PD - 95847 IRF6617 l l l l l l l HEXFET® Power MOSFET Application Specific MOSFETs Ideal for CPU Core DC-DC Converters Low Conduction Losses Low Switching Losses Low Profile (<0.7 mm) Dual Sided Cooling Compatible Compatible with Existing Surface Mount Techniques VDSS RDS(on) max Qg(typ.) 30V 8.1mΩ@VGS = 10V 10.3mΩ@VGS = 4.5V 11nC DirectFET ISOMETRIC ST Applicable DirectFET Outline and Substrate Outline (see p.7, 8 for details) SQ SX ST MQ MX MT Description The IRF6617 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%. The IRF6617 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6617 has been optimized for parameters that are critical in synchronous buck converters including Rds(on) and gate charge to minimize losses in the control FET socket. Absolute Maximum Ratings Parameter VDS VGS ID @ TC = 25°C ID @ TA = 25°C ID @ TA = 70°C IDM PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C EAS IAR TJ TSTG Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V c Pulsed Drain Current Power Dissipation Power Dissipation Power Dissipation Single Pulse Avalanche Energy Avalanche Current Linear Derating Factor Operating Junction and Storage Temperature Range g g c d Max. Units 30 ±20 55 14 11 120 2.1 1.4 42 27 12 0.017 -40 to + 150 V A W mJ A W/°C °C Thermal Resistance Parameter RθJA RθJA RθJA RθJC RθJ-PCB fj gj hj ij Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Typ. Max. Units ––– 12.5 20 ––– 1.0 58 ––– ––– 3.0 ––– °C/W Notes through are on page 2 www.irf.com 1 3/12/04 IRF6617 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions BVDSS Drain-to-Source Breakdown Voltage ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance ––– 7.9 mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 15A e VGS = 4.5V, ID = 12A e 10.3 VGS(th) Gate Threshold Voltage 1.35 ––– 2.35 V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -5.4 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA ––– ––– 150 IGSS gfs Qg 30 ––– ––– ––– 25 ––– ––– 6.2 V VGS = 0V, ID = 250µA 8.1 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 39 ––– ––– VDS = VGS, ID = 250µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 15V, ID = 12A Total Gate Charge ––– 11 17 Qgs1 Pre-Vth Gate-to-Source Charge ––– 3.1 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.0 ––– Qgd Gate-to-Drain Charge ––– 4.0 ––– ID = 12A Qgodr ––– 2.9 ––– See Fig. 17 Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 5.0 ––– Qoss td(on) Output Charge Turn-On Delay Time ––– ––– 10 11 ––– ––– tr Rise Time ––– 34 ––– td(off) Turn-Off Delay Time ––– 12 ––– tf Fall Time ––– 3.7 ––– Ciss Input Capacitance ––– 1300 ––– Coss Output Capacitance ––– 430 ––– Crss Reverse Transfer Capacitance ––– 160 ––– VDS = 15V nC nC VGS = 4.5V VDS = 15V, VGS = 0V VDD = 16V, VGS = 4.5Ve ID = 12A ns Clamped Inductive Load pF VDS = 15V VGS = 0V ƒ = 1.0MHz Diode Characteristics Min. Typ. Max. Units IS Continuous Source Current Parameter ––– ––– 53 Conditions ISM (Body Diode) Pulsed Source Current ––– ––– 120 showing the integral reverse VSD (Body Diode)c Diode Forward Voltage ––– 0.81 1.0 V p-n junction diode. TJ = 25°C, IS = 12A, VGS = 0V e trr Reverse Recovery Time ––– 16 24 ns Qrr Reverse Recovery Charge ––– 7.2 11 nC MOSFET symbol A D G S TJ = 25°C, IF = 12A di/dt = 100A/µs e Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.40mH, RG = 25Ω, IAS = 12A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Surface mounted on 1 in. square Cu board. 2 Used double sided cooling, mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. TC measured with thermal couple mounted to top (Drain) of part. Rθ is measured at TJ of approximately 90°C. www.irf.com IRF6617 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 10 1 ≤ 60µs PULSE WIDTH Tj = 25°C 2.5V 100 BOTTOM 10 2.5V 0.1 1 10 0.1 100 1 10 100 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000.0 ID, Drain-to-Source Current (Α) ≤ 60µs PULSE WIDTH Tj = 150°C 1 0.1 100.0 T J = 150°C 10.0 T J = 25°C 1.0 VDS = 15V ≤ 60µs PULSE WIDTH 0.1 1.0 2.0 3.0 4.0 5.0 ID = 15A VGS = 10V 1.5 1.0 0.5 6.