ispLSI 8840V ® 3.3V In-System Programmable SuperBIG™ High Density PLD Features Functional Block Diagram • SuperBIG HIGH DENSITY IN-SYSTEM PROGRAMMABLE LOGIC — 3.3V Power Supply — 45,000 PLD Gates/840 Macrocells — 192-312 I/O Pins Supporting 3.3V/2.5V I/O — 1152 Registers — High-Speed Global and Big Fast Megablock (BFM) Interconnect — Wide 20-Macrocell Generic Logic Block (GLB) for High Performance — Wide Input Gating (44 Inputs per GLB) for Fast Counters, State Machines, Address Decoders, Etc. — PCB-Efficient Ball Grid Array (BGA) Package Options 2 12 I/O 12 I/O 12 I/O 12 I/O 12 I/O 12 I/O 12 I/O Big Fast Megablock 0 12 I/O 12 I/O Big Fast Megablock 1 12 I/O 12 I/O Big Fast Megablock 2 12 I/O Global Routing Plane 12 I/O Big Fast Megablock 3 12 I/O 12 I/O Big Fast Megablock 4 12 I/O 12 I/O Big Fast Megablock 5 12 I/O 12 I/O Big Fast Megablock 6 12 I/O ® • HIGH-PERFORMANCE E CMOS TECHNOLOGY — fmax = 125 MHz Maximum Operating Frequency — tpd = 8.5 ns Propagation Delay — Electrically Erasable and Reprogrammable — Non-Volatile — Programmable Speed/Power Logic Path Optimization • IN-SYSTEM PROGRAMMABLE — Increased Manufacturing Yields, Reduced Time-toMarket and Improved Product Quality — Reprogram Soldered Devices for Faster Debugging Boundary Scan • 100% IEEE 1149.1 BOUNDARY SCAN TESTABLE AND 3.3V IN-SYSTEM PROGRAMMABLE • ARCHITECTURE FEATURES — Enhanced Pin-Locking Architecture, Symmetrical Generic Logic Blocks Connected by Hierarchical Big Fast Megablock and Global Routing Planes — Product Term Sharing Array Supports up to 28 Product Terms per Macrocell Output — Macrocells Support Concurrent Combinatorial and Registered Functions — Embedded Tristate Bus Can Be Used as an Internal Tristate Bus or as an Extension of an External Tristate Bus — Macrocell and I/O Registers Feature Multiple Control Options, Including Set, Reset and Clock Enable — I/O Pins Support Programmable Bus Hold, Pull-Up, Open-Drain and Slew Rate Options — Separate VCCIO Power Supply to Support 3.3V or 2.5V Input/Output Logic Levels — I/O Cell Register Programmable as Input Register for Fast Setup Time or Output Register for Fast Clock to Output Time 12 I/O 12 I/O 12 I/O 12 I/O 12 I/O 12 I/O 8840v block ispLSI 8000V Family Description The ispLSI 8000V Family of Register-Intensive, 3.3V SuperBIG In-System Programmable Logic Devices is based on Big Fast Megablocks of 120 registered macrocells and a Global Routing Plane (GRP) structure interconnecting the Big Fast Megablocks. Each Big Fast Megablock contains 120 registered macrocells arranged in six groups of 20, a group of 20 being referred to as a Generic Logic Block, or GLB. Within the Big Fast Megablock, a Big Fast Megablock Routing Pool (BRP) interconnects the six GLBs to each other and to 24 Big Fast Megablock I/O cells with optional I/O registers. The Global Routing Plane which interconnects the Big Fast Megablocks has additional global I/Os with optional I/O registers. The 192-I/O version contains 72 Big Fast Megablock I/Os and 120 global I/Os, while the 312-I/O version contains 168 Big Fast Megablock I/Os and 144 global I/Os. Copyright © 2002 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com 8840v_04 1 January 2002 Specifications ispLSI 8840V Functional Block Diagram Figure 1. ispLSI 8840V Functional Block Diagram (Perspective) Big Fast Megablock Routing Pool (BRP) Big Fast Megablock Routing Pool (BRP) Big Fast Megablock Routing Pool (BRP) Big Fast Megablock Routing Pool (BRP) Global Routing Plane (GRP) with Tristate Bus Lines 2 Specifications ispLSI 8840V ispLSI 8000V Family Description (Continued) GLBs within the Big Fast Megablock and dedicated tracks for the signals from the Big Fast Megablock I/O cells. The Global Routing Plane contains general purpose tracks that interconnect the Big Fast Megablocks and also carry the signals from the I/Os connected to the Global Routing Plane. Outputs from the GLBs in a Big Fast Megablock can drive both the Big Fast Megablock Routing Pool within the Big Fast Megablock and the Global Routing Plane between the Big Fast Megablocks. Switching resources are provided to allow signals in the Global Routing Plane to drive any or all the Big Fast Megablocks in the device. This mechanism allows fast, efficient connections, both within the Big Fast Megablocks and between them. Control signals for the I/O cell registers are generated using an extra product term within each GLB, or using dedicated input pins. Each GLB has two extra product terms beyond the 80 available for the macrocell logic. The first additional product term is used as an optional shared product term clock for all the macrocells within the GLB. The second additional product term is then routed to an I/O Control Bus using a separate routing structure from the Big Fast Megablock Routing Pool and Global Routing Plane. Use of a separate control bus routing structure allows the I/O registers to have many control signals with no impact on the interconnection of the GLBs and Big Fast Megablocks. The I/O Control Bus is split into four quadrants, each servicing the I/O cell control requirements for one edge of the device. Signals in the control bus can be independently selected by any or all I/O cells to act as clock, clock enable, output enable, reset or preset. Each GLB contains 20 macrocells and a fully populated, programmable AND-array with 82 logic product terms. The GLB has 44 inputs from the Big Fast Megablock Routing Pool which are available in both true and complement form for every product term. Up to 20 of these inputs can be switched to provide local feedback into the GLB for logic functions that require it. The 80 general-purpose product terms can be grouped into 20 sets of four and sent into a Product Term Sharing