IRF IRF4000

PD - 97056
IRF4000
HEXFET® Power MOSFET
VDSS
Applications
l
IEEE 802.3af Compliant PoE Switch
in Power Sourcing Equipment
100V
Features
l
l
l
l
l
l
Exceeds IEEE 802.3af PoE
requirements
Rugged planar technology with large
SOA
Very Low Leakage at 100V (1.5µA max)
Fully characterized avalanche voltage
and current
Thermally enhanced
Saves space: replaces 4 discrete
MOSFETs
RDS(on) max
ID
270m:@VGS = 12V
2.4A
350m:@VGS = 10V
'
'
'
'
* 6 * 6 * 6 * 6
IRF4000 ISOMETRIC
5mm x 10mm Power MLP
Absolute Maximum Ratings
Max.
Units
VDS
Drain-to-Source Voltage
Parameter
100
V
VGS
Gate-to-Source Voltage
± 30
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
2.4
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
1.9
IDM
Pulsed Drain Current
PD @TA = 25°C
c
19
Maximum Power Dissipation
Linear Derating Factor
dv/dt
TJ
Peak Diode Recovery dv/dt
Operating Junction and
TSTG
Storage Temperature Range
A
3.5
W
0.028
W/°C
8.6
-55 to + 150
V/ns
°C
Thermal Resistance
Parameter
RθJL
Junction-to-Drain Lead
RθJA
Junction-to-Ambient (PCB Mount)
f
Typ.
Max.
Units
–––
1.5
°C/W
–––
36
Notes  through … are on page 7
www.irf.com
1
10/07/05
IRF4000
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
V(BR)DSS
∆V(BR)DSS/∆TJ
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
100
–––
–––
0.19
–––
–––
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
RDS(on)
Static Drain-to-Source On-Resistance
–––
–––
230
270
270
350
mΩ
VGS = 12V, ID = 2.4A
VGS = 10V, ID = 2.4A
VGS(th)
IDSS
Gate Threshold Voltage
Drain-to-Source Leakage Current
3.5
–––
–––
–––
5.7
1.5
V
µA
VDS = VGS, ID = 250µA
VDS = 100V, VGS = 0V
IGSS
Gate-to-Source Forward Leakage
–––
–––
–––
–––
10
100
nA
VDS = 80V, VGS = 0V, TJ = 125°C
VGS = 30V
Gate-to-Source Reverse Leakage
–––
–––
-100
e
e
e
VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
gfs
Qg
Qgs
Forward Transconductance
1.6
–––
–––
S
VDS = 25V, ID = 1.4A
Total Gate Charge
Gate-to-Source Charge
–––
–––
9.4
2.8
14
4.2
nC
ID = 1.4A
VDS = 80V
Qgd
td(on)
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
–––
–––
4.5
8.7
6.8
–––
tr
td(off)
Rise Time
Turn-Off Delay Time
–––
–––
1.5
13
–––
–––
tf
Ciss
Fall Time
Input Capacitance
–––
–––
6.1
330
–––
–––
Coss
Crss
Output Capacitance
Reverse Transfer Capacitance
–––
–––
77
18
–––
–––
Coss
Coss
Output Capacitance
Output Capacitance
–––
–––
410
45
–––
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 80V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
89
–––
VGS = 0V, VDS = 0V to 80V
g
VGS = 10V
VDD = 50V
ns
ID = 1.4A
RG = 6.2Ω
VGS = 10V
VGS = 0V
pF
e
VDS = 25V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
Parameter
Single Pulse Avalanche Energy
IAR
Avalanche Current
c
d
Typ.
–––
Max.
8.7
Units
mJ
–––
1.4
A
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
3.2
ISM
(Body Diode)
Pulsed Source Current
–––
–––
19
showing the
integral reverse
VSD
trr
Qrr
ton
2
c
MOSFET symbol
A
D
G
S
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
p-n junction diode.
