IRF IRAMX16UP60A_08

PD-94684 RevD
Integrated Power Hybrid IC for
Appliance Motor Drive Applications.
IRAMX16UP60A
Series
16A, 600V
Description
International Rectifier's IRAMX16UP60A is an Integrated Power Module developed and optimized for electronic motor control in appliance applications such as washing machines and variable speed compressor
drives for in-room air-conditioning systems and commercial refrigerators. Plug N Drive technology offers an
extremely compact, high performance AC motor-driver in a single isolated package for a very simple design.
An open emitter configuration of the low side IGBT switches offer easy current feedback and overcurrent
monitor for high precision and reliable control.
A built-in temperature monitor and over-current protection, along with the short-circuit rated IGBTs and
integrated under-voltage lockout function, deliver high level of protection and fail-safe operation.
The integration of the bootstrap diodes for the high-side driver section, and the single polarity power
supply required to drive the internal circuitry, simplify the utilization of the module and deliver further cost
reduction advantages.
Features
• Integrated Gate Drivers and Bootstrap Diodes.
• Temperature Monitor
• Temperature and Overcurrent shutdown
• Fully Isolated Package.
• Low VCE (on) Non Punch Through IGBT Technology.
• Undervoltage lockout for all channels
• Matched propagation delay for all channels
• Low side IGBT emitter pins for current control
• Schmitt-triggered input logic
• Cross-conduction prevention logic
• Lower di/dt gate driver for better noise immunity
• Motor Power range 0.75~2kW / 85~253 Vac
• Isolation 2000VRMS min
Absolute Maximum Ratings
Parameter
Description
VCES / VRRM
IGBT/Diode Blocking Voltage
Value
600
V+
Positive Bus Input Voltage
450
16
Units
V
IO @ TC=25°C
RMS Phase Current (Note 1)
IO @ TC=100°C
RMS Phase Current (Note 1)
8
IO
Pulsed RMS Phase Current (Note 2)
30
FPWM
PWM Carrier Frequency
20
PD
Power dissipation per IGBT @ TC =25°C
31
W
VISO
Isolation Voltage (1min)
2000
VRMS
TJ (IGBT & Diodes)
Operating Junction temperature Range
-40 to +150
TJ (Driver IC)
Operating Junction temperature Range
-40 to +150
T
Mounting torque Range (M3 screw)
0.5 to 1.0
A
kHz
°C
Nm
Note 1: Sinusoidal Modulation at V+=400V, TJ=150°C, FPWM=16kHz, Modulation Depth=0.8, PF=0.6, See Figure 3.
Note 2: tP<100ms; TC=25°C; FPWM=16kHz. Limited by IBUS-ITRIP, see Table "Inverter Section Electrical Characteristics"
www.irf.com
1
IRAMX16UP60A
Internal Electrical Schematic - IRAMX16UP60A
V+ (10)
VRU (12)
VRV (13)
VRW (14)
Rg1
Rg3
Rg5
VB1 (7)
U, VS1 (8)
VB2 (4)
V, VS2 (5)
VB3 (1)
W, VS3 (2)
23 VS1
22 21 20 19 18 17
VB2 HO2 VS2 VB3 HO3 VS3
Rg2
LO1 16
Rg4
24 HO1
R3
LO2 15
25 VB1
1 VCC
HIN1 (15)
HIN2 (16)
HIN3 (17)
2 HIN1
LIN1 (18)
5 LIN1
Rg6
Driver IC
LO3 14
3 HIN2
4 HIN3
LIN2 LIN3 F ITRIP EN RCIN VSS COM
6
7
8
9
10
11
12 13
LIN2 (19)
R1
LIN3 (20)
T/ITRIP (21)
R2
RT
THERMISTOR
C
VCC (22)
VSS (23)
2
www.irf.com
IRAMX16UP60A
Absolute Maximum Ratings (Continued)
All voltages are absolute referenced to COM
Units Conditions
