IRF IRFB9N30APBF

PD- 95350
IRFB9N30APbF
HEXFET® Power MOSFET
l
l
l
l
l
l
Dynamic dv/dt Rating
Repetitive Avalanche Rated
Fast Switching
Ease of Paraleing
Dynamic dv/dt Rated
Simple Drive Requirements
l Lead-Free
D
VDSS = 300V
RDS(on) = 0.45Ω
G
ID = 9.3A
S
Description
Third Generation HEXFETs from International Rectifier provide the designer
with the best combination of ast switching, ruggedized device design, low onresistance and cost-effectiveness.
The TO-220 package is universally preferred for all commercial-industrial
applications at lower dissipation levels to approximately 50 watts. The low
thermal resistance and low package cost of the TO-220 contribute to its wide
acceptance throughout the industry.
TO-220AB
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torqe, 6-32 or M3 screw
Max.
Units
9.3
5.9
37
96
0.77
± 30
160
9.3
9.6
4.6
-55 to + 150
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
www.irf.com
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Typ.
Max.
Units
–––
0.50
–––
1.3
–––
62
°C/W
1
06/01/04
IRFB9N30APbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
RDS(on)
VGS(th)
gfs
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Min.
300
–––
–––
2.0
6.6
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.38
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
10
25
35
29
IDSS
Drain-to-Source Leakage Current
LD
Internal Drain Inductance
–––
4.5
LS
Internal Source Inductance
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Input Capacitance
Input Capacitance
Input Capacitance
V(BR)DSS
∆V(BR)DSS/∆TJ
IGSS
–––
7.5
–––
–––
–––
–––
–––
–––
920
160
8.7
1200
52
102
Max. Units
Conditions
–––
V
VGS = 0V, I D = 250µA
––– V/°C Reference to 25°C, ID = 1mA
0.45
Ω
VGS = 10V, ID = 5.5A „
4.0
V
VDS = VGS, ID = 250µA
–––
S
VDS = 50V, ID = 5.6A
25
VDS = 300V, VGS = 0V
µA
250
VDS = 240V, VGS = 0V, TJ = 150°C
100
VGS = 30V
nA
-100
VGS = -30V
33
ID = 9.3A
6.9
nC
VDS = 240V
12
VGS = 10V, See Fig. 6 and 13 „
–––
VDD = 150V
–––
ID = 9.3A
ns
–––
RG = 12Ω
–––
RD = 16 Ω, See Fig. 10 „
D
Between lead,
–––
6mm (0.25in.)
nH
G
from package
–––
and center of die contact
S
–––
VGS = 0V
–––
pF
VDS = 25V
–––
ƒ = 1.0MHz, See Fig. 5
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0 MHz
–––
VGS = 0V, VDS = 240V, ƒ = 1.0 MHz
–––
VGS = 0V, VDS = 0V to 240 V …
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
‚ Starting TJ = 25°C, L = 3.7mH
RG = 25Ω, IAS = 9.3A. (See Figure 12)
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 9.3
showing the
A
G
integral reverse
––– –––
37
S
p-n junction diode.
––– ––– 1.5
V
TJ = 25°C, IS =9.3A, VGS = 0V „
––– 280 420
ns
TJ = 25°C, IF = 9.3A
––– 1.5 2.3
µC di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
ƒ ISD ≤ 9.3A, di/dt ≤ 270A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 150°C
2
www.irf.com
IRFB9N30APbF
100
100
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
10
4.5V
20µs PULSE WIDTH
TJ = 25 °C
1
0.1
1
10
10
4.5V
20µs PULSE WIDTH
TJ = 150 ° C
1
1
100
3.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
100
TJ = 25 ° C
TJ = 150 ° C
10
V DS = 50V
20µs PULSE WIDTH
5.0
6.0
7.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
100
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
1
4.0
10
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
8.0
ID = 9.3A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRFB9N30APbF
100000
1000
Ciss
Coss
100
Crss
VGS , Gate-to-Source Voltage (V)
10000
C, Capacitance (pF)
20
V GS = 0V,
f = 1MHz
C iss = Cgs + C gd , Cds SHORTED
C rss = C gd
C oss = Cds + C gd
10
1
10
100
VDS = 240V
VDS = 150V
VDS = 60V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
A
1
ID = 9.3A
0
1000
100
30
40
100
OPERATION IN THIS AREA LIMITED
BY RDS(on)
10us
ID , Drain Current (A)
ISD , Reverse Drain Current (A)
20
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
10
TJ = 150° C
TJ = 25 ° C
1
0.1
0.0
V GS = 0 V
0.4
0.8
1.2
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
10
QG , Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
1.6
10
100us
1ms
1
10ms
TC = 25 ° C
TJ = 150 ° C
Single Pulse
0.1
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFB9N30APbF
10.0
RD
V DS
VGS
ID , Drain Current (A)
8.0
D.U.T.
RG
+
-VDD
10V
6.0
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
4.0
Fig 10a. Switching Time Test Circuit
2.0
VDS
90%
0.0
25
50
75
100
125
150
TC , Case Temperature ( °C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
PDM
0.05
0.02
0.01
0.01
0.00001
t1
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
15V
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
A
EAS , Single Pulse Avalanche Energy (mJ)
IRFB9N30APbF
400
TOP
BOTTOM
ID
4.2A
5.9A
9.3A
300
200
100
0
25
50
75
100
125
150
Starting TJ , Junction Temperature( °C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
400
QGD
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
V DSav , Avalanche Voltage (V)
QGS
380
360
.3µF
D.U.T.
+
V
- DS
340
A
0
VGS
2
4
6
8
10
I av , Avalanche Current (A)
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 12d. Typical Drain-to-Source Voltage
Vs. Avalanche Current
www.irf.com
IRFB9N30APbF
Peak Diode Recovery dv/dt Test Circuit
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D.U.T
ƒ
+
‚
-
-
„
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
Period
D=
+
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFETS
www.irf.com
7
IRFB9N30APbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
LEAD ASSIGNMENTS
1.15 (.045)
MIN
1
2
3
4- DRAIN
14.09 (.555)
13.47 (.530)
1.40 (.055)
1.15 (.045)
4- COLLECTOR
4.06 (.160)
3.55 (.140)
3X
3X
LEAD ASSIGNMENTS
IGBTs, CoPACK
1 - GATE
2 - DRAIN
1- GATE
1- GATE
3 - SOURCE 2- COLLECTOR
2- DRAIN
3- SOURCE
3- EMITTER
4 - DRAIN
HEXFET
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMP L E : T H IS IS AN IR F 1010
L OT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T H E AS S E MB L Y L INE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INT E R NAT IONAL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
P AR T NU MB E R
D AT E CODE
Y E AR 7 = 1997
WE E K 19
L IN E C
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 06/04
8
www.irf.com