PD - 97056 IRF4000 HEXFET® Power MOSFET VDSS Applications l IEEE 802.3af Compliant PoE Switch in Power Sourcing Equipment 100V Features l l l l l l Exceeds IEEE 802.3af PoE requirements Rugged planar technology with large SOA Very Low Leakage at 100V (1.5µA max) Fully characterized avalanche voltage and current Thermally enhanced Saves space: replaces 4 discrete MOSFETs RDS(on) max ID 270m:@VGS = 12V 2.4A 350m:@VGS = 10V ' ' ' ' * 6 * 6 * 6 * 6 IRF4000 ISOMETRIC 5mm x 10mm Power MLP Absolute Maximum Ratings Max. Units VDS Drain-to-Source Voltage Parameter 100 V VGS Gate-to-Source Voltage ± 30 ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 2.4 ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 1.9 IDM Pulsed Drain Current PD @TA = 25°C c 19 Maximum Power Dissipation Linear Derating Factor dv/dt TJ Peak Diode Recovery dv/dt Operating Junction and TSTG Storage Temperature Range A 3.5 W 0.028 W/°C 8.6 -55 to + 150 V/ns °C Thermal Resistance Parameter RθJL Junction-to-Drain Lead RθJA Junction-to-Ambient (PCB Mount) f Typ. Max. Units ––– 1.5 °C/W ––– 36 Notes through are on page 7 www.irf.com 1 10/07/05 IRF4000 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions V(BR)DSS ∆V(BR)DSS/∆TJ Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient 100 ––– ––– 0.19 ––– ––– V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– ––– 230 270 270 350 mΩ VGS = 12V, ID = 2.4A VGS = 10V, ID = 2.4A VGS(th) IDSS Gate Threshold Voltage Drain-to-Source Leakage Current 3.5 ––– ––– ––– 5.7 1.5 V µA VDS = VGS, ID = 250µA VDS = 100V, VGS = 0V IGSS Gate-to-Source Forward Leakage ––– ––– ––– ––– 10 100 nA VDS = 80V, VGS = 0V, TJ = 125°C VGS = 30V Gate-to-Source Reverse Leakage ––– ––– -100 e e e VGS = -30V Dynamic @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions gfs Qg Qgs Forward Transconductance 1.6 ––– ––– S VDS = 25V, ID = 1.4A Total Gate Charge Gate-to-Source Charge ––– ––– 9.4 2.8 14 4.2 nC ID = 1.4A VDS = 80V Qgd td(on) Gate-to-Drain ("Miller") Charge Turn-On Delay Time ––– ––– 4.5 8.7 6.8 ––– tr td(off) Rise Time Turn-Off Delay Time ––– ––– 1.5 13 ––– ––– tf Ciss Fall Time Input Capacitance ––– ––– 6.1 330 ––– ––– Coss Crss Output Capacitance Reverse Transfer Capacitance ––– ––– 77 18 ––– ––– Coss Coss Output Capacitance Output Capacitance ––– ––– 410 45 ––– ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 80V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 89 ––– VGS = 0V, VDS = 0V to 80V g VGS = 10V VDD = 50V ns ID = 1.4A RG = 6.2Ω VGS = 10V VGS = 0V pF e VDS = 25V ƒ = 1.0MHz Avalanche Characteristics EAS Parameter Single Pulse Avalanche Energy IAR Avalanche Current c d Typ. ––– Max. 8.7 Units mJ ––– 1.4 A Diode Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 3.2 ISM (Body Diode) Pulsed Source Current ––– ––– 19 showing the integral reverse VSD trr Qrr ton 2 c MOSFET symbol A D G S (Body Diode) Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 1.4A, VGS = 0V Reverse Recovery Time Reverse Recovery Charge ––– ––– 67 180 100 270 ns nC TJ = 25°C, IF = 1.4A, VDD = 25V di/dt = 100A/µs Forward Turn-On Time e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRF4000 100 ID, Drain-to-Source Current (A) TOP 10 BOTTOM 1 VGS 15V 12V 10V 8.0V 7.5V 7.0V 6.5V 