Symbol
Parameter
Min
Max
IBDF
Bootstrap Diode Peak Forward
Current
---
4.5
A
tP= 10ms,
TJ = 150°C, TC=100°C
PBR Peak
Bootstrap Resistor Peak Power
(Single Pulse)
---
25.0
W
tP=100s, TC =100°C
ESR / ERJ series
VS1,2,3
High side floating supply offset
voltage
VB1,2,3 - 25
VB1,2,3 +0.3
V
VB1,2,3
High side floating supply voltage
-0.3
600
V
VCC
Low Side and logic fixed supply
voltage
-0.3
20
V
VIN, VEN
Input voltage LIN, HIN, EN
-0.3
Lower of
(VSS+15V) or
VCC+0.3V
V
Inverter Section Electrical Characteristics @TJ= 25°C
Units Conditions
Symbol
Parameter
Min
Typ
Max
V(BR)CES
Collector-to-Emitter Breakdown
Voltage
600
---
---
V
VIN=5V, IC=250A
V(BR)CES / T
Temperature Coeff. Of
Breakdown Voltage
---
0.3
---
V/°C
VIN=5V, IC=1.0mA
(25°C - 150°C)
VCE(ON)
Collector-to-Emitter Saturation
Voltage
---
1.55
1.85
---
1.80
2.10
Zero Gate Voltage Collector
Current
---
5
80
---
165
---
---
2.0
2.4
---
1.4
1.9
IC=8A, TJ=150°C
IF=1A
ICES
VFM
Diode Forward Voltage Drop
V
μA
V
IC=8A, VCC=15V
IC=8A, VCC=15V, TJ=150°C
VIN=5V, V+=600V
VIN=5V, V+=600V, TJ=150°C
IC=8A
Bootstrap Diode Forward Voltage
Drop
--
--
1.25
---
---
1.10
RBR
Bootstrap Resistor Value
---
22
---
TJ=25°C
RBR/RBR
Bootstrap Resistor Tolerance
---
---
±5
%
TJ=25°C
VBDFM
www.irf.com
V
IF=1A, TJ=125°C
3
IRAMX16UP60A
Inverter Section Switching Characteristics @ TJ= 25°C
Symbol
Parameter
Min
Typ
Max
EON
Turn-On Switching Loss
---
315
435
EOFF
Turn-Off Switching Loss
---
150
180
ETOT
Total Switching Loss
---
465
615
EREC
Diode Reverse Recovery energy
---
30
60
tRR
Diode Reverse Recovery time
---
70
90
EON
Turn-on Switching Loss
---
500
700
EOFF
Turn-off Switching Loss
---
270
335
ETOT
Total Switching Loss
---
770
1035
EREC
Diode Reverse Recovery energy
---
60
100
tRR
Diode Reverse Recovery time
---
120
150
QG
Turn-On IGBT Gate Charge
RBSOA
Reverse Bias Safe Operating Area
---
56
84
Units Conditions
J
IC=8A, V+=400V
VCC=15V, L=2mH
Energy losses include "tail" and
diode reverse recovery
See CT1
ns
J
IC=8A, V+=400V
VCC=15V, L=2mH, TJ=150°C
Energy losses include "tail" and
diode reverse recovery
See CT1
ns
nC
+
IC=15A, V =400V, VGE=15V
TJ=150°C, IC=8A, VP=600V
V+= 450V
VCC=+15V to 0V
FULL SQUARE
See CT3
TJ=150°C, VP=600V,
SCSOA
Short Circuit Safe Operating Area
10
---
---
s
V+= 360V,
VCC=+15V to 0V
See CT2
TJ=150°C, VP=600V, tSC<10s
ICSC
Short Circuit Collector Current
---
140
---
A
V+= 360V, VGE=15V
VCC=+15V to 0V
See CT2
Recommended Operating Conditions Driver Function
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommende conditions. All voltages are absolute referenced to COM. The VS offset is tested with all supplies biased at 15V
differential (Note 3)
Symbol
Definition
Min
Max
VB1,2,3
High side floating supply voltage
VS+12
VS+20
VS1,2,3
High side floating supply offset voltage
Note 4
450
VCC
Low side and logic fixed supply voltage
12
20
VT/ITRIP
T/ITRIP input voltage
VSS
VSS+5
VIN
Logic input voltage LIN, HIN
VSS
VSS+5
Units
V
V
V
Note 3: For more details, see IR21365 data sheet
Note 4: Logic operational for Vs from COM-5V to COM+600V. Logic state held for Vs from COM-5V to COM-VBS.
