FOR REVIEW ONLY PD PD- -94641 TBD IRF7494 HEXFET® Power MOSFET VDSS Applications High frequency DC-DC converters l RDS(on) max 44m:@VGS = 10V 150V Benefits l Low Gate to Drain Charge to Reduce Switching Losses l Fully Characterized Capacitance Including Effective COSS to Simplify Design, (See App. Note AN1001) l Fully Characterized Avalanche Voltage and Current 5.2A A A D 1 8 S 2 7 D S 3 6 D G 4 5 D S ID SO-8 Top View Absolute Maximum Ratings Max. Units VDS Drain-to-Source Voltage Parameter 150 V VGS Gate-to-Source Voltage ± 20 ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 5.2 ID @ TA = 100°C Continuous Drain Current, VGS @ 10V 3.7 c A IDM Pulsed Drain Current PD @TA = 25°C Maximum Power Dissipation 3.0 W Linear Derating Factor 0.02 W/°C dv/dt TJ Peak Diode Recovery dv/dt Operating Junction and 3.0 -55 to + 175 150 V/ns °C TSTG Storage Temperature Range 42 h Thermal Resistance Parameter RθJL RθJA Junction-to-Drain Lead Junction-to-Ambient (PCB Mount) e Typ. Max. Units ––– 20 °C/W ––– 50 Notes through are on page 8 www.irf.com 1 01/28/03 03/11/03 IRF7494 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage 150 ––– ––– ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.15 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 35 44 mΩ VGS(th) Gate Threshold Voltage 2.5 ––– 4.5 V VDS = VGS, ID = 250µA IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA VDS = 120V, VGS = 0V ––– ––– 250 IGSS Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 V VGS = 0V, ID = 250µA VGS = 10V, ID = 3.1A f VDS = 120V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Dynamic @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units ––– ––– S Conditions gfs Qg Forward Transconductance 12 VDS = 50V, ID = 5.2A Total Gate Charge ––– 36 54 Qgs Gate-to-Source Charge ––– 7.5 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 13 ––– VGS = 10V td(on) Turn-On Delay Time ––– 15 ––– VDD = 100V 75V tr Rise Time ––– 13 ––– td(off) Turn-Off Delay Time ––– 36 ––– tf Fall Time ––– 14 ––– Ciss Input Capacitance ––– 1750 ––– VGS = 0V Coss Output Capacitance ––– 220 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 100 ––– Coss Output Capacitance ––– 870 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz Coss Output Capacitance ––– 120 ––– VGS = 0V, VDS = 120V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 170 ––– VGS = 0V, VDS = 0V to 120V ID = 3.1A nC VDS = 75V f ID = 3.1A ns RG = 6.5Ω VGS = 10V pF f ƒ = 1.0MHz g Avalanche Characteristics EAS Parameter Single Pulse Avalanche Energy IAR Avalanche Current c d Typ. Max. Units ––– 370 mJ ––– 3.1 A Diode Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 2.7 ISM (Body Diode) Pulsed Source Current ––– ––– 42 showing the integral reverse VSD (Body Diode) Diode Forward Voltage ––– ––– 1.3 V p-n junction diode. TJ = 25°C, IS = 3.1A, VGS = 0V trr Reverse Recovery Time ––– 55 ––– ns Qrr Reverse Recovery Charge ––– 140 ––– nC ton Forward Turn-On Time 2 c MOSFET symbol A D G S f TJ = 25°C, IF = 3.1A, VDD = 25V di/dt = 100A/µs f Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRF7494 100 100 10 BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1 4.5V 0.1 BOTTOM 10 4.5V 1 20µs PULSE WIDTH Tj = 175°C 20µs PULSE WIDTH Tj = 25°C 0.01 0.1 0.1 1 10 100 1000 0.1 VDS, Drain-to-Source Voltage (V) 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 3.0 TJ = 175°C 10 T J = 25°C 1 VDS = 50V 20µs PULSE WIDTH ID = 5.2A 2.5 VGS = 10V 2.0 (Normalized) RDS(on) , Drain-to-Source