IRF IR2181

Preliminary Data Sheet No. PD60030 rev.O
IR2213(S) & (PbF)
HIGH AND LOW SIDE DRIVER
Features
Product Summary
• Floating channel designed for bootstrap operation
•
•
•
•
•
•
•
•
Fully operational to +1200V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 12 to 20V
Undervoltage lockout for both channels
3.3V logic compatible
Separate logic supply range from 3.3V to 20V
Logic and power ground ±5V offset
CMOS Schmitt-triggered inputs with pull-down
Cycle by cycle edge-triggered shutdown logic
Matched propagation delay for both channels
Outputs in phase with inputs
Also available LEAD-FREE (PbF)
VOFFSET
1200V max.
IO+/-
1.7A / 2A
VOUT
12 - 20V
ton/off (typ.)
280 & 225 ns
Delay Matching
30 ns
Packages
Description
The IR2213(S) is a high voltage, high speed power
MOSFET and IGBT driver with independent high and
low side referenced output channels. Proprietary
16-Lead SOIC
HVIC and latch immune CMOS technologies enable
(wide body)
ruggedized monolithic construction. Logic inputs are
14-Lead PDIP
compatible with standard CMOS or LSTTL outputs,
down to 3.3V logic. The output drivers feature a high
pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched
to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power
MOSFET or IGBT in the high side configuration which operates up to 1200 volts.
Typical Connection
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical
connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IR2213(S) & (PbF)
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
Min.
Max.
Units
VB
High Side Floating Supply Voltage
-0.3
1225
VS
High Side Floating Supply Offset Voltage
VB - 25
VB + 0.3
VHO
High Side Floating Output Voltage
VS - 0.3
VB + 0.3
VCC
Low Side Fixed Supply Voltage
-0.3
25
VLO
Low Side Output Voltage
-0.3
VCC + 0.3
VDD
Logic Supply Voltage
-0.3
VSS + 25
VSS
Logic Supply Offset Voltage
VCC - 25
VCC + 0.3
VIN
Logic Input Voltage (HIN, LIN & SD)
VSS - 0.3
VDD + 0.3
dVs/dt
PD
RTHJA
Allowable Offset Supply Voltage Transient (Figure 2)
—
50
Package Power Dissipation @ TA ≤ +25°C
(14 Lead PDIP)
—
1.6
(16 Lead SOIC)
—
1.25
(14 Lead PDIP)
—
75
(16 Lead SOIC)
—
100
Thermal Resistance, Junction to Ambient
TJ
Junction Temperature
—
125
TS
Storage Temperature
-55
150
TL
Lead Temperature (Soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential.
Symbol
Definition
Min.
Max.
VB
High Side Floating Supply Absolute Voltage
VS + 12
VS + 20
VS
High Side Floating Supply Offset Voltage
Note 1
1200
VB
VHO
High Side Floating Output Voltage
VS
VCC
Low Side Fixed Supply Voltage
12
20
VLO
Low Side Output Voltage
0
VCC
VDD
Logic Supply Voltage
VSS
Logic Supply Offset Voltage
VIN
Logic Input Voltage (HIN, LIN & SD)
Units
V
VSS + 3
VSS + 20
-5 (Note 2)
5
VSS
VDD
Note 1: Logic operational for VS of -5 to +1200V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
Note 2: When VDD<5V, the minimum VSS offset is limited to -VDD
2
www.irf.com
IR2213(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, CL = 1000 pF, TA = 25°C and VSS = COM unless otherwise specified. The dynamic