Array (PTSA) which allows sharing up to a maximum of 28 product terms for a single function. Alternatively, the PTSA can be bypassed for functions of four product terms or less. The 20 registered macrocells in the GLB are driven by the 20 outputs from the PTSA or the PTSA bypass. Each macrocell contains a programmable XOR gate, a programmable register/latch/toggle flip-flop and the necessary clocks and control logic to allow combinatorial or registered operation. Each macrocell has two outputs, one output can be fed back inside the GLB to the ANDarray, while the other output drives both the Big Fast Megablock Routing Pool and the Global Routing Plane. This dual output capability from the macrocell allows efficient use of the hardware resources. One output can be a registered function for example, while the other output can be an unrelated combinatorial function. Each Big Fast Megablock has 24 I/O cells. The Global Routing Pool has 144 I/O cells. Each I/O cell can be configured as a combinatorial input, combinatorial output, registered input, registered output or bidirectional I/O. I/O cell registers can be clocked from one of several global, local or product term clocks which are selected from the I/O control bus. A global and product term clock enable is also provided, eliminating the need for the user to gate the clock to the I/O cell registers. Reset and preset for the I/O cell register is provided from both global and product term signals. The polarity of all of these control signals is selectable on an individual I/O cell basis. The I/O cell register can be programmed to operate as a Dtype register or a D-type latch. Macrocell registers can be clocked from one of several global, local or product term clocks available on the device. A global, local and product term clock enable is also provided, eliminating the need to gate the clock to the macrocell registers. Reset and preset for the macrocell register is provided from both global and product term signals. The polarity of all of these control signals is selectable on an individual macrocell basis. The macrocell register can be programmed to operate as a D-type register, a D-type flow-through latch or a T-type flip flop. The input thresholds are fixed at levels which comply with both 3.3V and 2.5V interfaces. The output driver can source 4mA and sink 8mA (3.3V output supply). The output drivers have a separate VCCIO power supply which is independent of the main VCC supply for the device. This feature allows the output drivers to run from either 3.3V or 2.5V while the device logic is always powered from 3.3V. The output drivers also provide individually programmable edge rates and open drain capability. A programmable pullup resistor is provided to tie off unused inputs and a programmable bus-hold latch The 20 outputs from the GLB can drive both the Big Fast Megablock Routing Pool within the Big Fast Megablock and the Global Routing Plane between the Big Fast Megablocks. The Big Fast Megablock Routing Pool contains general purpose tracks which interconnect the six 3 Specifications ispLSI 8840V the internal tristate driver control signals on each data byte (with parity). The embedded tristate bus can also be configured as an extension of an external tristate bus using the bidirectional capability of the I/O cells connected to the Global Routing Plane. The Global Routing Plane I/Os 0-8 and 15-23 from each group (I/OGx as defined in the I/O Pin Location Table) can connect to the internal tristate bus as well as the unidirectional/nontristate global routing channels. I/Os 9-14 connect only to the global routing channel. ispLSI 8000V Family Description (Continued) is available to hold tristate outputs in their last valid state until the bus is driven again by another device. The ispLSI 8000V Family features 3.3V, non-volatile insystem programmability for both the logic and the interconnect structures, providing the means to develop truly reconfigurable systems. Programming is achieved through the industry standard IEEE 1149.1-compliant Boundary Scan interface using the JTAG protocol. Boundary Scan test is also supported through the same interface. The embedded tristate bus has internal bus hold and arbitration features in order to make the function more “user friendly.” The bus hold feature keeps the internal bus at the previously driven logic state when the bus is not driven to eliminate bus float. The bus arbitration is performed on a “first come, first served” priority. In other words, once a logic block drives the bus, other logic blocks cannot drive the bus until the first releases the bus. This arbitration feature prevents internal bus contention when there is an overlap between two bus enable signals. Typically, it takes about 3ns to resolve one bus signal coming off the bus to another bus signal driving the bus. The arbitration feature, combined with the predictability of the CPLD, makes the embedded tristate bus the most practical for real world bus implementation. An enhanced, multiple cell security scheme is provided that prevents reading of the JEDEC programming file when secured. After the device has been secured using this mechanism, the only way to clear the security is to execute a bulk-erase instruction. ispLSI 8840V Description The ispLSI 8840V device has seven Big Fast Megablocks for a total of 7 x 120 = 840 macrocells. Each Big Fast Megablock has a total of 24 I/O cells and the Global Routing Plane has a total of 144 I/O cells. This gives (7 x 24) + 144 = 312 I/Os for the full I/O version, while the partial I/O version contains 72 Big Fast Megablock I/Os + 120 global I/Os = 192 I/Os. The total registers in the device is the sum of macrocells plus I/O cells, 840 + 312 = 1152 