On Resistance 100 ID, Drain-to-Source Current (Α) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 1.5 1.0 0.5 0.0 0.1 4 5 6 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 7 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance vs. Temperature 3 IRF7494 100000 VGS , Gate-to-Source Voltage (V) ID= 3.1A Coss = Cds + Cgd 10000 C, Capacitance(pF) 12.0 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = Cgd Ciss 1000 Coss Crss 100 VDS= 120V VDS= 75V 10.0 VDS= 30V 8.0 6.0 4.0 2.0 0.0 10 1 10 100 0 1000 VDS, Drain-to-Source Voltage (V) 15 20 25 30 35 40 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 100.00 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 10 Q G Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage OPERATION IN THIS AREA LIMITED BY R DS(on) 100 TJ = 175°C 10.00 T J = 25°C 1.00 10 100µsec 1 1msec T A = 25°C Tj = 175°C Single Pulse VGS = 0V 0.10 10msec 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 5 1.0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7494 6 RD VDS ID, Drain Current (A) 5 VGS D.U.T. RG 4 + -V DD 10V 3 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 2 Fig 10a. Switching Time Test Circuit 1 VDS 90% 0 25 50 75 100 125 150 175 T A , Ambient Temperature (°C) 10% VGS Fig 9. Maximum Drain Current vs. Ambient Temperature tr td(on) t d(off) tf Fig 10b. Switching Time Waveforms 100 Thermal Response ( Z thJA ) D = 0.50 0.20 10 0.10 0.05 0.02 0.01 1 PDM t1 SINGLE PULSE ( THERMAL RESPONSE ) 0.1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJA + TA 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 RDS(on) , Drain-to -Source On Resistance (m Ω) RDS (on) , Drain-to-Source On Resistance (m Ω) IRF7494 50 45 VGS = 10V 40 35 30 0 5 10 15 20 25 30 35 40 800 700 600 500 400 ID = 5.2A 300 200 100 0 45 4 6 8 10 12 14 16 18 VGS, Gate -to -Source Voltage (V) ID , Drain Current (A) Fig 12. On-Resistance vs. Drain Current Fig 13. On-Resistance vs. Gate Voltage Current Regulator Same Type as D.U.T. QG VGS .2µF QGS .3µF D.U.T. + V - DS QGD VG 1000 EAS , Single Pulse Avalanche Energy (mJ) 50KΩ 12V VGS 3mA Charge IG ID Current Sampling Resistors Fig 14a&b. Basic Gate Charge Test Circuit and Waveform 15V V(BR)DSS tp L VDS D.U.T RG IAS 20V I AS tp DRIVER + V - DD 0.01Ω Fig 15a&b. Unclamped Inductive Test circuit and Waveforms 6 ID TOP 1.3A 2.6A BOTTOM 3.1A 800 600 400 200 0 A 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 15c. Maximum Avalanche Energy vs. Drain Current www.irf.com IRF7494 SO-8 Package Details ' ,1&+(6 0,1 0$; $ $ E F ' ( H %$6,& H %$6,& + . / \ ',0 % $ + >@ ( $ ; H H $ ;E >@ $ 0,//,0(7(56 0,1 0$; %$6,& %$6,& .[ & \ >@ ;/ ;F & $ % 127(6 ',0(16,21,1*72/(5$1&,1*3(5$60(<0 &21752//,1*',0(16,210,//,0(7(5 ',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@ 287/,1(&21)250672-('(&287/,1(06$$ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72 $68%675$7( )22735,17 ;>@ >@ ;>@ ;>@ SO-8 Part Marking 7 () 6 2 0 ) ,5 1 $ ,6 6 , + 7 /( 3 0 $ ;( : : <( ' 2 & 7( $ ' 5 $ ( <( + 7) 2 7, * , ' 76 $ / < . ( ( : : : ( ' 2 & 7 2 / :; ; : < ; ; ) / $ 1 2 ,7 $ 1 5 7( 1 , 5 (, ,)7 & ( 5 5 ( % 0 8 1 7 5 $ 3 2 * 2 / www.irf.com 7 IRF7494 SO-8 Tape and Reel TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 77mH RG = 25Ω, IAS = 3.1A. When mounted on 1 inch square copper board, t ≤ 10 sec. Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . ISD ≤ 3.1A, di/dt ≤ 270A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.01/03 8 www.irf.com