(please refer to DT97-3 for more details)
4
www.irf.com
IRAMX16UP60A
Static Electrical Characteristics Driver Function
VBIAS (VCC, VBS1,2,3)=15V, unless otherwise specified. The VIN and IIN parameters are referenced to COM and are applicable
to all six channels. (Note 3)
Symbol
Definition
Min
Typ
Max
Units
VIH
Logic "0" input voltage
3.0
---
---
V
VIL
Logic "1" input voltage
---
---
0.8
V
VCCUV+, VBSUV+
VCC and VBS supply undervoltage Positive going threshold
10.6
11.1
11.6
V
VCCUV-, VBSUV-
VCC and VBS supply undervoltage Negative going threshold
10.4
10.9
11.4
V
VCCUVH, VBSUVH
VCC and VBS supply undervoltage lock-out hysteresis
---
0.2
---
V
VIN, Clamp
Input Clamp Voltage (HIN, LIN, T/ITRIP) IIN=10A
4.9
5.2
5.5
V
IQBS
Quiescent VBS supply current VIN=0V
---
---
165
A
IQCC
Quiescent VCC supply current VIN=0V
---
---
3.35
mA
ILK
Offset Supply Leakage Current
---
---
60
A
IIN+
Input bias current VIN=5V
---
200
300
A
IIN-
Input bias current VIN=0V
---
100
220
A
T/ITRIP+
T/ITRIP bias current VITRIP=5V
---
30
100
A
T/ITRIP-
T/ITRIP bias current VITRIP=0V
---
0
1
A
V(T/ITRIP)
T/ITRIP threshold Voltage
3.85
4.30
4.75
V
V(T/ITRIP,HYS)
T/ITRIP Input Hysteresis
---
0.07
---
V
Dynamic Electrical Characteristics
Driver only timing unless otherwise specified.
Symbol
Parameter
TON
Input to Output propagation turnon delay time (see fig.11)
Min
Typ
Max
---
590
---
Units Conditions
ns
VCC=VBS= 15V, IC=8A,
V+=400V
TOFF
Input to Output propagation turnoff delay time (see fig. 11)
---
660
---
ns
TFLIN
Input Filter time (HIN, LIN)
100
200
---
ns
VIN=0 & VIN=5V
TBLT-Trip
ITRIP Blancking Time
100
150
ns
VIN=0 & VIN=5V
DT
Dead Time (VBS=VDD=15V)
220
290
360
ns
VBS=VCC=15V
MT
Matching Propagation Delay Time
(On & Off)
---
40
75
ns
TITrip
ITrip to six switch to turn-off
propagation delay (see fig. 2)
---
---
1.75
s
TFLT-CLR
Post ITrip to six switch to turn-off
clear time (see fig. 2)
---
7.7
---
---
6.7
---
www.irf.com
ms
VCC= VBS= 15V, external dead
time> 400ns
VCC=VBS= 15V, IC=8A,
V+=400V
TC = 25°C
TC = 100°C
5
IRAMX16UP60A
Thermal and Mechanical Characteristics
Symbol
Parameter
Min
Typ
Max
Rth(J-C)
Thermal resistance, per IGBT
---
3.5
4.0
Rth(J-C)
Thermal resistance, per Diode
---
5.0
5.5
Rth(C-S)
Thermal resistance, C-S
---
0.1
---
3.2
---
---
CD
Creepage Distance
Units Conditions
Flat, greased surface. Heatsink
°C/W compound thermal conductivity
1W/mK
mm
See outline Drawings
Internal NTC - Thermistor Characteristics
Parameter
Definition
Min
Typ
Max
R25
Resistance
97
100
103
k
TC = 25°C
R125
Resistance
2.25
2.52
2.80
k
TC = 125°C
B
B-constant (25-50°C)
4165
4250
4335
k
125
°C
Temperature Range
-40
Typ. Dissipation constant
Units Conditions
R2 = R1e [B(1/T2 - 1/T1)]
mW/°C TC = 25°C
1
Input-Output Logic Level Table
V+
Ho
Hin1,2,3
(15,16,17)
U,V,W
IC
Driver
(8,5,2)
Lin1,2,3
(18,19,20)
6
Lo
FLT- EN
ITRIP
1
1
1
1
0
0
0
0
1
X
HIN1,2,3 LIN1,2,3
0
1
1
X
X
1
0
1
X
X
U,V,W
+
V
0
Off
Off
Off
www.irf.com
IRAMX16UP60A
HIN1,2,3
LIN1,2,3
T/ITRIP
U,V,W
HIN1,2,3
LIN1,2,3
50%
50%
T/ITRIP
U,V,W
50%
50%
TT/ITRIP
TFLT-CLR
Note 5: The shaded area indicates that both high-side and low-side switches are off and therefore the
half-bridge output voltage would be determined by the direction of current flow in the load.
