PD- 95350 IRFB9N30APbF HEXFET® Power MOSFET l l l l l l Dynamic dv/dt Rating Repetitive Avalanche Rated Fast Switching Ease of Paraleing Dynamic dv/dt Rated Simple Drive Requirements l Lead-Free D VDSS = 300V RDS(on) = 0.45Ω G ID = 9.3A S Description Third Generation HEXFETs from International Rectifier provide the designer with the best combination of ast switching, ruggedized device design, low onresistance and cost-effectiveness. The TO-220 package is universally preferred for all commercial-industrial applications at lower dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. TO-220AB Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torqe, 6-32 or M3 screw Max. Units 9.3 5.9 37 96 0.77 ± 30 160 9.3 9.6 4.6 -55 to + 150 A W W/°C V mJ A mJ V/ns °C 300 (1.6mm from case ) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS RθJA www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. Max. Units ––– 0.50 ––– 1.3 ––– 62 °C/W 1 06/01/04 IRFB9N30APbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 300 ––– ––– 2.0 6.6 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.38 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 10 25 35 29 IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance ––– 4.5 LS Internal Source Inductance Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Input Capacitance Input Capacitance Input Capacitance V(BR)DSS ∆V(BR)DSS/∆TJ IGSS ––– 7.5 ––– ––– ––– ––– ––– ––– 920 160 8.7 1200 52 102 Max. Units Conditions ––– V VGS = 0V, I D = 250µA ––– V/°C Reference to 25°C, ID = 1mA 0.45 Ω VGS = 10V, ID = 5.5A 4.0 V VDS = VGS, ID = 250µA ––– S VDS = 50V, ID = 5.6A 25 VDS = 300V, VGS = 0V µA 250 VDS = 240V, VGS = 0V, TJ = 150°C 100 VGS = 30V nA -100 VGS = -30V 33 ID = 9.3A 6.9 nC VDS = 240V 12 VGS = 10V, See Fig. 6 and 13 ––– VDD = 150V ––– ID = 9.3A ns ––– RG = 12Ω ––– RD = 16 Ω, See Fig. 10 D Between lead, ––– 6mm (0.25in.) nH G from package ––– and center of die contact S ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0 MHz ––– VGS = 0V, VDS = 240V, ƒ = 1.0 MHz ––– VGS = 0V, VDS = 0V to 240 V Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Notes: Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) Starting TJ = 25°C, L = 3.7mH RG = 25Ω, IAS = 9.3A. (See Figure 12) Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– 9.3 showing the A G integral reverse ––– ––– 37 S p-n junction diode. ––– ––– 1.5 V TJ = 25°C, IS =9.3A, VGS = 0V ––– 280 420 ns TJ = 25°C, IF = 9.3A ––– 1.5 2.3 µC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Pulse width ≤ 300µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS ISD ≤ 9.3A, di/dt ≤ 270A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C 2 www.irf.com IRFB9N30APbF 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 10 4.5V 20µs PULSE WIDTH TJ = 25 °C 1 0.1 1 10 10 4.5V 20µs PULSE WIDTH TJ = 150 ° C 1 1 100 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) 100 TJ = 25 ° C TJ = 150 ° C 10 V DS = 50V 20µs PULSE WIDTH 5.0 6.0 7.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 1 4.0 10 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 8.0 ID = 9.3A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFB9N30APbF 100000 1000 Ciss Coss 100 Crss VGS , Gate-to-Source Voltage (V) 10000 C, Capacitance (pF) 20 V GS = 0V, f = 1MHz C iss = Cgs + C gd , Cds SHORTED C rss = C gd C oss = Cds + C gd 10 1 10 100 VDS = 240V VDS = 150V VDS = 60V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 0 A 1 ID = 9.3A 0 1000 100 30 40 100 OPERATION IN THIS AREA LIMITED BY RDS(on) 10us ID , Drain Current (A) ISD , Reverse Drain Current (A) 20 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10 TJ = 150° C TJ = 25 ° C 1 0.1 0.0 V GS = 0 V 0.4 0.8 1.2 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 10 QG , Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) 1.6 10 100us 1ms 1 10ms TC = 25 ° C TJ = 150 ° C Single Pulse 0.1 1 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFB9N30APbF 10.0 RD V DS VGS ID , Drain Current (A) 8.0 D.U.T. RG + -VDD 10V 6.0 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 4.0 Fig 10a. Switching Time Test Circuit 2.0 VDS 90% 0.0 25 50 75 100 125 150 TC , Case Temperature ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 PDM 0.05 0.02 0.01 0.01 0.00001 t1 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp A EAS , Single Pulse Avalanche Energy (mJ) IRFB9N30APbF 400 TOP BOTTOM ID 4.2A 5.9A 9.3A 300 200 100 0 25 50 75 100 125 150 Starting TJ , Junction Temperature( °C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V 400 QGD VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF V DSav , Avalanche Voltage (V) QGS 380 360 .3µF D.U.T. + V - DS 340 A 0 VGS 2 4 6 8 10 I av , Avalanche Current (A) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 12d. Typical Drain-to-Source Voltage Vs. Avalanche Current www.irf.com IRFB9N30APbF Peak Diode Recovery dv/dt Test Circuit Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D.U.T + - - + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Driver Gate Drive P.W. Period D= + - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFETS www.irf.com 7 IRFB9N30APbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1.15 (.045) MIN 1 2 3 4- DRAIN 14.09 (.555) 13.47 (.530) 1.40 (.055) 1.15 (.045) 4- COLLECTOR 4.06 (.160) 3.55 (.140) 3X 3X LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 2 - DRAIN 1- GATE 1- GATE 3 - SOURCE 2- COLLECTOR 2- DRAIN 3- SOURCE 3- EMITTER 4 - DRAIN HEXFET 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMP L E : T H IS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" Note: "P" in assembly line position indicates "Lead-Free" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE P AR T NU MB E R D AT E CODE Y E AR 7 = 1997 WE E K 19 L IN E C Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/04 8 www.irf.com