electrical characteristics are measured using the test circuit shown in Figure 3.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
ton
Turn-On Propagation Delay
—
280
—
VS = 0V
toff
Turn-Off Propagation Delay
—
225
—
VS = 1200V
tsd
Shutdown Propagation Delay
—
230
—
tr
Turn-On Rise Time
—
25
—
tf
Turn-Off Fall Time
—
17
—
Delay Matching, HS & LS Turn-On/Off
—
—
30
MT
ns
VS = 1200V
Static Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters
are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are
referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
Logic “1” Input Voltage
9.5
—
—
VIL
Logic “0” Input Voltage
—
—
6.0
VOH
High Level Output Voltage, VBIAS - VO
—
—
1.2
VOL
Low Level Output Voltage, VO
—
—
0.1
IO = 0A
ILK
Offset Supply Leakage Current
—
—
50
VB = VS = 1200V
V
IO = 0A
IQBS
Quiescent VBS Supply Current
—
125
230
VIN = 0V or VDD
IQCC
Quiescent VCC Supply Current
—
180
340
VIN = 0V or VDD
IQDD
Quiescent VDD Supply Current
—
15
30
IIN+
Logic “1” Input Bias Current
—
20
40
VIN = VDD
IIN-
—
8.7
—
10.2
1.0
11.7
VIN = 0V
7.9
9.3
10.7
8.7
10.2
11.7
7.9
9.3
10.7
IO+
Logic “0” Input Bias Current
VBS Supply Undervoltage Positive Going
Threshold
VBS Supply Undervoltage Negative Going
Threshold
VCC Supply Undervoltage Positive Going
Threshold
VCC Supply Undervoltage Negative Going
Threshold
Output High Short Circuit Pulsed Current
1.7
2.0`
—
IO-
Output Low Short Circuit Pulsed Current
2.0
2.5
—
VBSUV+
VBSUVVCCUV+
VCCUV-
www.irf.com
µA
VIN = 0V or VDD
V
A
VO = 0V, VIN = VDD
PW ≤ 10 µs
VO = 15V, VIN = 0V
PW ≤ 10 µs
3
IR2213(S) & (PbF)
Functional Block Diagram
Lead Definitions
Symbol Description
VDD
HIN
SD
LIN
VSS
VB
HO
VS
VCC
LO
COM
Logic supply
Logic input for high side gate driver output (HO), in phase
Logic input for shutdown
Logic input for low side gate driver output (LO), in phase
Logic ground
High side floating supply
High side gate drive output
High side floating supply return
Low side supply
Low side gate drive output
Low side return
Lead Assignments
14 Lead PDIP
16 Lead SOIC (Wide Body)
IR2213
IR2213S
Part Number
4
www.irf.com
IR2213(S) & (PbF)
HV =10 to 1200V
<50 V/ns
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
(0 to 1200V)
#$
#$
!
""
%$
Figure 3. Switching Time Test Circuit
$
$
#$
#$
SD
tsd
HO
LO
%$
Figure 4. Switching Time Waveform Definition
50%
"
90%
$
%$
Figure 5. Shutdown Waveform Definitions
www.irf.com
Figure 6. Delay Matching Waveform Definitions
5
IR2213(S) & (PbF)
80
80
Turn-On Rise Time (ns)
100
Turn-On Rise Time (ns)
100
60
40
M ax.
60
Max.
40
Typ.
Typ.
20
20
0
0
-50
-25
0
25
50
75
100
125
10
12
14
Temperature (°C)
50
50
40
40
30
Max.
20
Typ.
10
20
30
20
Max.
Typ.
10
0
0
-50
-25
0
25
50
75
100
125
10
12
14
Temperature (°C)
16
18
20
VBIAS Supply Voltage (V)
Figure 11A. Turn-Off Fall Time vs. Temperature
Figure 11B. Turn-Off Fall Time vs. Voltage
15
Logic " 1" Input Threshold (V)
15.0
12.0
Logic "1" Input Threshold (V)
18
Figure 10B. Turn-On Rise Time vs. Voltage
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)
Figure 10A. Turn-On Rise Time vs. Temperature
Min.
9.0
6.0
3.0
12
Max.
