IRF IRF6691

PD - 95867A
IRF6691
HEXFET® Power MOSFET plus Schottky Diode
Application Specific MOSFETs
Integrates Monolithic Trench Schottky Diode
l Ideal for CPU Core DC-DC Converters
l Low Conduction Losses
l Low Reverse Recovery Losses
l Low Switching Losses
l Low Reverse Recovery Charge and Low Vf
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible
l Compatible with existing Surface Mount Techniques
l
l
VDSS
RDS(on) max
Qg(typ.)
20V
2.5mΩ@VGS = 4.5V
1.8mΩ@VGS = 10V
47nC
DirectFET™ ISOMETRIC
MT
Applicable DirectFET Package/Layout Pad (see p.8,9 for details)
SQ
SX
ST
MQ
MX
MT
Description
The IRF6691 combines IR’s industry leading DirectFET package technology with the latest monolithic die technology,
which integrates MOSFET plus free-wheeling Schottky diode. The DirectFET package is compatible with existing layout
geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET
package allows dual sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal
resistance by 80%.
The IRF6691 is characterized with reduced on resistance (R DS(on)), reverse recovery charge (Q rr) and source to drain
voltage (VSD ) to reduce conduction, reverse recovery and deadtime losses. These reduced total losses along with high
Cdv/dt immunity make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6691 has been optimized for parameters that are critical for synchronous
MOSFET sockets operating in 12 volt buss converters.
Absolute Maximum Ratings
Max.
Units
VDS
Drain-to-Source Voltage
Parameter
20
V
VGS
±12
ID @ TC = 25°C
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
180
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
32
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
26
Pulsed Drain Current
260
IDM
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
g
Power Dissipation g
Power Dissipation
c
A
2.8
1.8
Power Dissipation
W
89
Linear Derating Factor
0.022
W/°C
TJ
Operating Junction and
-40 to + 150
°C
TSTG
Storage Temperature Range
Thermal Resistance
Parameter
fj
gj
Junction-to-Ambient hj
Junction-to-Case ij
Typ.
Max.
RθJA
Junction-to-Ambient
–––
45
RθJA
Junction-to-Ambient
12.5
–––
RθJA
RθJC
RθJ-PCB
Junction-to-PCB Mounted
20
–––
–––
1.4
1.0
–––
Units
°C/W
Notes  through ˆ are on page 10
www.irf.com
1
11/3/04
IRF6691
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
20
–––
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
–––
12
–––
–––
1.8
2.5
–––
1.2
1.8
V
Conditions
VGS = 0V, ID = 1.0mA
mV/°C Reference to 25°C, ID = 10mA
mΩ VGS = 4.5V, ID = 12A
VGS = 10V, ID = 15A
VGS(th)
Gate Threshold Voltage
1.6
–––
2.5
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-4.1
–––
–––
–––
1.4
mA
–––
–––
500
µA
VDS = 16V, VGS = 0V
–––
–––
5
mA
VDS = 16V, VGS = 0V, TJ = 125°C
Gate-to-Source Forward Leakage
–––
–––
100
nA
VGS = 12V
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Forward Transconductance
110
–––
–––
Qg
Total Gate Charge
71
–––
IDSS
IGSS
Drain-to-Source Leakage Current
V
e
e
VDS = VGS, ID = 250µA
mV/°C ID = 10mA, reference to 25°C
VDS = 20V, VGS = 0V
VGS = -12V
S
VDS = 10V, ID = 26A
Qgs1
Pre-Vth Gate-to-Source Charge
–––
–––
47
14
Qgs2
Post-Vth Gate-to-Source Charge
–––
4.4
–––
Qgd
Gate-to-Drain Charge
–––
15
–––
ID = 17A
Qgodr
Gate Charge Overdrive
–––
14
–––
See Fig. 17
Qsw
Switch Charge (Qgs2 + Qgd)
Qoss
Output Charge
–––
–––
19
30
–––
–––
VDS = 10V
nC
nC
RG
Gate Resistance
Turn-On Delay Time
–––
–––
0.60
23
1.5
–––
Ω
td(on)
tr
Rise Time
–––
95
–––
ns
td(off)
Turn-Off Delay Time
–––
25
–––
tf
Fall Time
Ciss
Input Capacitance
–––
–––
10
6580
–––
–––
Coss
Output Capacitance
–––
2070
–––
Crss
Reverse Transfer Capacitance
–––
840
–––
VGS = 4.5V
VDS = 10V, VGS = 0V
e
VDD = 16V, VGS = 4.5V
ID = 26A
Clamped Inductive Load
VGS = 0V
pF
VDS = 10V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
Parameter
Single Pulse Avalanche Energy
IAR
Avalanche Current
c
d
Typ.
Max.
Units
–––
230
mJ
–––
26
A
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
32
ISM
(Body Diode)
Pulsed Source Current
–––
–––
260
showing the
integral reverse
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
0.65
p-n junction diode.