www.irf.com
7
IRAMX16UP60A
Module Pin-Out Description
Pin
Name
1
VB3
2
U, VS3
Description
High Side Floating Supply Voltage 3
Output 3 - High Side Floating Supply Offset Voltage
3
NA
none
4
VB2
High Side Floating Supply voltage 2
5
V,VS2
6
NA
none
7
VB1
High Side Floating Supply voltage 1
8
W,VS1
9
NA
Output 2 - High Side Floating Supply Offset Voltage
Output 1 - High Side Floating Supply Offset Voltage
none
+
10
V
11
NA
none
12
LE1
Low Side Emitter Connection - Phase 1
13
LE2
Low Side Emitter Connection - Phase 2
14
LE3
Low Side Emitter Connection - Phase 3
15
HIN1
Logic Input High Side Gate Driver - Phase 1
16
HNI2
Logic Input High Side Gate Driver - Phase 2
17
HIN3
Logic Input High Side Gate Driver - Phase 3
18
LIN1
Logic Input Low Side Gate Driver - Phase 1
19
LIN2
Logic Input Low Side Gate Driver - Phase 2
20
LIN3
Logic Input Low Side Gate Driver - Phase 3
21
T/ITRIP
22
VCC
+15V Main Supply
23
VSS
Negative Main Supply
Positive Bus Input Voltage
Temperature Monitor and Shut-down Pin
1
23
8
www.irf.com
IRAMX16UP60A
Typical Application Connection IRAMX16UP60A
1
BOOT-STRAP
CAPACITORS
Cb
VB3
V S3
U
VB2
CURRENT SENSING CAN USE A
SINGLE SENSE RESISTOR OR PHASE
LEG SENSING AS SHOWN
V S3
V
VB1
V S1
W
V+
DC BUS
CAPACITORS
LE1
LE2
PHASE LEG
CURRENT
SENSE
LE3
PGND
H IN1
H IN2
H IN3
L IN1
L IN2
L IN3
CONTROLLER
035-Z2L03
IRAMX16UP60A
3-Phase AC
MOTOR
ITRIP
Vcc (15 V)
V SS
O/C
SENSE
(ACTIVE LOW)
3.3 V
1mF
10.2k
6.8K
0.1mF
23
5k
TEMP
SENSE
10mF
O/C
SENSE
(ACTIVE LOW)
DGND
1. Electrolytic bus capacitors should be mounted as close to the module bus terminals as possible to reduce ringing and
EMI problems. Additional high frequency ceramic capacitor mounted close to the module pins will further improve performance.
2. In order to provide good decoupling between VCC-VSS and VB1,2,3-VS1,2,3 terminals, the capacitors shown connected
between these terminals should be located very close to the module pins. Additional high frequency capacitors, typically 0.1F, are strongly recommended.
3. Value of the boot-strap capacitors depends upon the switching frequency. Their selection should be made based on
IR design tip DN 98-2a, application note AN-1044 or Figure 9. Bootstrap capacitor value must be selected to limit the
power dissipation of the internal resistor in series with the VCC. (see maximum ratings Table on page 3).
4. After approx. 8ms the FAULT is reset. (see Dynamic Characteristics Table on page 5).
5. PWM generator must be disabled within Fault duration to garantee shutdown of the system, overcurrent condition
must be cleared before resuming operation.
www.irf.com
9
Maximum Output Phase RMS Current - A
IRAMX16UP60A
14
12
10
8
6
TC = 100°C
4
TC = 110°C
TC = 120°C
2
TJ = 150°C
Sinusoidal Modulation
0
0
2
4
6
8
10
12
14
16
18
20
PWM Frequency - kHz
Figure 3. Maximum Sinusoidal Phase Current vs. PWM Switching Frequency
Maximum Output Phase RMS Current - A
V+=400V , TJ=150°C, Modulation Depth=0.8, PF=0.6
10
TJ = 150°C
Sinusoidal Modulation
8
6
FPWM = 20kHz
4
FPWM = 16kHz
FPWM = 12kHz
2
0
1
10
100
Modulation Frequency - Hz
Figure 4. Maximum Sinusoidal Phase Current vs. Modulation Frequency
V+=400V, TJ=150°C, TC=100°C, Modulation Depth=0.8, PF=0.6
10
www.irf.com
IRAMX16UP60A
Total Power Losses - W
150
125
TJ = 150°C
Sinusoidal Modulation
100
75
FPWM = 12 kHz
50
FPWM = 16 kHz
FPWM = 20 kHz
25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
Output Phase Current - ARMS