registers. Embedded Tristate Bus There is a 108-line embedded internal tristate bus as part of the Global Routing Plane (GRP), enabling multiple GLBs to drive the same tracks. This bus can be partitioned into various bus widths such as twelve 9-line buses, six 18-line buses or three 36-line buses. The GLBs can dynamically share a subset of the Global Routing Plane tracks. This feature eliminates the need to convert tristate buses to wide multiplexers on the programmable device. Up to 18 macrocells per GLB can participate in driving the embedded tristate bus. The remaining two macrocells per GLB are used to generate 4 Specifications ispLSI 8840V Figure 2. ispLSI 8000V GLB Overview I/O Big Fast Megablock Input Tracks AND Array Input Routing General Purpose Big Fast Megablock Input Tracks 20 Feedback Inputs 0 43 Product Term Sharing Array Macrocell 0 PT 0 PT 1 PT 2 PT 3 From PTSA PTSA Bypass Single PT PT Clock PT Preset PT Reset Shared PT Clock Bus Input To Interconnect 0 From Tristate Bus Track Macrocell 1 PT 4 PT 5 PT 6 PT 7 From PTSA PTSA Bypass Single PT PT Clock PT Preset PT Reset Shared PT Clock Bus Input To Interconnect 1 From Tristate Bus Track Macrocell 2 PT 8 PT 9 PT 10 PT 11 From PTSA PTSA Bypass Single PT PT Clock PT Preset PT Reset Shared PT Clock Bus Input Fully Populated AND Array To Interconnect 2 From Tristate Bus Track Macrocell 3 PT 12 PT 13 PT 14 PT 15 From PTSA PTSA Bypass Single PT PT Clock PT Preset PT Reset Shared PT Clock Bus Input To interconnect 3 From Tristate Bus Track Macrocell 19 PT 76 PT 77 PT 78 PT 79 From PTSA PTSA Bypass Single PT PT Clock PT Preset PT Reset Shared PT Clock Bus Input PT 80 To Interconnect 19 From Tristate Bus Track To Output Control MUX PT 81 Function Selector (E2 Cell Controlled) Note: Macrocells 9 and 10 do not support Tristate Bus Feedback. 5 Specifications ispLSI 8840V Figure 3. ispLSI 8000V Macrocell Overview Bus Input From Tristate Bus Track* Single PT Feedback to AND Array PTSA D Q To Big Fast Megablock or Global Interconnect PTSA Bypass PT Clock Clk En Global Clock Enable To Specific Global Tristate Bus* Global Clock 0 Global Clock 1 Global Clock 2 R/L R P PT Reset From Macrocell 9 or 10 GRST PT Preset Reset pin GRST To All Macrocells and I/O Cells Preset/Reset Input has Global Polarity Control From PT80 : Function Selector (E2 Cell Controlled) *Not available for Macrocells 9 and 10. 6 Specifications ispLSI 8840V Figure 4. ispLSI 8000V I/O Cell TOE VCCIO VCCIO VCCIO GLOBAL OE0 GLOBAL OE1 GLOBAL OE2 GLOBAL OE3 From Output Control Bus Multiplexed Output From Big Fast Megablock or Global Track D Q GLOBAL I/O CLOCK ENABLE From Output Control Bus GLOBAL CLOCK 0 GLOBAL CLOCK 2 QUADRANT I/O CLOCK Big Fast Megablock I/O Pad or Global I/O Pad Slew Open Rate Drain CLKEN To Specific Big Fast Megablock or Global Tracks R/L To Specific Global Tristate Bus From Output Control Bus P R From Output Control Bus Global I/O Cell Only GRST From Output Control Bus : Function Selector (E2 Cell Controlled) 7 Specifications ispLSI 8840V The Global OE signals and Test OE signal are driven from the dedicated external control input pins. Output Control Organization In addition to the data input and output to the I/O cells, each I/O cell can have up to six different I/O cell control signals. In addition to the internal OE control, the five control signals for each I/O cell consist of pin OE control, clock enable, clock input, asynchronous preset and asynchronous reset. All of the I/O control signals can be driven either from the dedicated external input pins or from the internal control bus. The 16-bit wide output control buses are organized in four different quadrants as shown in Figure 5. Since each GLB is capable of generating the output control signals, each of the output control bus signals can be driven from a unique GLB. The 42 GLBs can generate a total of 42 unique I/O control signals. Referring to Figure 2, the GLB generates its output control signal from control product term (PT81). The output enable of each I/O cell can be driven by 21 different sources – 16 from the output control bus, four from the Global OE pins and one from the Test OE pin. Figure 5 also illustrates how the quadrant clocks are routed to the appropriate quadrant I/O cells. Figure 5. Output Control Bus and Quadrant Organization GLB Generated Output Control (see Figure 2) From PT81 Quadrant 3, 16-Bit Wide Output Control Bus (I/O G0-G5 <0-11>, QIOCLK3) Quadrant 1, 16-Bit Wide Output Control Bus (I/O G0-G5 <12-23>, QIOCLK1) Quadrant 0, 16-Bit Wide Output Control Bus (I/O B0-B6 <0-11>, QIOCLK0) Quadrant 2, 16-Bit Wide Output Control Bus (I/O B0-B6 <12-23>, QIOCLK2) OE Bus.eps 8 Specifications ispLSI 8840V Figure 6. Boundary Scan Register Circuit for I/O Pins HIGHZ EXTEST PROG_MODE SCANIN (from previous cell) BSCAN Registers D TOE BSCAN Latches Q D Normal Function OE Q 0 1 EXTEST PROG_MODE Normal Function Shift DR D Q D Q Clock DR D 0 1 Q SCANOUT (to next cell) Update DR Reset* *Internal power-up reset signal. Not connected to external reset pin. Figure 7. Boundary Scan Register Circuit for Input-Only Pins Input Pin SCANIN (from previous cell D Shift DR Clock DR 9 Q SCANOUT (to next cell) I/O Pin Specifications ispLSI 8840V Figure 8. Boundary Scan Waveforms and Timing Specifications TMS TDI Tbtsu Tbtch Tbth Tbtcl Tbtcp TCK Tbtvo Tbtco TDO Valid Data Tbtcpsu Data to be captured Valid Data Tbtcph Data Captured Tbtuov Tbtuco Data to be driven out Valid Data SYMBOL tbtcp tbtch tbtcl tbtsu tbth trf tbtco tbtoz tbtvo tbtcpsu tbtcph tbtuco tbtuoz tbtuov Tbtoz PARAMETER Tbtuoz Valid Data MIN MAX UNITS TCK Clock Pulse Width 100 — ns TCK Pulse Width High 50 — ns TCK Pulse Width Low 50 — ns TDI, TMS Setup Time to TCK 25 — ns TDI, TMS Hold Time from TCK 25 — ns TCK, TDI, TMS Rise and Fall Time 50 — mV/ns TAP Controller, TCK to TDO Valid — 25 ns TAP Controller, TCK to TDO High-Impedance — 25 ns TAP Controller, TCK to TDO High-Impedance to Valid Output — 25 ns BSCAN Test Capture Register Setup Time 25 — ns BSCAN Test Capture Register Hold Time 25 — ns BSCAN Test Update Register Clock to Valid Output — 65 ns BSCAN Test Update Register Clock to High-Impedance — 65 ns BSCAN Test Update Register High-Impedance to Valid Output — 65 ns Table 2-0010/8840V 10 Specifications ispLSI 8840V Absolute Maximum Ratings 1,2 Supply Voltage Vcc .................................. -0.5 to +5.4V Input Voltage Applied ............................... -0.5 to +5.6V Tri-Stated Output Voltage Applied ........... -0.5 to +5.6V Storage Temperature ................................ -65 to 150°C Case Temp. with Power Applied .............. -55 to 125°C Max. Junction Temp. (TJ) with Power Applied ... 150°C 1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications). 2. Compliance with the Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM is a requirement. DC Recommended Operating Condition SYMBOL VCC VCCIO PARAMETER Supply Voltage Commercial TA = 0°C to 70°C I/O Supply Voltage MIN. MAX. UNITS 3.0 3.6 V 2.3 3.6 V Table 2-0005/8840V Capacitance (TA=25°C,f=1.0 MHz) TYPICAL UNITS 10 pf VCC = 3.3V, VI/O = 2.0V Clock Capacitance 10 pf VCC = 3.3V, VCK = 2.0V Global Input Capacitance 10 pf VCC = 3.3V, VG = 2.0V SYMBOL C1 C2 C3 PARAMETER I/O Capacitance TEST CONDITIONS Table 2-0006/8840V Erase/Reprogram Specification PARAMETER Erase/Reprogram Cycles MINIMUM MAXIMUM UNITS 10000 – Cycles Table 2-0008/8840V 11 Specifications ispLSI 8840V Switching Test Conditions Input Pulse Levels Figure 9. Test Load GND to VCCIOmin VCCIO ≤ 1.5 ns 10% to 90% Input Rise and Fall Time Input Timing Reference Levels 1.5V Ouput Timing Reference Levels R1 1.5V Output Load See Figure 9 Device Output Table 2-0003/8840V 3-state levels are measured 0.5V from steady-state active level. Test Point R2 Output Load Conditions (See Figure 9) 3.3V TEST CONDITION A B C D R1 2.5V R2 R1 R2 CL *CL includes Test Fixture and Probe Capacitance. 316Ω 348Ω 511Ω 475Ω 35pF Active High ∞ 348Ω ∞ Active Low 316Ω ∞ 511Ω ∞ 35pF Active High to Z at VOH -0.5V ∞ 348Ω ∞ 475Ω 5pF Active Low to Z at VOL +0.5V 316Ω ∞ 511Ω ∞ 5pF ∞ ∞ ∞ ∞ 35pF Slow Slew C L* 0213A/8840V 475Ω 35pF Table 2-0004A/8840V DC Electrical Characteristics for 3.3V Range Over Recommended Operating Conditions SYMBOL VCCIO VIL VIH VOL VOH PARAMETER I/O Supply Voltage CONDITION TA = 0°C to + 70°C Input Low Voltage Input High Voltage Output Low Voltage IOL = 8 mA Output High Voltage IOH = -4 mA MIN. MAX. UNITS 3.0 3.6 V -0.3 0.8 V 2.0 5.25 V – 0.4 V – V 2.4 Table 2-0007/8840V DC Electrical Characteristics for 2.5V Range Over Recommended Operating Conditions SYMBOL PARAMETER VCCIO VIL VIH I/O Supply Voltage VOL Output Low Voltage VOH CONDITION MIN. MAX. UNITS 2.3 2.7 V Input Low Voltage -0.3 0.7 V Input High Voltage 1.7 5.25 V – 0.2 V TA = 0°C to + 70°C VCCIO=min, VIN=VIH or VIL, IOL= 100µA VCCIO=min, VIN=VIH or VIL, IOL= 2mA Output High Voltage – 0.7 V VCCIO=min, VIN=VIH or VIL, IOH= -100µA 2.1 – V VCCIO=min, VIN=VIH or VIL, IOH= -2mA 1.7 – V Table 2-0007B/8840V 12 Specifications ispLSI 8840V DC Electrical Characteristics Over Recommended Operating Conditions SYMBOL IIL IIH 4 IPU IBHL IBHH IBHLO IBHLH IBHT ICC1,3,5 1. 2. 3. 4. 5. CONDITION PARAMETER 2 MIN. TYP. MAX. UNITS Input or I/O Low Leakage Current 0V ≤ VIN ≤ VIL (Max.) – – -10 µA Input or I/O High Leakage Current (VCCIO-0.2)V ≤ VIN ≤ VCCIO – – 10 µA VCCIO ≤ VIN ≤ 5.25V – – 50 µA I/O Active Pullup Current 0V ≤ VIN ≤ VIL – – -250 µA Bus Hold Low Sustaining Current VIN = VIL(max) 40 – – µA Bus Hold High Sustaining Current -40 – – µA Bus Hold Low Overdrive Current VIN = VIH(min) 0V ≤ VIN ≤ VCCIO – – 550 µA Bus Hold High Overdrive Current 0V ≤ VIN ≤ VCCIO – – -550 µA VIL – VIH V – 460 – – 220 – Bus Hold Trip Points Operating Power Supply Current VIL = 0.5V, VIH = 3.0V High Speed Mode fTOGGLE = 1 MHz Low Power Mode Measured at a frequency of 1MHz using 42 20-bit counters. Typical values are at VCC = 3.3V and TA = 25°C. Maximum ICC varies widely with specific device configuration and operating frequency. Pullup is capable of pulling minimum voltage of VOH under no-load conditions. Unused inputs held at GND. 13 mA Table 2-0007C/8840V Specifications ispLSI 8840V External Switching Characteristics1 Over Recommended Operating Conditions 2 PARA- TEST 4 # METER COND. tpd1 tpd2 fmax tsuq thq tcoq tsug thg tcog tsu1 th1 tco1 tsuceq thceq tsuceg thceg tgoe trglb trio trw twh twl 1. 2. 3. 4. -125 DESCRIPTION -90 -60 MIN. MAX. MIN. MAX. MIN. MAX. UNITS A 1 Prop Delay, BFM Input to Same BFM Output, 4 PT Bypass — 8.5 — 10.0 — 15.0 ns A 2 Prop Delay, Global Input to Global Output — 13.5 — 16.0 — 24.0 ns — 3 3 Clk Frequency, Local Feedback, Same GLB 125.0 — 90.0 — 60.0 — MHz — 4 I/O Cell Reg, Data Setup Time, Quadrant I/O Clock 5.0 8.0 — 12.0 — ns — 5 I/O Cell Reg, Data Hold Time, Quadrant I/O Clock 0.0 — 0.0 — 0.0 — ns A 6 I/O Cell Reg, Quadrant Clock to Output Delay — 4.0 — 6.0 — 9.0 ns — 7 I/O Cell Reg, Data Setup Time, Global Clock 3.5 — 6.0 — 9.0 — ns — 8 I/O Cell Reg, Data Hold Time, Global Clock 0.0 — 0.0 — 0.0 — ns A 9 I/O Cell Reg, Global Clock to Output Delay — 6.0 — 7.5 — 11.0 ns — 10 GLB Reg Setup, BFM Input to Same BFM GLB, 4 PT Bypass 4.5 — 7.0 — 10.0 — ns — 11 GLB Reg Hold Time, BFM Input to Same BFM GLB 0.0 — 0.0 — 0.0 — ns A 12 GLB Reg, Global Clock to Same BFM Output Delay — 8.0 — 10.0 — 15.0 ns — 13 I/O Cell Reg, CLKEN Setup Time, Quadrant I/O Clock 5.5 — 6.5 — 9.5 — ns — 14 I/O Cell Reg, CLKEN Hold Time, Quadrant I/O Clock 0.0 — 0.0 — 0.0 — ns — 15 GLB Reg, CLKEN Setup Time, Global Clock 3.5 — 4.5 — 6.5 — ns — 16 GLB Reg, CLKEN Hold Time, Global Clock 0.0 — 0.0 — 0.0 — ns B/C 17 Global Output Enable/Disable Delay — 7.0 — 10.0 — 15.0 ns — 18 Global Reset/Preset Time, GLB Reg — 14.0 — 15.0 — 22.0 ns — 19 Global Reset/Preset Time, I/O Cell Reg — 8.5 — 10.0 — 15.0 ns — 20 Global Reset/Preset Pulse Duration 5.0 — 6.5 — 9.5 — ns — 21 Global or Quadrant Clock Pulse, High Duration 4.0 — 6.0 — 9.0 — ns — 22 Global or Quadrant Clock Pulse, Low Duration 4.0 — 6.0 — 9.0 — ns Unless noted otherwise, all parameters use PTSA and CLK0. Refer to Timing Model in this data sheet for further details. Standard 20-bit counter with local feedback. Refer to Switching Test Conditions section. 