TJ = 25°C, IS = 1.4A, VGS = 0V
Reverse Recovery Time
Reverse Recovery Charge
–––
–––
67
180
100
270
ns
nC
TJ = 25°C, IF = 1.4A, VDD = 25V
di/dt = 100A/µs
Forward Turn-On Time
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRF4000
100
ID, Drain-to-Source Current (A)
TOP
10
BOTTOM
1
VGS
15V
12V
10V
8.0V
7.5V
7.0V
6.5V
6.0V
0.1
6.0V
0.01
TOP
ID, Drain-to-Source Current (A)
100
10
BOTTOM
1
6.0V
≤60µs PULSE WIDTH
Tj = 25°C
0.1
1
10
100
0.1
1000
1
10
100
1000
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (Α)
≤60µs PULSE WIDTH
Tj = 150°C
0.1
0.001
VGS
15V
12V
10V
8.0V
7.5V
7.0V
6.5V
6.0V
10
T J = 150°C
1
T J = 25°C
VDS = 25V
≤60µs PULSE WIDTH
0.1
ID = 2.4A
VGS = 10V
2.0
1.5
1.0
0.5
4
6
8
10
12
14
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
16
-60 -40 -20 0
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
vs. Temperature
3
IRF4000
10000
12.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
ID= 1.4A
VGS, Gate-to-Source Voltage (V)
C rss = C gd
C, Capacitance(pF)
C oss = C ds + C gd
1000
Ciss
100
Coss
Crss
VDS= 20V
8.0
6.0
4.0
2.0
10
0.0
1
10
100
2
4
6
8
QG Total Gate Charge (nC)
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
10
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
0
VDS, Drain-to-Source Voltage (V)
100
10
T J = 150°C
T J = 25°C
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
10
100µsec
1
1msec
T A = 25°C
10msec
Tj = 150°C
Single Pulse
VGS = 0V
0.1
100msec
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
VDS= 80V
VDS= 50V
10.0
1.6
0
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF4000
2.5
RD
V DS
ID, Drain Current (A)
2.0
V GS
D.U.T.
RG
+
-V DD
1.5
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
1.0
Fig 10a. Switching Time Test Circuit
0.5
VDS
90%
0.0
25
50
75
100
125
150
T A , Ambient Temperature (°C)
10%
VGS
Fig 9. Maximum Drain Current vs.
Ambient Temperature
tr
td(on)
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response ( Z thJA )
100
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
τJ
SINGLE PULSE
( THERMAL RESPONSE )
0.1
0.01
1E-006
1E-005
0.0001
0.001
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
R5
R5
τA
τ1
τ2
τ3
τ2
τ3
τ4
τ4
τ5
Ci= τi/Ri
Ci= τi/Ri
τ5
τA
Ri (°C/W) τi (sec)
1.131389 0.000036
1.543054 0.000865
9.712817 0.071341
12.93983
2.715
10.6812
67
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
IRF4000
RDS(on) , Drain-to -Source On Resistance (mΩ)
RDS(on), Drain-to -Source On Resistance ( mΩ)
1200
T J = 25°C
1000
800
Vgs = 10V
600
400
Vgs = 12V
200
0
5
10
15
800
T J = 25°C
ID = 1.44A
600
ID = 2.4A
400
200
0
4
20
ID, Drain Current (A)
6
8
10
12
14
16
VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance vs. Drain Current
Fig 13. On-Resistance vs. Gate Voltage
Current Regulator
Same Type as D.U.T.
QG
VGS
.2µF
QGS
.3µF
D.U.T.
+
V
- DS
QGD
35
VG
EAS , Single Pulse Avalanche Energy (mJ)
50KΩ
12V
VGS
3mA
Charge
IG
ID
Current Sampling Resistors
Fig 14a&b. Basic Gate Charge Test Circuit
and Waveform
15V
V(BR)DSS
tp
L
VDS
D.U.T
RG
IAS
20V
I AS
tp
DRIVER
+
V
- DD
0.01Ω
Fig 15a&b. Unclamped Inductive Test circuit
and Waveforms
6
ID
TOP
0.86A
1.1A
BOTTOM 1.4A
30
25
20
15
10
5
0
A
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 15c. Maximum Avalanche Energy
vs. Drain Current
www.irf.com
IRF4000
IRF4000 Power MLP Package Outline Drawing
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 8.4mH, RG = 25Ω,
IAS = 1.4A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ When mounted on 1 inch square copper board.
… Guarantee by Design.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.10/05
www.irf.com
7