Figure 5. Total Power Losses vs. PWM Switching Frequency, Sinusoidal modulation
V+=400V , TJ=150°C, Modulation Depth=0.8, PF=0.6
Total Power Losses - W
150
125
TJ = 150°C
Sinusoidal Modulation
100
75
FPWM = 12 kHz
50
FPWM = 16 kHz
FPWM = 20 kHz
25
0
0
1
2
3
4
5
6
7
8
9
10
11
12
Output Phase Current - ARMS
Figure 6. Total Power Losses vs. Output Phase Current, Sinusoidal modulation
VBUS=400V , TJ=150°C,
www.irf.com
Modulation Depth=0.8, PF=0.6
11
Maximum Allowable Case Temperature -°C
IRAMX16UP60A
160
140
120
100
80
FPWM = 12 kHz
60
FPWM = 16 kHz
40
FPWM = 20 kHz
TJ = 150°C
Sinusoidal Modulation
20
0
0
2
4
6
8
10
12
14
Output Phase Current - ARMS
Figure 7. Maximum Allowable Case temperature vs. Output RMS Current per Phase
200
IGBT Junction Temperature
180
160
140
120
100
80
60
40
20
0
0
20
40
60
80
100
Thermistor Temperature [°C]
120
140
Figure 8. Estimated Maximum IGBT Junction Temperature vs. Thermistor Temperature
12
www.irf.com
IRAMX16UP60A
5.5
TT H ERM
°C
-40
-35
-30
-25
-20
-15
-10
-5
0
5
10
15
20
Thermistor Pin Read-Out Voltag
5.0
4.5
4.0
3.5
3.0
2.5
RT H ERM
4397119
3088599
2197225
1581881
1151037
846579
628988
471632
357012
272500
209710
162651
127080
TT H ERM
°C
25
30
35
40
45
50
55
60
65
70
75
80
85
RT H ERM
100000
79222
63167
50677
40904
33195
27091
22224
18322
15184
12635
10566
8873
TT H ERM
°C
90
95
100
105
110
115
120
125
RT H ERM
7481
6337
5384
4594
3934
3380
2916
2522
RTHERM
Min
Avg
Max
2.0
1.5
12k
VTHERM
1.0
6.8k
0.5
0.0
-40 -30 -20 -10
0
10
20 30 40 50 60 70 80 90 100 110 120 130
Thermistor Temperature - °C
Recommended Bootstrap Capacitor - μF
Figure 9. Thermistor Readout vs. Temperature (6.8kohm, 1% pull down resistor)
and Nominal Thermistor Resistance values vs. Temperature Table.
16.0
15F
15.0
14.0
RBS
13.0
DBS
RG1
vB
+15V
12.0
11.0
10F
10.0
VCC
HIN
HIN
LIN
LIN
VSS COM
9.0
V+
CBS
HO
VS
U,V,W
RG2
LO
VSS
8.0
GND
6.8F
7.0
6.0
4.7F
5.0
4.0
3.3F
3.0
2.0
0
5
10
15
20
PWM Frequency - kHz
Figure 10. Recommended Bootstrap Capacitor Value vs. Switching Frequency
www.irf.com
13
IRAMX16UP60A
Figure 11. Switching Parameter Definitions
VCE
IC
IC
VCE
90% IC
50%
HIN /LIN
90% IC
50%
VCE
HIN /LIN
HIN /LIN
50%
HIN /LIN
50%
VCE
10% IC
10% IC
tr
tf
TON
TOFF
Figure 11a. Input to Output Propagation
turn-on Delay Time
Figure 11b. Input to Output Propagation
turn-off Delay Time
IF
VCE
HIN/LIN
Irr
trr
Figure 11c. Diode Reverse Recovery
14
www.irf.com
IRAMX16UP60A
V+
5V
Ho
IN
Hin1,2,3
IC
Driver
U,V,W
IO
Lo
Lin1,2,3
Figure CT1. Switching Loss Circuit
V+
Ho
Hin1,2,3
1k
VCC
10k
Lin1,2,3
IN
IC
Driver
5VZD
U,V,W
IO
Lo
IN
Io
Figure CT2. S.C.SOA Circuit
V+
Ho
Hin1,2,3
1k
VCC
IC
Driver
5VZD
IN
10k
Lin1,2,3
IN
U,V,W
IO
Lo
Io
Figure CT3. R.B.SOA Circuit
www.irf.com
15
IRAMX16UP60A
Package Outline IRAMX16UP60A
note 2
note 3
035-Z2L03
IRAMX16UP60A
note 1
M
Notes:
Dimensions in mm
1- Marking for pin 1 identification
2- Product Part Number
3- Lot and Date code marking
4- Convex only 0.15mm typical
5- Tollerances ±0.5mm, unless otherwise stated
For mounting instruction see AN-1049
16
www.irf.com
IRAMX16UP60A
Package Outline IRAMX16UP60A-2
note 2
note 3
035-Z2L03
IRAMX16UP60A
note 1
M
Notes:
Dimensions in mm
1- Marking for pin 1 identification
2- Product Part Number
3- Lot and Date code marking
4- Convex only 0.15mm typical
5- Tollerances ±0.5mm, unless otherwise stated
For mounting instruction see AN-1049
Data and Specifications are subject to change without notice
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information
07/05
www.irf.com
17