14 Table 2-0030/8840V Specifications ispLSI 8840V Internal Timing Parameters Over Recommended Operating Conditions PARAMETER -125 2 # DESCRIPTION -90 -60 MIN MAX MIN MAX MIN MAX UNITS 23 Input Pad and Input Buffer, Combinatorial Input – 0.3 – 0.4 24 Input Pad and Input Buffer, Registered Input – 6.4 – 7.6 – 0.6 ns – 11.2 ns 25 Output Register/Latch Bypass to Output Buffer – 0.0 – 26 Input Register/Latch Bypass to BFM Routing or GRP – 0.4 – 0.0 – 0.0 ns 0.5 – 0.8 ns 27 I/O Cell Latch, Transparent Mode – 2.0 28 I/O Cell Register/Latch, Clk/Gate to Output – 0.5 – 2.4 – 3.6 ns – 1.2 – 1.6 ns I/O Cell Delay tidcom tidreg tobp tibp tiolat tioco tiosu tioh tiorst tiosuce tiohce todreg todcom todz tslf tsls 29 I/O Cell Register/Latch, Setup Time 0.5 – 2.4 – 3.9 – ns 30 I/O Cell Register/Latch, Hold Time 2.5 – 3.2 – 4.7 – ns – 1.5 – 1.7 – 2.5 ns 32 I/O Cell Register/Latch, Setup Time for Clk Enable 31 I/O Cell Register/Latch, Reset or Set Time 0.9 – 1.0 – 1.2 – ns 33 I/O cell Register/Latch, Hold Time for Clk Enable 4.6 – 4.6 – 6.9 – ns – 1.6 – 1.9 – 2.9 ns 34 I/O Cell Output Buffer Delay, Registered Output 35 I/O Cell Output Buffer Delay, Combinatorial Output – 1.6 – 1.9 – 2.9 ns 36 Output Driver Disable Time – 1.4 – 1.7 – 2.6 ns 37 Slew Rate Adder, Fast Slew Rate – 0.0 – 0.0 – 0.0 ns 38 Slew Rate Adder, Slow Slew Rate – 6.2 – 7.3 – 10.9 ns – 2.6 – 2.9 – 4.2 ns GLB / Macrocell Delay tandhs tandlp t1pt t4ptcom t4ptreg tptsa tmbp tmlat tmco tmsu tmh tmrst tmsuce tmhce tfloc tpck tpcken tsck tscken tprst trdir 39 AND Array, High Speed Mode 40 AND Array, Low Power Mode – 6.5 – 7.7 – 11.5 ns 41 Single Product Term Bypass – 1.9 – 2.2 – 3.4 ns 42 Four Product Term Bypass, Combinatorial Macrocell – 0.5 – 0.6 – 0.9 ns 43 Four Product Term Bypass, Registered Macrocell – 1.4 – 1.7 – 2.2 ns 44 Product Term Sharing Array – 2.4 – 2.7 – 4.1 ns 45 Macrocell Register/Latch Bypass – 0.0 – 0.0 – 0.0 ns 46 Macrocell Latch, Transparent Mode – 4.6 – 5.5 – 8.2 ns 47 Macrocell Register/Latch, Clk/Gate to Output – 0.2 – 0.8 – 0.9 ns 48 Macrocell Register/Latch, Setup Time 2.7 – 4.5 – 6.9 – ns 49 Macrocell Register/Latch, Hold Time 1.0 – 1.2 – 1.1 – ns 50 Macrocell Register/Latch, Reset or Set Time – 2.0 – 1.5 – 1.6 ns 51 Macrocell Register/Latch, Setup Time for Clk Enable 1.0 – 1.3 – 1.7 – ns 52 Macrocell Register/Latch, Hold Time for Clk Enable 2.3 – 2.6 – 3.9 – ns – 0.1 – 0.1 – 0.6 ns 1.3 1.3 1.6 1.6 2.5 2.5 ns – 1.7 – 2.0 – 3.1 ns 57 Shared Product Term, Clk 1.7 1.9 2.0 2.3 3.1 3.5 ns 58 Shared Product Term, Clk Enable 1.7 1.9 2.0 2.3 3.1 3.5 ns 54 Local Feedback to AND Array 55 Single Product Term, Clk 56 Single Product Term, Clk Enable 59 Single Product Term, Reset or Set Delay – 1.5 – 1.7 – 2.6 ns 60 Macrocell Register, Direct Input from GRP – 7.2 – 8.4 – 12.7 ns 15 Specifications ispLSI 8840V Internal Timing Parameters Over Recommended Operating Conditions PARAMETER -125 #2 DESCRIPTION -90 -60 MIN MAX MIN MAX MIN MAX UNITS 0.4 1.0 0.6 1.3 0.8 1.9 ns 62 GRP Delay, Signal from I/O Cell – 1.6 – 1.9 – 2.8 ns 63 Internal Tristate Bus Enable/Disable, I/O Cell Buffer – 4.1 – 4.9 – 7.3 ns BFM / Global Routing Pool Delay tbfmi tgrpi tgrpiz tbfmm tgrpm tgrpmz tbfmg tgrpb tbcom tbreg tgcom tgreg 61 BFM Routing Delay, Signal from I/O Cell 64 BFM Routing Delay, Signal from Macrocell – 0.6 – 0.7 – 1.1 ns 65 GRP Delay, Signal from Macrocell – 2.0 – 3.0 – 4.5 ns 66 Internal Tristate Bus Enable/Disable, Macrocell Buffer – 3.0 – 4.3 – 6.5 ns 67 BFM Routing Delay, Signal from GRP – 2.5 – 3.3 – 4.9 ns 68 GRP Delay, Signal from BFM Routing – 1.3 – 1.5 – 2.3 ns 69 BFM Routing to I/O Cell, Combinatorial Path – 1.5 – 1.7 – 2.6 ns 70 BFM Routing to I/O Cell, Registered Path – 2.3 – 2.6 – 4.0 ns 71 GRP to I/O Cell, Combinatorial Path – 0.8 – 0.8 – 1.2 ns 72 GRP to I/O Cell, Registered Path – 1.6 – 1.7 – 2.6 ns I/O Control Bus Delay tpiock tpiocken tpoe tpiorst tpioz 73 Product Term as I/O Cell Register Clock – 4.1 – 4.7 – 7.2 ns 74 Product Term as I/O Cell Register Clock Enable – 4.6 – 5.3 – 8.1 ns 75 Product Term as Output Buffer Enable/Disable – 5.6 – 6.5 – 9.9 ns 76 Product Term as I/O Cell Register Reset or Set Delay – 4.3 – 5.0 – 7.6 ns 77 Internal Tristate Bus Control Signal for I/O Cell Buffer – 3.3 – 3.8 – 5.8 ns Global Control Delay tgck tgcken tgiock tgiocken tqck tgoe ttoe tgmrst tgiorst 78 Global Macrocell Register Clk 3.9 4.1 4.3 4.9 6.6 7.5 ns 79 Global Macrocell Register Clk Enable 6.4 6.4 7.5 7.5 11.4 11.4 ns 80 Global I/O Register Clk 3.4 3.9 4.0 4.4 6.1 6.5 ns 81 Global I/O Register Clk Enable 6.5 6.5 7.5 7.5 11.4 11.4 ns 82 Quadrant I/O Register Clk 1.9 1.9 2.0 2.9 3.1 4.5 ns – 5.6 – 8.3 – 12.4 ns 83 Global Output Enable 84 Test Output Enable – 8.5 – 10.1 – 15.2 ns 85 Global GLB Register Reset – 7.6 – 7.8 – 11.8 ns 86 Global I/O Cell Register Reset – 5.4 – 6.4 – 9.6 ns 1. Internal Timing Parameters are not tested and are for reference only. 2. Refer to Timing Model in this data sheet for further details. 