current (µA) "High" IEN Current ( A) 25 Temperature ( C) 150 M ax. 100 50 3 2 M ax. 1 Typ. Typ. 0 0 10 12 14 16 18 20 Supply Voltage (V) Figure 33B. "High" IEN Current vs. Supply Voltage www.irf.com -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 34A. "Low" IEN Current vs. Temperature 27 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 4 RCIN Input Bias Current ( A) "Low" IEN Current ( A) 4 3 2 1 0 M ax. 3 2 M ax. 1 Typ. Typ. 10 12 14 16 18 0 20 -50 -25 0 25 Supply Voltage (V) 50 75 100 125 Temperature (oC) Figure 35A. RCIN Input Bias Current vs. Temperature Figure 34B. "Low" IEN Current vs. Supply Voltage Figure 34B. “Low” IEN Current vs. Supply Voltage 400 Output Source Current (mA) RCIN Input Bias Current ( A) 4 3 2 M ax. 1 300 Typ. 200 M in. 100 Typ. 0 0 10 12 14 16 18 Supply Voltage (V) Figure 35B. RCIN Input Bias Current vs. Supply Voltage 28 20 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 36A. Output Source Current vs. Temperature www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 500 Output Sink Current (mA) Output Source Current (mA) 500 400 300 200 Typ. 100 400 Typ. 300 M in. 200 100 M in. 0 0 10 12 14 16 18 20 -50 -25 0 Supply Voltage (V) 50 75 100 125 o Temperature ( C) Figure 36B. Output Source Current vs. Supply Voltage Figure 37A. Output Sink Current vs. Temperature 250 RCIN Low On-resistance ( Ω ) 600 500 Output Sink Current (mA) 25 400 300 Typ. 200 M in. 100 200 150 100 M ax. 50 Typ. 0 0 10 12 14 16 18 Supply Voltage (V) Figure 37B. Output Sink Current vs. Supply Voltage www.irf.com 20 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 38A. RCIN Low On-resistance vs. Temperature 29 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 250 FAULT Low On-resistance ( Ω ) RCIN Low On-resistance ( ) 250 200 150 M ax. 100 Typ. 50 200 150 100 M ax. 50 Typ. 0 0 10 12 14 16 18 20 -50 -25 Supply Voltage (V) 50 75 100 125 Temperature ( C) Figure 39A. FAULT Low On-resistance vs. Temperature 0 VS Offset Supply Voltage (V) ) 250 FAULT Low On-resistance ( 25 o Figure 38B. RCIN Low On-resistance vs. Supply Voltage 200 150 M ax. 100 Typ. 50 0 -3 Typ. -6 -9 -12 -15 10 12 14 16 18 Supply Voltage (V) Figure 39B. FAULT Low On-resistance vs. Supply Voltage 30 0 20 10 12 14 16 18 20 Supply Voltage (V) Figure 40. Maximum VS Negative Offset vs. VBS Supply Voltage www.irf.com 120 120 100 100 80 60 40 300V 200V 100V 0V Junction Temperature (oC) Junction Temperature o(C) IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 20 60 300V 200V 100 V 0V 40 20 0.1 1 10 Frequency (KHz) 100 0.1 Figure 41. IR2136/IR21362(3)(5)(6)(7)(8) Ω, Vcc=15V vs. Frequency (IRG4BC20W), Rgate=33Ω 120 120 100 100 80 60 300V 200V 100 0V V 40 1 10 Frequency (KHz) 100 Figure 42. IR2136/IR21362(3)(5)(6)(7)(8) Ω, Vcc=15V vs. Frequency (IRG4BC30W), Rgate=15Ω Junction Temperature (oC) Junction Temperature (oC) 80 80 300V 60 200V 100 V 0V 40 20 20 0.1 1 10 Frequency (KHz) 100 Figure 43. IR2136/IR21362(3)(5)(6)(7)(8) Ω, Vcc=15V vs. Frequency (IRG4BC40W), Rgate=10Ω www.irf.com 0.1 1 10 Frequency (KHz) 100 Figure 44. IR2136/IR21362(3)(5)(6)(7)(8) Ω, Vcc=15V vs. Frequency (IRG4PC50W), Rgate=5Ω 31 120 120 100 