PD - 95867A IRF6691 HEXFET® Power MOSFET plus Schottky Diode Application Specific MOSFETs Integrates Monolithic Trench Schottky Diode l Ideal for CPU Core DC-DC Converters l Low Conduction Losses l Low Reverse Recovery Losses l Low Switching Losses l Low Reverse Recovery Charge and Low Vf l Low Profile (<0.7 mm) l Dual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques l l VDSS RDS(on) max Qg(typ.) 20V 2.5mΩ@VGS = 4.5V 1.8mΩ@VGS = 10V 47nC DirectFET ISOMETRIC MT Applicable DirectFET Package/Layout Pad (see p.8,9 for details) SQ SX ST MQ MX MT Description The IRF6691 combines IRs industry leading DirectFET package technology with the latest monolithic die technology, which integrates MOSFET plus free-wheeling Schottky diode. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%. The IRF6691 is characterized with reduced on resistance (R DS(on)), reverse recovery charge (Q rr) and source to drain voltage (VSD ) to reduce conduction, reverse recovery and deadtime losses. These reduced total losses along with high Cdv/dt immunity make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6691 has been optimized for parameters that are critical for synchronous MOSFET sockets operating in 12 volt buss converters. Absolute Maximum Ratings Max. Units VDS Drain-to-Source Voltage Parameter 20 V VGS ±12 ID @ TC = 25°C Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V 180 ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 32 ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 26 Pulsed Drain Current 260 IDM PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C g Power Dissipation g Power Dissipation c A 2.8 1.8 Power Dissipation W 89 Linear Derating Factor 0.022 W/°C TJ Operating Junction and -40 to + 150 °C TSTG Storage Temperature Range Thermal Resistance Parameter fj gj Junction-to-Ambient hj Junction-to-Case ij Typ. Max. RθJA Junction-to-Ambient ––– 45 RθJA Junction-to-Ambient 12.5 ––– RθJA RθJC RθJ-PCB Junction-to-PCB Mounted 20 ––– ––– 1.4 1.0 ––– Units °C/W Notes through are on page 10 www.irf.com 1 11/3/04 IRF6691 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 20 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance ––– 12 ––– ––– 1.8 2.5 ––– 1.2 1.8 V Conditions VGS = 0V, ID = 1.0mA mV/°C Reference to 25°C, ID = 10mA mΩ VGS = 4.5V, ID = 12A VGS = 10V, ID = 15A VGS(th) Gate Threshold Voltage 1.6 ––– 2.5 ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -4.1 ––– ––– ––– 1.4 mA ––– ––– 500 µA VDS = 16V, VGS = 0V ––– ––– 5 mA VDS = 16V, VGS = 0V, TJ = 125°C Gate-to-Source Forward Leakage ––– ––– 100 nA VGS = 12V Gate-to-Source Reverse Leakage ––– ––– -100 gfs Forward Transconductance 110 ––– ––– Qg Total Gate Charge 71 ––– IDSS IGSS Drain-to-Source Leakage Current V e e VDS = VGS, ID = 250µA mV/°C ID = 10mA, reference to 25°C VDS = 20V, VGS = 0V VGS = -12V S VDS = 10V, ID = 26A Qgs1 Pre-Vth Gate-to-Source Charge ––– ––– 47 14 Qgs2 Post-Vth Gate-to-Source Charge ––– 4.4 ––– Qgd Gate-to-Drain Charge ––– 15 ––– ID = 17A Qgodr Gate Charge Overdrive ––– 14 ––– See Fig. 17 Qsw Switch Charge (Qgs2 + Qgd) Qoss Output Charge ––– ––– 19 30 ––– ––– VDS = 10V nC nC RG Gate Resistance Turn-On Delay Time ––– ––– 0.60 23 1.5 ––– Ω td(on) tr Rise Time ––– 95 ––– ns td(off) Turn-Off Delay Time ––– 25 ––– tf Fall Time Ciss Input Capacitance ––– ––– 10 6580 ––– ––– Coss Output Capacitance ––– 2070 ––– Crss Reverse Transfer Capacitance ––– 840 ––– VGS = 4.5V VDS = 10V, VGS = 0V e VDD = 16V, VGS = 4.5V ID = 26A Clamped Inductive Load VGS = 0V pF VDS = 10V ƒ = 1.0MHz Avalanche Characteristics EAS Parameter Single Pulse Avalanche Energy IAR Avalanche Current c d Typ. Max. Units ––– 230 mJ ––– 26 A Diode Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 32 ISM (Body Diode) Pulsed Source Current ––– ––– 260 showing the integral reverse VSD (Body Diode) Diode Forward Voltage ––– ––– 0.65 p-n junction diode. TJ = 25°C, IS = 25A, VGS = 0V trr Reverse Recovery Time ––– 32 48 ns Qrr Reverse Recovery Charge ––– 26 39 nC 2 c MOSFET symbol A V D G S e TJ = 25°C, IF = 25A di/dt = 100A/µs e www.irf.com IRF6691 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 7.0V 4.5V 4.0V 3.5V 3.2V 2.9V 2.7V 100 10 2.7V 1 BOTTOM 2.7V 10 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 0.1 0.1 1 1 10 0.1 100 1 10 100 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 1.