9
6
3
0
0.0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 12A. Logic “1” Input Threshold vs. Temperature
6
16
VBIAS Supply Voltage (V)
0
2
4
6
8
10 12
14
16
18
20
VDD Logic Supply Voltage (V)
Figure 12B. Logic “1” Input Threshold vs. Voltage
www.irf.com
15.0
15
12.0
12
Logic "0" Input Threshold (V)
Logic "0" Input Threshold (V)
IR2213(S) & (PbF)
9.0
6.0
Max.
3.0
9
Min.
6
3
0
0.0
-50
-25
0
25
50
75
100
0
125
2
4
Temperature (°C)
8
10 12
14
16
18
20
Figure 13B. Logic “0” Input Threshold vs. Voltage
5.00
5.00
4.00
4.00
High Level Output Voltage (V)
High Level Output Voltage (V)
Figure 13A. Logic “0” Input Threshold vs. Temperature
3.00
2.00
Max.
3.00
2.00
M ax.
1.00
1.00
0.00
0.00
-50
-25
0
25
50
75
100
10
125
12
14
16
18
20
VBIAS Supply Voltage (V)
Temperature (°C)
Figure 14A. High Level Output vs. Temperature
Figure 14B. High Level Output vs. Voltage
1.00
1.00
0.80
0.80
Low Level Output Voltage (V)
Low Level Output Voltage (V)
6
VDD Logic Supply Voltage (V)
0.60
0.40
0.60
0.40
0.20
0.20
Max.
M ax.
0.00
0.00
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 15A. Low Level Output vs. Temperature
www.irf.com
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 15B. Low Level Output vs. Voltage
7
500
500
400
400
Offset Supply Leakage Current (µA)
Offset Supply Leakage Current (µA)
IR2213(S) & (PbF)
300
200
100
300
200
100
Max.
Max.
0
0
-50
-25
0
25
50
75
100
0
125
200
Figure 16A. Offset Supply Current vs. Temperature
600
800
1000
1200
Figure 16B. Offset Supply Current vs. Voltage
500
500
400
400
VBS Supply Current (µA)
VBS Supply Current (µA)
400
VB Boost Voltage (V)
Temperature (°C)
300
Max.
200
300
200
Max.
Typ.
100
100
0
Typ.
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
16
18
20
Figure 17B. VBS Supply Current vs. Voltage
625
625
500
500
VCC Supply Current (µA)
VCC Supply Current (µA)
Figure 17A. VBS Supply Current vs. Temperature
375
Max.
250
Typ.
125
375
250
Max.
125
0
Typ.
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 18A. VCC Supply Current vs. Temperature
8
14
VBS Floating Supply Voltage (V)
10
12
14
16
18
20
VCC Fixed Supply Voltage (V)
Figure 18B. VCC Supply Current vs. Voltage
www.irf.com
IR2213(S) & (PbF)
60
100
50
VDD Supply Current (µA)
VDD Supply Current (µA)
80
60
40
Max.
40
30
max
20
10
20
Typ.
typ.
0
0
-50
-25
0
25
50
75
100
0
125
2
4
Temperature (°C)
8
10 12 14 16 18 20
Figure 19B. VDD Supply Current vs. VDD Voltage
Figure 19A. VDD Supply Current vs. Temperature
60
Logic “1” Input Bias Current (µA)
100
Logic "1" Input Bias Current (µA)
6
VDD Logic Supply Voltage (V)
80
60
40
Max.
20
50
40
30
20
max
10
Typ.
typ.
0
0
-50
-25
0
25
50
75
100
0
125
2
4
Temperature (°C)
Figure 20A. Logic “1” Input Current vs. Temperature
10 12
14
16
18
20
5
Logic “0” Input Bias Current (µA)
Logic "0" Input Bias Current (µA)
8
Figure 20B. Logic “1” Input Current vs. VDD Voltage
5.00
4.00
3.00
2.00
1.00
6
VDD Logic Supply Voltage (V)
Max.
