IRF IRFP4232PBF_07

PD - 96965A
IRFP4232PbF
PDP MOSFET
Features
l Advanced process technology
l Key parameters optimized for PDP Sustain &
Energy Recovery applications
l Low EPULSE rating to reduce the power
dissipation in Sustain & ER applications
l Low QG for fast response
l High repetitive peak current capability for
reliable operation
l Short fall & rise times for fast switching
l175°C operating junction temperature for
improved ruggedness
l Repetitive avalanche capability for robustness
and reliability
Key Parameters
VDS min
250
V
VDS (Avalanche) typ.
300
RDS(ON) typ. @ 10V
30
V
m:
EPULSE typ.
310
µJ
IRP max @ TC= 100°C
117
A
TJ max
175
°C
D
G
TO-247AC
S
Description
This HEXFET® Power MOSFET is specifically designed for Sustain; Energy Recovery & Pass switch
applications in Plasma Display Panels. This MOSFET utilizes the latest processing techniques to achieve
low on-resistance per silicon area and low EPULSE rating. Additional features of this MOSFET are 175°C
operating junction temperature and high repetitive peak current capability. These features combine to
make this MOSFET a highly efficient, robust and reliable device for PDP driving applications.
Absolute Maximum Ratings
Parameter
Max.
Units
V
VGS
Gate-to-Source Voltage
±20
VGS (TRANSIENT)
Gate-to-Source Voltage
±30
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V
60
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
42
IDM
Pulsed Drain Current
240
IRP @ TC = 100°C
Repetitive Peak Current
PD @TC = 25°C
Power Dissipation
430
PD @TC = 100°C
Power Dissipation
210
Linear Derating Factor
2.9
W/°C
TJ
Operating Junction and
-40 to + 175
°C
TSTG
Storage Temperature Range
c
g
117
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
A
x
300
W
x
10lb in (1.1N m)
N
Thermal Resistance
Parameter
RθJC
Junction-to-Case
f
Typ.
Max.
Units
–––
0.35
°C/W
Notes  through … are on page 8
www.irf.com
1
09/14/07
IRFP4232PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
Min.
Conditions
Typ. Max. Units
VGS = 0V, ID = 250µA
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
250
–––
–––
180
VGS(th)
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
–––
3.0
30
–––
V
mV/°C Reference to 25°C, ID = 1mA
35.7
mΩ VGS = 10V, ID = 42A
VDS = VGS, ID = 250µA
5.0
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
–––
–––
-15
–––
–––
5.0
IGSS
Gate-to-Source Forward Leakage
–––
–––
–––
–––
150
100
Gate-to-Source Reverse Leakage
Forward Transconductance
–––
95
–––
–––
-100
–––
Total Gate Charge
Gate-to-Drain Charge
–––
–––
160
60
240
–––
Turn-On Delay Time
Rise Time
–––
–––
37
100
–––
–––
Turn-Off Delay Time
Fall Time
–––
–––
64
63
–––
–––
Shoot Through Blocking Time
100
–––
–––
–––
310
–––
–––
950
–––
Input Capacitance
–––
7290
–––
Output Capacitance
Reverse Transfer Capacitance
–––
–––
610
240
–––
–––
LD
Effective Output Capacitance
Internal Drain Inductance
–––
–––
420
5.0
–––
–––
LS
Internal Source Inductance
–––
13
–––
∆ΒVDSS/∆TJ
RDS(on)
gfs
Qg
Qgd
td(on)
tr
td(off)
tf
tst
EPULSE
Ciss
Coss
Crss
Coss eff.
Energy per Pulse
–––
–––
e
mV/°C
µA VDS = 200V, VGS = 0V
VDS = 200V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
nC
VDS = 25V, ID = 42A
VDD = 125V, ID = 42A, VGS = 10V
ns
ID = 42A
e
VDD = 125V, VGS = 10V
e
RG = 5.0Ω
ns
µJ
pF
See Fig. 22
VDD = 200V, VGS = 15V, RG= 4.7Ω
L = 220nH, C= 0.4µF, VGS = 15V
VDS = 200V, RG= 4.7Ω, TJ = 25°C
L = 220nH, C= 0.4µF, VGS = 15V
VDS = 200V, RG= 4.7Ω, TJ = 100°C
VGS = 0V
VDS = 25V
ƒ = 1.0MHz,
See Fig.5
VGS = 0V, VDS = 0V to 200V
Between lead,
nH
D
6mm (0.25in.)
from package
and center of die contact
G
S
Avalanche Characteristics
Parameter
EAS
EAR
VDS(Avalanche)
IAS
d
Repetitive Avalanche Energy c
Repetitive Avalanche Voltagec
Avalanche Currentd
Single Pulse Avalanche Energy
Typ.
Max.
Units
–––
220
mJ
–––
300
43
–––
mJ
–––
42
A
V
Diode Characteristics
Parameter
IS @ TC = 25°C Continuous Source Current
ISM
VSD
trr
Qrr
2
(Body Diode)
Pulsed Source Current
c
Min.