16 Specifications ispLSI 8840V ispLSI 8840V Timing Model #69, tbcom #70, tbreg #71, tgcom #72, tgreg Input Buffer and I/O Cell Register I/O register delays I/O pad Input buffer delays #23, tidcom #24, tidreg #25, tobp #26, tibp #27, tiolat #28, tioco #29, tiosu #30, tioh #31, tiorst #32, tiosuce #33, tiohce Output path Output buffer delays Output routing #34, todreg #35, todcom #36, todz Input path BFM Routing Pool #61, tbfmi #67, tbfmg #64, tbfmm z GLB/ Macrocell Local feedback #54, tfloc Macrocell Register PTSA AND array #39, tandhs #40, tandlp #41, t1pt #42, t4ptcom #43, t4ptreg #44, tptsa Global Routing Plane #45, tmbp #46, tmlat #47, tmco #48, tmsu #49, tmh #50, tmrst #51, tmsuce #52, tmbce PT Mcell controls #55, tpck #56, tpcken #57, tsck #58, tscken #59, tprst #62, tgrpi #63, tgrpiz #65, tgrpm #66, tgrpmz #68, tgrpb Bus direct #60, trdir PT I/O control bus Global control delay Input pad #78, tgck #79, tgcken #80, tgiock #81, tgiocken #82, tqck #83, tgoe #84, ttoe #85, tgmrst #86, tgiorst #73, tpiock #74, tpiocken #75, tpoe #76, tpiorst #77, tpioz 8840V_Model.eps 17 Output slew rate adders #37, tslf #38, tsls I/O pad Specifications ispLSI 8840V Example Timing Calculations tpd1 = (BFM Input Path Delay) + (GLB Delay) + (Output Path Delay) = (tidcom + tibp + tbfmi max) + (tandhs + t4ptcom + tmbp) + (tbfmm + tbcom + tobp + todcom + tslf) = (#23 + #26 + #61) + (#39 + #42 + #45) + (#64 + #69 + #25 + #35 + #37) = (0.3 + 0.4 + 1.0) + (2.6 + 0.5 + 0.0) + (0.6 + 1.5 + 0.0 + 1.6 + 0.0) = 8.5 ns tpd (within BFM) = (BFM Delay) + (GLB Delay) = (tbfmm) + (tandhs + t4ptcom + tmbp) = (#64) + (#39 + #42 + #45) = (0.6) + (2.6 + 0.5 + 0.0) = 3.7 ns tpd (between BFMs) = (GRP Delay) + (BFM Delay) + (GLB Delay) = (tgrpm) + (tbfmg) + (tandhs + t4ptcom + tmbp) = (#65) + (#67) + (#39 + #42 + #45) = (2.0) + (2.5) + (2.6 + 0.5 + 0.0) = 7.6 ns BFM I/O to internal tri-state Enable/Disable = (BFM Input Path Delay) + (GLB Delay, 1PT) + (Tri-state Control Delay) = (tidcom + tibp + tbfmi max) + (tandhs + t1pt + tmbp) + (tgrpmz) = (#23 + #26 + #61) + (#39 + #41 + #45) + (#66) = (0.3 + 0.4 + 1.0) + (2.6 + 1.9 + 0.0) + (3.0) = 9.2 ns tsu1 = (BFM Input Path Delay) + (GLB Setup Time) - (Min. Global Clock Delay) = (tidcom + tibp + tbfmi max) + (tandhs + t4ptreg + tmsu) – (tgck min) = (#23 + #26 + #61) + (#39 + #43 + #48) – (#78) = (0.3 + 0.4 + 1.0) + (2.6 + 1.4 + 2.7) – (3.9) = 4.5 ns 1/Fmax = (Global Clk to MC Output) + (Local Feedback) + (GLB Setup Time) = (tmco) + (tfloc) + (tandhs + tptsa + tmsu) = (#47) + (#54) + (#39 + #44 + #48) = (0.2) + (0.1) + (2.6 + 2.4 + 2.7) = 8.0 ns Fmax = 125 MHz Note: Calculations are based upon timing specifications for the ispLSI 8840V-125L 18 Specifications ispLSI 8840V Power Consumption Power consumption in the ispLSI 8840V device depends on two primary factors: the speed at which the device is operating and the number of product terms used. The product terms have a fuse-selectable speed/power tradeoff setting. Each group of four product terms has a single speed/power tradeoff control fuse that acts on the complete group of four. The fast “high-speed” setting operates product terms at their normal full power consumption. For portions of the logic that can tolerate longer propagation delays, selecting the slower “lowpower” setting will significantly reduce the power dissipation for these product terms. Figure 10 shows the relationship between power and operating speed. Figure 10. Typical Device Power Consumption vs fmax 800 700 ICC (mA) 600 500 ispLSI 8840V 400 300 Turbo Non-Turbo 200 100 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 fmax (MHz) Notes: Configuration of 42 20-bit counters Typical current at 3.3V, 25¡ C ICC can be estimated for the ispLSI 8840V using the following equation: ICC = 35.0 + (# of Turbo PTs *0.25) + (# of Non-Turbo PTs * 0.11) + (# of Macrocells Used * fmax * AF * 0.041) # of Turbo PTs = Number of Turbo Product Terms Used in Design # of Non-Turbo PTs = Number of Non-Turbo Product Terms Used in Design fmax = Maximum Operating Frequency AF (Activity Factor) = Average Macrocell Toggle Frequency Fmax Note: An Activity Factor of 1.0 means all macrocell registers toggle at fmax. An Activity Factor of 0.5 means the average macrocell register toggles at half of Fmax. The ICC estimate is based on typical conditions (VCC = 3.3V, room temperature) and an assumption of two GLB loads on average exists. These values are for estimates only. Since the value of ICC is sensitive to operating conditions and the program in the device, the actual ICC should be verified. 0127/8840V 19 Specifications ispLSI 8840V Signal Descriptions Signal Name CLK0, CLK1, CLK2 Description Dedicated clock input for the GLB registers only. These clock inputs are connected to one of the clock inputs of all GLB registers in the device. CLKEN Dedicated clock enable input for the GLB registers only. This input is available as a clock enable for each GLB register in the device. Use of the clock enable input eliminates the need for the user to gate the clock to the register. GND Ground (GND) GOE0, GOE1, GOE2, GOE3 Global Output Enable inputs. SET/RESET Dedicated, reset/preset pin connected to ALL registers in the device, GLB registers and I/O registers. Each register can independently choose to be reset or preset when this signal goes active. The active polarity is user selectable. IOCLKEN Dedicated clock enable input for the I/O registers only. This input is available as a clock enable input for all I/O registers in the device. Use of the clock enable input eliminates the need for the user to tie the clock to the I/O register. I/O Input/Output – These are the general purpose I/O used by the logic array. EPEN Embedded Port Enable Pin – When this pin is high, the port is enabled. When this pin is low, the state machine is held at