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) VGS 10V 7.0V 4.5V 4.0V 3.5V 3.2V 2.9V 2.7V 100 T J = 150°C 10 T J = 25°C 1 VDS = 10V ≤60µs PULSE WIDTH 0.1 ID = 32A VGS = 10V 1.0 0.5 1 2 3 4 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 5 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance vs. Temperature 3 IRF6691 100000 6.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd ID= 17A 10000 Ciss Coss Crss 1000 VDS= 16V VDS= 10V 5.0 VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) C oss = C ds + C gd 4.0 3.0 2.0 1.0 100 0.0 1 10 100 0 VDS, Drain-to-Source Voltage (V) 10 20 30 40 50 60 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 1000 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100 T J = 150°C T J = 25°C 10 VGS = 0V 1 0.0 0.2 0.4 0.6 0.8 1.0 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 1.2 100µsec 1msec 10 T A = 25°C Tj = 150°C Single Pulse 10msec 1 0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF6691 200 2.5 VGS(th) Gate threshold Voltage (V) ID, Drain Current (A) 175 150 125 100 75 50 25 2.0 ID = 250µA 1.5 1.0 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 100 D = 0.50 0.20 0.10 0.05 0.02 0.01 Thermal Response ( Z thJA ) 10 1 R1 R1 0.1 τJ 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 τJ τ1 R2 R2 R3 R3 Ri (°C/W) R4 R4 τC τ τ2 τ1 τ3 τ2 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri τi (sec) 0.678 0.000860 17.30 0.577560 17.57 8.940000 9.470 106.0000 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 10 1000 9 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m Ω) IRF6691 ID = 32A 8 7 6 5 4 3 T J = 125°C 2 1 T J = 25°C 0 ID TOP 12A 15A BOTTOM 26A 800 600 400 200 0 2 3 4 5 6 7 8 9 10 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 12. On-Resistance vs. Gate Voltage Fig 13c. Maximum Avalanche Energy vs. Drain Current 15V LD VDS L VDS DRIVER + VDD - D.U.T RG VGS 20V IAS tp + V - DD D.U.T A VGS 0.01Ω Pulse Width < 1µs Duty Factor < 0.1% Fig 13a. Unclamped Inductive Test Circuit V(BR)DSS tp Fig 14a. Switching Time Test Circuit VDS 90% 10% VGS I AS Fig 13b. Unclamped Inductive Waveforms 6 td(on) tr td(off) tf Fig 14b. Switching Time Waveforms www.irf.com IRF6691 D.U.T Driver Gate Drive P.W. + - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Current Regulator Same Type as D.U.T. Vgs 50KΩ 12V .2µF .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 16. Gate Charge Test Circuit www.irf.com Qgs1 Qgs2 Qgd Qgodr Fig 17. Gate Charge Waveform 7 IRF6691 DirectFET Outline Dimension, MT Outline (Medium Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS NOTE: CONTROLLING DIMENSIONS ARE IN MM 8 METRIC MAX CODE MIN 6.35 A 6.25 5.05 B 4.80 3.95 C 3.85 0.45 D 0.35 0.82 E 0.78 0.92 F 0.88 1.82 G 1.78 H 0.98 1.02 0.67 J 0.63 K O.88 1.01 2.63 L 2.46 0.70 M 0.59 0.08 N 0.03 0.17 P 0.08 IMPERIAL MIN 0.246 0.189 0.152 0.014 0.031 0.035 0.070 0.039 0.025 0.035 0.097 0.023 0.001 0.003 MAX 0.250 0.199 0.156 0.018 0.032 0.036 0.072 0.040 0.026 0.039 0.104 0.028 0.003 0.007 www.irf.com IRF6691 DirectFET Board Footprint, MT Outline (Medium Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. 6 3 1 1- Drain 2- Drain 3- Source 4- Source 5- Gate 6- Drain 7- Drain 5 7 4 2 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6691). For 1000 parts on 7" reel, order IRF6691TR1 REEL DIMENSIONS TR1 OPTION (QTY 1000) STANDARD OPTION (QTY 4800) IMPERIAL IMPERIAL METRIC METRIC MIN MIN MAX CODE MIN MAX MIN MAX MAX A 12.992 6.9 N.C 330.0 N.C 177.77 N.C N.C B 0.795 0.75 20.2 N.C 19.06 N.C N.C N.C 0.504 0.53 C 12.8 13.5 0.50 0.520 12.8 13.2 D 0.059 0.059 N.C 1.5 N.C 1.5 N.C N.C E 3.937 2.31 100.0 58.72 N.C N.C N.C N.C F N.C N.C N.C 0.724 N.C 0.53 13.50 18.4 G 0.488 0.47 12.4 11.9 N.C 0.567 12.01 14.4 H 0.469 0.47 11.9 11.9 0.606 12.01 N.C 15.4 www.irf.com 9 IRF6691 DirectFET Part Marking Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.72mH, RG = 25Ω, IAS = 26A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Surface mounted on 1 in. square Cu board. Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. TC measured with thermal couple mounted to top (Drain) of part. Rθ is measured at TJ of approximately 90°C. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/04 10 www.irf.com