TJ = 25°C, IS = 25A, VGS = 0V
trr
Reverse Recovery Time
–––
32
48
ns
Qrr
Reverse Recovery Charge
–––
26
39
nC
2
c
MOSFET symbol
A
V
D
G
S
e
TJ = 25°C, IF = 25A
di/dt = 100A/µs
e
www.irf.com
IRF6691
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
100
10
2.7V
1
BOTTOM
2.7V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
0.1
0.1
1
1
10
0.1
100
1
10
100
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
1.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (Α)
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
100
T J = 150°C
10
T J = 25°C
1
VDS = 10V
≤60µs PULSE WIDTH
0.1
ID = 32A
VGS = 10V
1.0
0.5
1
2
3
4
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
5
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
vs. Temperature
3
IRF6691
100000
6.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
ID= 17A
10000
Ciss
Coss
Crss
1000
VDS= 16V
VDS= 10V
5.0
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
C oss = C ds + C gd
4.0
3.0
2.0
1.0
100
0.0
1
10
100
0
VDS, Drain-to-Source Voltage (V)
10
20
30
40
50
60
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
1000
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100
T J = 150°C
T J = 25°C
10
VGS = 0V
1
0.0
0.2
0.4
0.6
0.8
1.0
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
1.2
100µsec
1msec
10
T A = 25°C
Tj = 150°C
Single Pulse
10msec
1
0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF6691
200
2.5
VGS(th) Gate threshold Voltage (V)
ID, Drain Current (A)
175
150
125
100
75
50
25
2.0
ID = 250µA
1.5
1.0
0
25
50
75
100
125
-75
150
-50
-25
0
25
50
75
100
125
150
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
100
D = 0.50
0.20
0.10
0.05
0.02
0.01
Thermal Response ( Z thJA )
10
1
R1
R1
0.1
τJ
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
R4
R4
τC
τ
τ2
τ1
τ3
τ2
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
τi (sec)
0.678
0.000860
17.30
0.577560
17.57
8.940000
9.470
106.0000
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
10
1000
9
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m Ω)
IRF6691
ID = 32A
8
7
6
5
4
3
T J = 125°C
2
1
T J = 25°C
0
ID
TOP
12A
15A
BOTTOM 26A
800
600
400
200
0
2
3
4
5
6
7
8
9
10
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance vs. Gate Voltage
Fig 13c. Maximum Avalanche Energy
vs. Drain Current
15V
LD
VDS
L
VDS
DRIVER
+
VDD -
D.U.T
RG
VGS
20V
IAS
tp
+
V
- DD
D.U.T
A
VGS
0.01Ω
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 13a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
Fig 14a. Switching Time Test Circuit
VDS
90%
10%
VGS
I AS
Fig 13b. Unclamped Inductive Waveforms
6
td(on)
tr
td(off)
tf
Fig 14b. Switching Time Waveforms
www.irf.com
IRF6691
D.U.T
Driver Gate Drive
P.W.
+
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Vds
Current Regulator
Same Type as D.U.T.
Vgs
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 16. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 17. Gate Charge Waveform
7
IRF6691
DirectFET™ Outline Dimension, MT Outline
(Medium Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of
DirectFET. This includes all recommendations for stencil and substrate designs.
DIMENSIONS
NOTE: CONTROLLING
DIMENSIONS ARE IN MM
8
METRIC
MAX
CODE MIN
6.35
A
6.25
5.05
B
4.80
3.95
C
3.85
0.45
D
0.35
0.82
E
0.78
0.92
F
0.88
1.82
G
1.78
H
0.98 1.02
0.67
J
0.63
K
O.88 1.01
2.63
L
2.46
0.70
M
0.59
0.08
N
0.03
0.17
P
0.08
IMPERIAL
MIN
0.246
0.189
0.152
0.014
0.031
0.035
0.070
0.039
0.025
0.035
0.097
0.023
0.001
0.003
MAX
0.250
0.199
0.156
0.018
0.032
0.036
0.072
0.040
0.026
0.039
0.104
0.028
0.003
0.007
www.irf.com
IRF6691
DirectFET™ Board Footprint, MT Outline
(Medium Size Can, T-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
6
3
1
1- Drain
2- Drain
3- Source
4- Source
5- Gate
6- Drain
7- Drain
5
7
4
2
DirectFET™ Tape & Reel Dimension
(Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6691). For 1000 parts on 7" reel,
order IRF6691TR1
REEL DIMENSIONS
TR1 OPTION (QTY 1000)
STANDARD OPTION (QTY 4800)
IMPERIAL
IMPERIAL
METRIC
METRIC
MIN
MIN
MAX
CODE
MIN
MAX
MIN
MAX
MAX
A
12.992
6.9
N.C
330.0
N.C
177.77 N.C
N.C
B
0.795
0.75
20.2
N.C
19.06
N.C
N.C
N.C
0.504
0.53
C
12.8
13.5
0.50
0.520
12.8
13.2
D
0.059
0.059
N.C
1.5
N.C
1.5
N.C
N.C
E
3.937
2.31
100.0
58.72
N.C
N.C
N.C
N.C
F
N.C
N.C
N.C
0.724
N.C
0.53
13.50
18.4
G
0.488
0.47
12.4
11.9
N.C
0.567
12.01
14.4
H
0.469
0.47
11.9
11.9
0.606
12.01
N.C
15.4
www.irf.com
9
IRF6691
DirectFET™ Part Marking
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.72mH,
RG = 25Ω, IAS = 26A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Surface mounted on 1 in. square Cu board.
… Used double sided cooling , mounting pad.
† Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
‡ TC measured with thermal couple mounted to top (Drain) of
part.
ˆ Rθ is measured at TJ of approximately 90°C.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.11/04
10
www.irf.com