reset asynchronously and TCK, TMS and TDI are ignored. TMS Input – This signal is the Test Mode Select input signal. QIOCLK0, QIOCLK1, QIOCLK2, QIOCLK3 Dedicated clock inputs for the I/O registers only. These clock inputs are connected to the I/O registers on the same side of the device only, they are not connected to all of the I/O registers. Use of these quadrant I/O clocks gives the fastest tco from the device. TCK Input – This signal is the Test Clock input signal. TDI Input – This signal is the Test Data input signal. TDO Output – This signal is the Test Data Out Output Signal. TOE Test Output Enable. Tristates all I/O pins when a logic low is driven. VCC Vcc VCCIO Power supply for the output drivers. The internal logic of the device is connected to VCC which is always 3.3V. The output drivers are connected to VCCIO which can be equal to VCC or 2.5V. This allows the output drivers to be powered from 2.5V, for example, to interface directly with another 2.5V device. NC1 No connect. 1. NC pins are not to be connected to any active signals, VCC or GND. 20 Specifications ispLSI 8840V Signal Locations Signal Name QIOCLK0, QIOCLK1, QIOCLK2, QIOCLK3 272-Ball BGA Y8, M20, C8, N2 492-Ball BGA AE14, P22, A15, N3 CLK0, CLK1, CLK2 Y9, P18, D8 AC15, R24, B15 CLKEN V9 AB17 IOCLKEN B9 E16 EPEN C17 B26 TCK A4 A2 TDI U5 AF1 TDO C4 B3 TMS W4 AC4 GOE0, GOE1, GOE2, GOE3 Y10, M19, C9, N1 AF15, P23, D16, N5 TOE L3 L5 SET/RESET P3 P2 VCC D9, D10, D11, D12, J4, J17, K4, K17, L4, L17, M4, M17, U9, U10, U11, U12 E9, E12, E15, E18, F5, F10, F17, F22, G5, G22, K5, K22, L22, M5, N22, P5, R22, T5, U5, U22, Y5, Y22, AA5, AA10, AA17, AA22, AB9, AB12, AB15, AB18 VCCIO A7, A8, A20, B16, C5, C12, E4, G20, H4, M1, N17, U2, U20, V2, V6, W7, W8, W16, W19, Y13 E8, E13, E19, E20, F7, F8, F20, J6, J21, K3, L24, N1, P24, T3, U25, V6, Y23, AA7, AA8, AA20, AB8, AB14, AB19, AB20 GND D4, D16, D17, J9, J10, J11, J12, K9, K10, K11, K12, L9, L10, L11, L12, M9, M10, M11, M12, U4, U17 E5, E11, E14, E22, F6, F21, L11, L12, L13, L14, L15, L16, M11, M12, M13, M14, M15, M16, N11, N12, N13, N14, N15, N16, P11, P12, P13, P14, P15, P16, R11, R12, R13, R14, R15, R16, T11, T12, T13, T14, T15, T16, AA6, AA21, AB5, AB13, AB16, AB22 NC1 A9, W9, V17 A1, A16, B1, B2, C1, C2, C3, C24, C25, C26, D1, D2, D3, D4, D24, D25, D26, E6, E17, E21, E23, E24, E25, E26, F9, F18, G6, G21, Y6, Y21, AA9, AA18, AB1, AB2, AB3, AB4, AB6, AB10, AB21, AB23, AC1, AC2, AC3, AC23, AC24, AC25, AC26, AD1, AD2, AD3, AD15, AD25, AD26, AE1, AE25, AE26, AF25, AF26 1. NC pins are not to be connected to any active signals, VCC or GND. 21 Specifications ispLSI 8840V I/O Pin Locations (272-Ball BGA Package) Signal I/O G0 <0> I/O G0 <1> I/O G0 <2> I/O G0 <3> I/O G0 <4> I/O G0 <5> I/O G0 <6> I/O G0 <7> I/O G0 <8> I/O G0 <9> I/O G0 <10> I/O G0 <11> I/O G0 <12> I/O G0 <13> I/O G0 <14> I/O G0 <15> I/O G0 <16> I/O G0 <17> I/O G0 <18> I/O G0 <19> I/O G0 <20> I/O G0 <21> I/O G0 <22> I/O G0 <23> I/O G2 <0> I/O G2 <1> I/O G2 <2> I/O G2 <3> I/O G2 <4> I/O G2 <5> I/O G2 <6> I/O G2 <7> I/O G2 <8> I/O G2 <9> I/O G2 <10> I/O G2 <11> I/O G2 <12> I/O G2 <13> I/O G2 <14> BGA V4 Y3 Y2 W3 Y1 W2 W1 V3 V1 U3 R4 T4 U19 R17 V20 V19 U18 V18 T17 W20 Y20 Y19 W18 Y18 U1 T3 T2 T1 R3 R2 R1 P4 P2 N4 N3 P1 N18 N19 N20 Signal I/O G2 <15> I/O G2 <16> I/O G2 <17> I/O G2 <18> I/O G2 <19> I/O G2 <20> I/O G2 <21> I/O G2 <22> I/O G2 <23> I/O G3 <0> I/O G3 <1> I/O G3 <2> I/O G3 <3> I/O G3 <4> I/O G3 <5> I/O G3 <6> I/O G3 <7> I/O G3 <8> I/O G3 <9> I/O G3 <10> I/O G3 <11> I/O G3 <12> I/O G3 <13> I/O G3 <14> I/O G3 <15> I/O G3 <16> I/O G3 <17> I/O G3 <18> I/O G3 <19> I/O G3 <20> I/O G3 <21> I/O G3 <22> I/O G3 <23> I/O G4 <0> I/O G4 <1> I/O G4 <2> I/O G4 <3> I/O G4 <4> I/O G4 <5> BGA P19 P17 P20 R20 R19 R18 T20 T19 T18 H2 H1 J3 J2 J1 K3 K2 K1 L2 L1 M2 M3 M18 L20 L19 L18 K20 K19 K18 J20 H20 J19 H19 J18 G2 G1 H3 G3 G4 F3 Signal BGA I/O G4 <6> I/O G4 <7> I/O G4 <8> I/O G4 <9> I/O G4 <10> I/O G4 <11> I/O G4 <12> I/O G4 <13> I/O G4 <14> I/O G4 <15> I/O G4 <16> I/O G4 <17> I/O G4 <18> I/O G4 <19> I/O G4 <20> I/O G4 <21> I/O G4 <22> I/O G4 <23> I/O G5 <0> I/O G5 <1> I/O G5 <2> I/O G5 <3> I/O G5 <4> I/O G5 <5> I/O G5 <6> I/O G5 <7> I/O G5 <8> I/O G5 <9> I/O G5 <10> I/O G5 <11> I/O G5 <12> I/O G5 <13> I/O G5 <14> I/O G5 <15> I/O G5 <16> I/O G5 <17> I/O G5 <18> I/O G5 <19> I/O G5 <20> 22 F1 F2 F4 E1 E2 E3 D20 F17 E19 G17 G18 F18 E20 F19 H17 F20 H18 G19 A3 B2 B3 A2 A1 B1 D3 D2 C3 C2 D1 C1 D19 E18 C20 B20 A19 C19 D18 B19 C18 Signal I/O G5 <21> I/O G5 <22> I/O G5 <23> I/O B0 <0> I/O B0 <1> I/O B0 <2> I/O B0 <3> I/O B0 <4> I/O B0 <5> I/O B0 <6> I/O B0 <7> I/O B0 <8> I/O B0 <9> I/O B0 <10> I/O B0 <11> I/O B0 <12> I/O B0 <13> I/O B0 <14> I/O B0 <15> I/O B0 <16> I/O B0 <17> I/O B0 <18> I/O B0 <19> I/O B0 <20> I/O B0 <21> I/O B0 <22> I/O B0 <23> I/O B4 <0> I/O B4 <1> I/O B4 <2> I/O B4 <3> I/O B4 <4> I/O B4 <5> I/O B4 <6> I/O B4 <7> I/O B4 <8> I/O B4 <9> I/O B4 <10> I/O B4 <11> BGA E17 B18 A18 Y4 V5 W5 Y5 U6 U7 W6 V7 Y6 Y7 U8 V8 B8 C7 D7 B7 B6 C6 A6 D6 B5 A5 D5 B4 V10 W10 Y11 W11 V11 Y12 W12 V12 W13 U13 V13 Y14 Signal I/O B4 <12> I/O B4 <13> I/O B4 <14> I/O B4 <15> I/O B4 <16> I/O B4 <17> I/O B4 <18> I/O B4 <19> I/O B4 <20> I/O B4 <21> I/O B4 <22> I/O B4 <23> I/O B6 <0> I/O B6 <1> I/O B6 <2> I/O B6 <3> I/O B6 <4> I/O B6 <5> I/O B6 <6> I/O B6 <7> I/O B6 <8> I/O B6 <9> I/O B6 <10> I/O B6 <11> I/O B6 <12> I/O B6 <13> I/O B6 <14> I/O B6 <15> I/O B6 <16> I/O B6 <17> I/O B6 <18> I/O B6 <19> I/O B6 <20> I/O B6 <21> I/O B6 <22> I/O B6 <23> BGA B14 D13 B13 A13 A12 B12 B11 A11 C11 B10 A10 C10 W14 V14 U14 Y15 W15 V15 U15 Y16 V16 U16 W17 Y17 B17 A17 C16 D15 C15 A16 B15 D14 C14 A15 A14 C13 Specifications ispLSI 8840V I/O Pin Locations (492-Ball BGA Package) Signal I/O G0 <0> I/O G0 <1> I/O G0 <2> I/O G0 <3> I/O