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 10000 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 12 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 12A C oss = C ds + C gd C, Capacitance (pF) VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V Ciss 1000 Coss VDS= 24V VDS= 15V 10 8 6 4 2 Crss 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 5 10 15 20 25 30 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRF6617 1000 1000.0 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 100.0 T J = 150°C 10.0 T J = 25°C 1.0 100 10 100µsec 1msec 1 VGS = 0V 0.1 0.1 0.2 0.4 0.6 0.8 1.0 0 1.2 1 10 100 1000 VDS , Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 60 VGS(th) Gate threshold Voltage (V) 2.5 50 ID , Drain Current (A) 10msec Tc = 25°C Tj = 150°C Single Pulse 40 30 20 10 2.0 ID = 250µA 1.5 0 1.0 25 50 75 100 125 150 -75 -50 -25 T J , Junction Temperature (°C) 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 100 Thermal Response ( Z thJA ) D = 0.50 0.20 10 0.10 0.05 0.02 0.01 1 τJ 0.1 R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τC τ τ3 τ2 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 0.01 Ri (°C/W) R4 R4 τi (sec) 2.023 0.000678 19.48 0.240237 21.78 2.0167 14.71 58 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 4 www.irf.com 120 24 EAS, Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance ( mΩ) IRF6617 ID = 15A 20 16 T J = 125°C 12 8 T J = 25°C ID 5.2A 7.9A BOTTOM 12A TOP 100 80 60 40 20 4 0 2.0 4.0 6.0 8.0 10.0 25 50 VGS, Gate-to-Source Voltage (V) 75 100 125 150 Starting T J, Junction Temperature (°C) Fig 12. On-Resistance Vs. Gate Voltage Fig 13c. Maximum Avalanche Energy Vs. Drain Current 15V LD VDS DRIVER L VDS + VDD - D.U.T RG + V - DD IAS VGS 20V tp D.U.T A VGS 0.01Ω Pulse Width < 1µs Duty Factor < 0.1% Fig 13a. Unclamped Inductive Test Circuit V(BR)DSS Fig 14a. Switching Time Test Circuit VDS tp 90% 10% VGS td(on) I AS Fig 13b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. tr td(off) Fig 14b. Switching Time Waveforms Id Vds 50KΩ 12V tf Vgs .2µF .3µF D.U.T. + V - DS VGS Vgs(th) 3mA IG ID Current Sampling Resistors Qgs1 Qgs2 Fig 15. Gate Charge Test Circuit www.irf.com Qgd Qgodr Fig 16. Gate Charge Waveform 5 IRF6617 D.U.T Driver Gate Drive + + - - D.U.T. ISD Waveform Reverse Recovery Current + di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * • • • • D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer RG Period P.W. VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, ST Outline (Small Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. 1- Drain 2- Drain 3- Source 4- Source 5- Gate 6- Drain 7- Drain 6 5 7 6 3 4 1 2 www.irf.com IRF6617 DirectFET Outline Dimension, ST Outline (Small Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS Note: Controlling dimensions are in mm METRIC MAX CODE MIN 4.85 A 4.75 3.95 B 3.70 2.85 C 2.75 0.45 D 0.35 0.62 E 0.58 0.62 F 0.58 0.79 G 0.75 0.57 H 0.53 0.30 J 0.26 K O.88 0.98 2.28 L 2.18 0.70 M 0.59 0.08 N 0.03 0.17 P 0.08 IMPERIAL MIN 0.187 0.146 0.108 0.014 0.023 0.023 0.030 0.021 0.010 0.035 0.086 0.023 0.001 0.003 MAX 0.191 0.156 0.112 0.018 0.024 0.024 0.031 0.022 0.012 0.039 0.090 0.028 0.003 0.007 DirectFET Part Marking www.irf.com 7 IRF6617 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6617). For 1000 parts on 7" reel, order IRF6617TR1 REEL DIMENSIONS TR1 OPTION (QTY 1000) STANDARD OPTION (QTY 4800) IMPERIAL IMPERIAL METRIC METRIC MIN MIN MAX CODE MAX MIN MIN MAX MAX 12.992 A 6.9 N.C 177.77 N.C N.C 330.0 N.C 0.795 B 0.75 N.C 19.06 20.2 N.C N.C N.C 0.504 C 0.53 0.50 13.5 12.8 0.520 12.8 13.2 0.059 D 0.059 N.C 1.5 1.5 N.C N.C N.C 3.937 E 2.31 58.72 100.0 N.C N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 13.50 18.4 G 0.488 0.47 N.C 11.9 12.4 0.567 12.01 14.4 H 0.469 0.47 11.9 11.9 N.C 0.606 12.01 15.4 Loaded Tape Feed Direction NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS METRIC IMPERIAL MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 4.10 3.90 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.201 0.209 5.30 5.10 0.256 0.264 6.50 6.70 0.059 N.C 1.50 N.C 0.059 0.063 1.50 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/04 8 www.irf.com