4
3
2
max
1
0
0
0.00
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 21A. Logic “0” Input Current vs. Temperature
www.irf.com
2
4
6
8
10 12
14 16
18 20
VDD Logic Supply Voltage (V)
Figure 21B. Logic “0” Input Current vs. VDD Voltage
9
IR2213(S) & (PbF)
20.0
VS Offset Supply Voltage (V)
-3.0
VSS Logic Supply Offset Voltage (V)
0.0
Typ.
-6.0
-9.0
-12.0
-15.0
16.0
12.0
8.0
Typ.
4.0
0.0
10
12
14
16
18
10
20
Figure 22. Maximum VS Negative Offset vs.
VBS Supply Voltage
200v
45
100v
0v
35
18
20
55
300v
o
Temperature ( C)
300v
o
Temperature ( C)
16
65
55
200v
45
100v
0v
35
25
25
1
10
100
Frequency (KHZ)
Figure 24. IR2213s vs. Frequency (IRFBC20)
Rgate=33Ω , V CC=15V
10
14
Figure 23. Maximum VSS Positive Offset vs.
VCC Supply Voltage
65
15
0.1
12
VCC Fixed Supply Voltage (V)
VBS Floating Supply Voltage (V)
15
0.1
1
10
100
Frequency (KHZ)
Figure 25. IR2213s vs. Frequency (IRFBC30)
Rgate=22Ω , V CC=15V
www.irf.com
IR2213(S) & (PbF)
75
Temperature (oC)
65
300v
55
200v
45
0v
100v
35
Temperature o(C)
75
65
300v
200v
55
100v
0v
45
35
25
25
15
15
0.1
1
10
0.1
100
10
100
Frequency (KHZ)
Frequency (KHZ)
Figure 26. IR2213s vs. Frequency (IRFBC40)
Rgate=15Ω , V CC=15V
Figure 27. IR2213s vs. Frequency (IRFBC50)
Rgate=10Ω , V CC=15V
65
65
55
55
45
300v
200v
100v
0v
35
25
15
Temperature o(C)
Temperature (oC)
1
300v
200v
100v
0v
45
35
25
15
0.1
1
10
100
Frequency (KHZ)
Figure 28. IR2213 vs. Frequency (IRFBC20)
Rgate=33Ω , V CC=15V
www.irf.com
0.1
1
10
100
Frequency (KHZ)
Figure 29. IR2213 vs. Frequency (IRFBC30)
Rgate=22Ω , V CC=15V
11
75
75
65
65
55
300v
200v
100v
0v
45
35
25
300v
200v
55
100v
0v
45
35
25
15
15
0.1
1
10
100
Frequency (KHZ)
Figure 30. IR2213 vs. Frequency (IRFBC40)
Rgate=15Ω , V CC=15V
12
Temperature (oC)
Temperasture (oC)
IR2213(S) & (PbF)
0.1
1
10
100
Frequency (KHZ)
Figure 31. IR213 vs. Frequency (IRFBC50)
Rgate=10Ω , V CC=15V
www.irf.com
IR2213(S) & (PbF)
Case outlines
14-Lead PDIP
16-Lead SOIC (wide body)
www.irf.com
01-6010
01-3002 03 (MS-001AC)
01 6015
01-3014 03 (MS-013AA)
13
IR2213(S) & (PbF)
LEADFREE PART MARKING INFORMATION
IRxxxxxx
Part number
YWW?
Date code
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
Basic Part (Non-Lead Free)
8-Lead PDIP IR2181 order IR2181
8-Lead SOIC IR2181S order IR2181S
14-Lead PDIP IR21814 order IR21814
14-Lead SOIC IR21814 order IR21814S
Leadfree Part
8-Lead PDIP IR2181 order IR2181PbF
8-Lead SOIC IR2181S order IR2181SPbF
14-Lead PDIP IR21814 order IR21814PbF
14-Lead SOIC IR21814 order IR21814SPbF
Thisproduct has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web Site http://www.irf.com
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
9/21/2004
14
www.irf.com