Typ. Max. Units
–––
–––
A
–––
–––
Conditions
MOSFET symbol
60
240
(Body Diode)
Diode Forward Voltage
–––
–––
1.0
V
Reverse Recovery Time
Reverse Recovery Charge
–––
–––
240
1230
360
1850
ns
nC
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 42A, VGS = 0V
TJ = 25°C, IF = 42A, VDD = 50V
e
di/dt = 100A/µs
e
www.irf.com
IRFP4232PbF
1000
1000
VGS
15V
10V
8.0V
7.0V
BOTTOM
7.0V
100
10
≤ 60µs PULSE WIDTH
Tj = 25°C
BOTTOM
100
7.0V
10
≤ 60µs PULSE WIDTH
Tj = 175°C
1
1
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
1000
4.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current(Α)
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
TJ = 175°C
TJ = 25°C
10
VDS = 30V
≤ 60µs PULSE WIDTH
1
4.0
5.0
6.0
7.0
ID = 42A
VGS = 10V
3.0
2.0
1.0
0.0
8.0
-60 -40 -20 0
VGS, Gate-to-Source Voltage (V)
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
1000
1200
L = 220nH
C = 0.4µF
100°C
25°C
L = 220nH
C = Variable
100°C
25°C
800
Energy per pulse (µJ)
1000
Energy per pulse (µJ)
VGS
15V
10V
8.0V
7.0V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
800
600
600
400
200
400
0
200
150
160
170
180
190
200
VDS, Drain-to -Source Voltage (V)
Fig 5. Typical EPULSE vs. Drain-to-Source Voltage
www.irf.com
160
170
180
190
200
210
220
230
ID, Peak Drain Current (A)
Fig 6. Typical EPULSE vs. Peak Drain Current
3
IRFP4232PbF
1600
1000.0
L = 220nH
ISD, Reverse Drain Current (A)
Energy per pulse (µJ)
1400
C= 0.4µF
C= 0.3µF
C= 0.2µF
1200
1000
800
600
400
200
100.0
TJ = 175°C
10.0
1.0
TJ = 25°C
VGS = 0V
0
25
50
75
100
125
0.1
150
0.2
Temperature (°C)
20
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
Coss = Cds + Cgd
8000
Ciss
6000
4000
2000
Crss
1
1.2
ID= 42A
VDS = 200V
VDS= 125V
VDS= 50V
16
12
8
4
0
10
100
0
1000
40
80
120
160
200
240
280
QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
Fig 9. Typical Capacitance vs.Drain-to-Source Voltage
Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage
1000
60
OPERATION IN THIS AREA
LIMITED BY R DS(on)
ID, Drain-to-Source Current (A)
54
48
ID , Drain Current (A)
1.0
Coss
0
42
36
30
24
18
12
100
1µsec
10µsec
10
100µsec
1
Tc = 25°C
Tj = 175°C
Single Pulse
6
0
0.1
25
50
75
100
125
150
175
TC , CaseTemperature (°C)
Fig 11. Maximum Drain Current vs. Case Temperature
4
0.8
Fig 8. Typical Source-Drain Diode Forward Voltage
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
10000
0.6
VSD , Source-to-Drain Voltage (V)
Fig 7. Typical EPULSE vs.Temperature
12000
0.4
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 12. Maximum Safe Operating Area
www.irf.com
600
EAS, Single Pulse Avalanche Energy (mJ)
( Ω)
RDS (on), Drain-to -Source On Resistance m
IRFP4232PbF
ID = 42A
500
400
TJ = 25°C
300
TJ = 125°C
200
100
1000
I D
12A
18A
BOTTOM 42A
TOP
800
600
400
200
0
0
4.0
6.0
8.0
10.0
25
VGS, Gate-to-Source Voltage (V)
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
Fig 13. On-Resistance Vs. Gate Voltage
Fig 14. Maximum Avalanche Energy Vs. Temperature
5.5
200
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
Square Pulse
5.0
Repetitive Peak Current (A)
VGS(th) Gate threshold Voltage (V)
50
4.5
ID = 250µA
4.0
3.5
3.0
2.5
160
120
80
40
2.0
1.5
0
-75 -50 -25
0
25
50
75
100 125 150 175
25
50
TJ , Temperature ( °C )
75
100
125
150
175
Case Temperature (°C)
Fig 16. Typical Repetitive peak Current vs.
Case temperature
Fig 15. Threshold Voltage vs. Temperature
1
Thermal Response ( ZthJC )
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.001
0.02
0.01
τJ
R1
R1
τJ
τ1
R2
R2
R3
R3
τC
τ
τ1
τ2
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
τ4
τ4
τi (sec)
Ri (°C/W)
R4
R4
0.0091
0.000003
0.0487
0.000071
0.1264
0.001743
0.1660
0.024564
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFP4232PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
VDD
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
15V
D.U.T
RG
VGS
20V
DRIVER
L
VDS
tp
+
V
- DD
IAS
tp
A
0.01Ω
I AS
Fig 19a. Unclamped Inductive Test Circuit
Fig 19b. Unclamped Inductive Waveforms
Id
Vds
Vgs
L
DUT
0
VCC
Vgs(th)
1K
Qgs1 Qgs2
Fig 20a. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 20b. Gate Charge Waveform
www.irf.com
IRFP4232PbF
Fig 21b. tst Test Waveforms
Fig 21a. tst and EPULSE Test Circuit
Fig 21c. EPULSE Test Waveforms
V DS
VGS
RG
RD
VDS
90%
D.U.T.
+
-V DD
V GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 22a. Switching Time Test Circuit
www.irf.com
10%
VGS
td(on)
tr
t d(off)
tf
Fig 22b. Switching Time Waveforms
7
IRFP4232PbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
,5)3(
+
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.25mH,
RG = 25Ω, IAS = 42A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
… Half sine wave with duty cycle = 0.25, ton=1µsec.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/2007
8
www.irf.com