100 80 60 300V 200V 100V 0V 40 Junction Temperature (oC) Junction Temperature (oC) IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 20 60 300V 200V 100V 0V 40 20 0.1 1 10 Frequency (KHz) 100 Figure 45. IR2136/IR21362(3)(5)(6)(7)(8) (J) Ω, Vcc=15V vs. Frequency (IRG4BC20W), Rgate=33Ω 0.1 120 120 100 100 80 60 300V 200V 100V 0V 40 10 Frequency (KHz) 100 80 60 300V 200V 100V 40 0V 20 20 0.1 1 10 Frequency (KHz) 100 Figure 47. IR2136/IR21362(3)(5)(6)(7)(8) (J) Ω, Vcc=15V vs. Frequency (IRG4BC40W), Rgate=10Ω 32 1 Figure 46. IR2136/IR21362(3)(5)(6)(7)(8) (J) Ω, Vcc=15V vs. Frequency (IRG4BC30W), Rgate=15Ω Junction Temperature (oC) Junction Temperature (oC) 80 0.1 1 10 Frequency (KHz) 100 Figure 48. IR2136/IR21362(3)(5)(6)(7)(8) (J) Ω, Vcc=15V vs. Frequency (IRG4PC50W), Rgate=5Ω www.irf.com 120 120 100 100 80 60 300V 200V 100 V0V 40 Junction Temperature (oC) Junction Temperature (oC) IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) 80 60 300V 200V 100 0V V 40 20 20 0.1 1 10 Frequency (KHz) 0.1 100 Figure 49. IR2136/IR21362(3)(5)(6)(7)(8) (S) Ω, Vcc=15V vs. Frequency (IRG4BC20W), Rgate=33Ω 1 10 Frequency (KHz) 100 Figure 50. IR2136/IR21362(3)(5)(6)(7)(8) (S) Ω, Vcc=15V vs. Frequency (IRG4BC30W), Rgate=15Ω 120 120 100 100 80 60 300V 200V 100 V0V 40 Junction Temperature ( oC) Junction Temperature (oC) 300V 200V 80 100 V 60 0V 40 20 20 0.1 1 10 Frequency (KHz) 100 Figure 51. IR2136/IR21362(3)(5)(6)(7)(8) (S) Ω, Vcc=15V vs. Frequency (IRG4BC40W), Rgate=10Ω www.irf.com 0.1 1 10 Frequency (KHz) 100 Figure 52. IR2136/IR21362(3)(5)(6)(7)(8) (S) Ω, Vcc=15V vs. Frequency (IRG4PC50W), Rgate=5Ω 33 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) Case outlines 28-Lead PDIP (wide body) 28-Lead SOIC (wide body) 34 01-6011 01-3024 02 (MS-011AB) 01-6013 01-3040 02 (MS-013AE) www.irf.com IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) NOTES 44-Lead PLCC w/o 12 leads www.irf.com 01-6009 00 01-3004 02(mod.) (MS-018AC) 35 IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF) LEADFREE PART MARKING INFORMATION Part number Date code IRxxxxxx YWW? Pin 1 Identifier ? P IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) MARKING CODE Lead Free Released Non-Lead Free Released Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part 28-Lead PDIP IR2136/IR21363(5)(6)(7)(8) 28-Lead SOIC IR2136/IR21363(5)(6)(7)(8) (S) 44-Lead PLCC IR2136/IR21363(5)(6)(7)(8) (J)) 28-Lead PDIP IR21362 28-Lead SOIC IR21362S 44-Lead PLCC IR21362J order order order order order order IR2136/IR21363(5)(6)(7)(8) IR2136/IR21363(5)(6)(7)(8) (S) IR2136/IR21363(5)(6)(7)(8) (J) IR21362 IR21362S IR21362J Leadfree Part 28-Lead PDIP IR2136/IR21363(5)(6)(7)(8) 28-Lead SOIC IR2136/IR21363(5)(6)(7)(8) (S) 44-Lead PLCC IR2136/IR21363(5)(6)(7)(8) (J)) 28-Lead PDIP IR21362 28-Lead SOIC IR21362S 44-Lead PLCC IR21362J order order order order order order IR2136/IR21363(5)(6)(7)(8)PbF IR2136/IR21363(5)(6)(7)(8) (S)PbF IR2136/IR21363(5)(6)(7)(8) (J)PbF IR21362PbF IR21362SPbF IR21362JPbF WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level http://www.irf.com/ Data and specifications subject to change without notice. 4/13/2004 36 www.irf.com