6.0V 0.1 6.0V 0.01 TOP ID, Drain-to-Source Current (A) 100 10 BOTTOM 1 6.0V ≤60µs PULSE WIDTH Tj = 25°C 0.1 1 10 100 0.1 1000 1 10 100 1000 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) ≤60µs PULSE WIDTH Tj = 150°C 0.1 0.001 VGS 15V 12V 10V 8.0V 7.5V 7.0V 6.5V 6.0V 10 T J = 150°C 1 T J = 25°C VDS = 25V ≤60µs PULSE WIDTH 0.1 ID = 2.4A VGS = 10V 2.0 1.5 1.0 0.5 4 6 8 10 12 14 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 16 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance vs. Temperature 3 IRF4000 10000 12.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED ID= 1.4A VGS, Gate-to-Source Voltage (V) C rss = C gd C, Capacitance(pF) C oss = C ds + C gd 1000 Ciss 100 Coss Crss VDS= 20V 8.0 6.0 4.0 2.0 10 0.0 1 10 100 2 4 6 8 QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 10 100 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 0 VDS, Drain-to-Source Voltage (V) 100 10 T J = 150°C T J = 25°C 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 10 100µsec 1 1msec T A = 25°C 10msec Tj = 150°C Single Pulse VGS = 0V 0.1 100msec 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 VDS= 80V VDS= 50V 10.0 1.6 0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF4000 2.5 RD V DS ID, Drain Current (A) 2.0 V GS D.U.T. RG + -V DD 1.5 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 1.0 Fig 10a. Switching Time Test Circuit 0.5 VDS 90% 0.0 25 50 75 100 125 150 T A , Ambient Temperature (°C) 10% VGS Fig 9. Maximum Drain Current vs. Ambient Temperature tr td(on) t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response ( Z thJA ) 100 D = 0.50 10 0.20 0.10 0.05 1 0.02 0.01 τJ SINGLE PULSE ( THERMAL RESPONSE ) 0.1 0.01 1E-006 1E-005 0.0001 0.001 R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 R5 R5 τA τ1 τ2 τ3 τ2 τ3 τ4 τ4 τ5 Ci= τi/Ri Ci= τi/Ri τ5 τA Ri (°C/W) τi (sec) 1.131389 0.000036 1.543054 0.000865 9.712817 0.071341 12.93983 2.715 10.6812 67 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 IRF4000 RDS(on) , Drain-to -Source On Resistance (mΩ) RDS(on), Drain-to -Source On Resistance ( mΩ) 1200 T J = 25°C 1000 800 Vgs = 10V 600 400 Vgs = 12V 200 0 5 10 15 800 T J = 25°C ID = 1.44A 600 ID = 2.4A 400 200 0 4 20 ID, Drain Current (A) 6 8 10 12 14 16 VGS, Gate -to -Source Voltage (V) Fig 12. On-Resistance vs. Drain Current Fig 13. On-Resistance vs. Gate Voltage Current Regulator Same Type as D.U.T. QG VGS .2µF QGS .3µF D.U.T. + V - DS QGD 35 VG EAS , Single Pulse Avalanche Energy (mJ) 50KΩ 12V VGS 3mA Charge IG ID Current Sampling Resistors Fig 14a&b. Basic Gate Charge Test Circuit and Waveform 15V V(BR)DSS tp L VDS D.U.T RG IAS 20V I AS tp DRIVER + V - DD 0.01Ω Fig 15a&b. Unclamped Inductive Test circuit and Waveforms 6 ID TOP 0.86A 1.1A BOTTOM 1.4A 30 25 20 15 10 5 0 A 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 15c. Maximum Avalanche Energy vs. Drain Current www.irf.com IRF4000 IRF4000 Power MLP Package Outline Drawing Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 8.4mH, RG = 25Ω, IAS = 1.4A. Pulse width ≤ 400µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board. Guarantee by Design. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IRs Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/05 www.irf.com 7