G0 <4> I/O G0 <5> I/O G0 <6> I/O G0 <7> I/O G0 <8> I/O G0 <9> I/O G0 <10> I/O G0 <11> I/O G0 <12> I/O G0 <13> I/O G0 <14> I/O G0 <15> I/O G0 <16> I/O G0 <17> I/O G0 <18> I/O G0 <19> I/O G0 <20> I/O G0 <21> I/O G0 <22> I/O G0 <23> I/O G1 <0> I/O G1 <1> I/O G1 <2> I/O G1 <3> I/O G1 <4> I/O G1 <5> I/O G1 <6> I/O G1 <7> I/O G1 <8> I/O G1 <9> I/O G1 <10> I/O G1 <11> I/O G1 <12> I/O G1 <13> I/O G1 <14> I/O G1 <15> I/O G1 <16> I/O G1 <17> I/O G1 <18> I/O G1 <19> I/O G1 <20> I/O G1 <21> I/O G1 <22> I/O G1 <23> I/O G2 <0> I/O G2 <1> I/O G2 <2> I/O G2 <3> I/O G2 <4> I/O G2 <5> I/O G2 <6> I/O G2 <7> I/O G2 <8> I/O G2 <9> I/O G2 <10> I/O G2 <11> I/O G2 <12> I/O G2 <13> I/O G2 <14> BGA AA4 AA3 AA2 AA1 Y4 Y3 Y2 Y1 W4 W3 W2 U6 U21 Y26 Y25 Y24 V21 AA26 AA25 AA24 AA23 AB26 AB25 AB24 T2 W5 U1 U2 U3 U4 V1 V5 V2 V3 V4 W1 W23 W24 W25 W26 V22 V23 V24 V25 V26 W22 U23 U24 T4 T1 W6 R2 R1 R3 R4 R5 P1 P3 P4 N4 P26 P25 R23 Signal I/O G2 <15> I/O G2 <16> I/O G2 <17> I/O G2 <18> I/O G2 <19> I/O G2 <20> I/O G2 <21> I/O G2 <22> I/O G2 <23> I/O G3 <0> I/O G3 <1> I/O G3 <2> I/O G3 <3> I/O G3 <4> I/O G3 <5> I/O G3 <6> I/O G3 <7> I/O G3 <8> I/O G3 <9> I/O G3 <10> I/O G3 <11> I/O G3 <12> I/O G3 <13> I/O G3 <14> I/O G3 <15> I/O G3 <16> I/O G3 <17> I/O G3 <18> I/O G3 <19> I/O G3 <20> I/O G3 <21> I/O G3 <22> I/O G3 <23> I/O G4 <0> I/O G4 <1> I/O G4 <2> I/O G4 <3> I/O G4 <4> I/O G4 <5> I/O G4 <6> I/O G4 <7> I/O G4 <8> I/O G4 <9> I/O G4 <10> I/O G4 <11> I/O G4 <12> I/O G4 <13> I/O G4 <14> I/O G4 <15> I/O G4 <16> I/O G4 <17> I/O G4 <18> I/O G4 <19> I/O G4 <20> I/O G4 <21> I/O G4 <22> I/O G4 <23> I/O G5 <0> I/O G5 <1> I/O G5 <2> I/O G5 <3> I/O G5 <4> I/O G5 <5> BGA T22 R26 R25 T26 T23 W21 T24 T25 U26 K2 K1 L2 H6 L3 L4 L1 M2 M1 M3 M4 N2 N23 N24 N26 N25 M22 M23 M24 M26 H21 M25 L26 L23 K4 H5 J1 J2 J3 J4 H1 J5 H2 H3 H4 K6 H26 J23 J24 J25 J22 J26 K23 K24 K25 H22 K26 L25 E4 E3 E2 E1 F4 F3 Signal BGA I/O G5 <6> I/O G5 <7> I/O G5 <8> I/O G5 <9> I/O G5 <10> I/O G5 <11> I/O G5 <12> I/O G5 <13> I/O G5 <14> I/O G5 <15> I/O G5 <16> I/O G5 <17> I/O G5 <18> I/O G5 <19> I/O G5 <20> I/O G5 <21> I/O G5 <22> I/O G5 <23> I/O B0 <0> I/O B0 <1> I/O B0 <2> I/O B0 <3> I/O B0 <4> I/O B0 <5> I/O B0 <6> I/O B0 <7> I/O B0 <8> I/O B0 <9> I/O B0 <10> I/O B0 <11> I/O B0 <12> I/O B0 <13> I/O B0 <14> I/O B0 <15> I/O B0 <16> I/O B0 <17> I/O B0 <18> I/O B0 <19> I/O B0 <20> I/O B0 <21> I/O B0 <22> I/O B0 <23> I/O B1 <0> I/O B1 <1> I/O B1 <2> I/O B1 <3> I/O B1 <4> I/O B1 <5> I/O B1 <6> I/O B1 <7> I/O B1 <8> I/O B1 <9> I/O B1 <10> I/O B1 <11> I/O B1 <12> I/O B1 <13> I/O B1 <14> I/O B1 <15> I/O B1 <16> I/O B1 <17> I/O B1 <18> I/O B1 <19> I/O B1 <20> 23 F2 F1 G4 G3 G2 G1 K21 H25 H24 H23 G26 G25 G24 G23 F26 F25 F24 F23 AE2 AF2 AE3 AF3 AD4 AE4 AF4 AC5 AD5 AE5 AB7 AF5 B6 E7 C6 D6 A5 B5 C5 D5 A4 B4 C4 A3 AC6 AD6 AE6 AF6 AC7 AD7 AE7 AF7 AC8 AD8 AE8 AF8 B9 C9 D9 A8 B8 C8 D8 A7 B7 Signal I/O B1 <21> I/O B1 <22> I/O B1 <23> I/O B2 <0> I/O B2 <1> I/O B2 <2> I/O B2 <3> I/O B2 <4> I/O B2 <5> I/O B2 <6> I/O B2 <7> I/O B2 <8> I/O B2 <9> I/O B2 <10> I/O B2 <11> I/O B2 <12> I/O B2 <13> I/O B2 <14> I/O B2 <15> I/O B2 <16> I/O B2 <17> I/O B2 <18> I/O B2 <19> I/O B2 <20> I/O B2 <21> I/O B2 <22> I/O B2 <23> I/O B3 <0> I/O B3 <1> I/O B3 <2> I/O B3 <3> I/O B3 <4> I/O B3 <5> I/O B3 <6> I/O B3 <7> I/O B3 <8> I/O B3 <9> I/O B3 <10> I/O B3 <11> I/O B3 <12> I/O B3 <13> I/O B3 <14> I/O B3 <15> I/O B3 <16> I/O B3 <17> I/O B3 <18> I/O B3 <19> I/O B3 <20> I/O B3 <21> I/O B3 <22> I/O B3 <23> I/O B4 <0> I/O B4 <1> I/O B4 <2> I/O B4 <3> I/O B4 <4> I/O B4 <5> I/O B4 <6> I/O B4 <7> I/O B4 <8> I/O B4 <9> I/O B4 <10> I/O B4 <11> BGA C7 D7 A6 AC9 AD9 AE9 AF9 AC10 AD10 AE10 AF10 AE11 AD11 AB11 AC11 A12 E10 B12 A11 D11 C11 B11 A10 B10 C10 D10 A9 AF11 AE12 AF12 AD12 AC12 AE13 AF13 AD13 AC13 AC14 AD14 AF14 C15 D15 B14 A14 C14 D14 D13 C13 A13 B13 D12 C12 AE15 AF16 AC16 AD16 AE16 AF17 AE17 AD17 AC17 AF18 AE18 AD18 Signal BGA I/O B4 <12> I/O B4 <13> I/O B4 <14> I/O B4 <15> I/O B4 <16> I/O B4 <17> I/O B4 <18> I/O B4 <19> I/O B4 <20> I/O B4 <21> I/O B4 <22> I/O B4 <23> I/O B5 <0> I/O B5 <1> I/O B5 <2> I/O B5 <3> I/O B5 <4> I/O B5 <5> I/O B5 <6> I/O B5 <7> I/O B5 <8> I/O B5 <9> I/O B5 <10> I/O B5 <11> I/O B5 <12> I/O B5 <13> I/O B5 <14> I/O B5 <15> I/O B5 <16> I/O B5 <17> I/O B5 <18> I/O B5 <19> I/O B5 <20> I/O B5 <21> I/O B5 <22> I/O B5 <23> I/O B6 <0> I/O B6 <1> I/O B6 <2> I/O B6 <3> I/O B6 <4> I/O B6 <5> I/O B6 <6> I/O B6 <7> I/O B6 <8> I/O B6 <9> I/O B6 <10> I/O B6 <11> I/O B6 <12> I/O B6 <13> I/O B6 <14> I/O B6 <15> I/O B6 <16> I/O B6 <17> I/O B6 <18> I/O B6 <19> I/O B6 <20> I/O B6 <21> I/O B6 <22> I/O B6 <23> B19 A19 D18 C18 B18 A18 D17 C17 B17 A17 B16 C16 AC18 AF19 AE19 AA19 AD19 AC19 AF20 AE20 AD20 AC20 AF21 AE21 A22 D21 C21 B21 A21 D20 C20 B20 A20 F19 D19 C19 AD21 AC21 AF22 AE22 AD22 AC22 AF23 AE23 AD23 AF24 AE24 AD24 A26 D23 B25 A25 B24 A24 C23 B23 A23 D22 C22 B22 Specifications ispLSI 8840V Signal Configuration ispLSI 8840V 272-Ball BGA Signal Diagram 20 19 18 17 16 15 14 13 12 11 10 I/O G5 I/O G5 I/O B6 I/O B6 I/O B6 I/O B6 I/O B4 I/O B4 I/O B4 I/O B4 <16> <23> <13> <17> <21> <22> <15> <16> <19> <22> 9 8 7 6 5 3 2 1 I/O G5 I/O G5 I/O G5 <0> <3> <4> A I/O B0 I/O B0 I/O B0 I/O B0 I/O B0 I/O G5 I/O G5 I/O G5 <1> <5> <12> <15> <16> <20> <23> <2> B I/O B0 I/O B0 I/O G5 I/O G5 I/O G5 VCCIO TDO <13> <17> <8> <9> <11> C I/O G5 I/O G5 I/O G5 I/O B0 I/O B0 I/O B0 GND <6> <7> <10> <14> <19> <22> D I/O G4 I/O G4 I/O G4 <11> <10> <9> E I/O G4 I/O G4 I/O G4 I/O G4 <8> <5> <7> <6> F I/O G4 I/O G4 I/O G4 I/O G4 <3> <0> <1> <4> G I/O G4 I/O G3 I/O G3 <2> <0> <1> H GND VCC I/O G3 I/O G3 I/O G3 <2> <3> <4> J GND GND GND VCC I/O G3 I/O G3 I/O G3 <6> <7> <5> K GND GND GND GND VCC TOE I/O G3 I/O G3 <8> <9> L GND GND GND GND VCC I/O G3 I/O G3 VCCIO <11> <10> M I/O G2 I/O G2 I/O G2 VCCIO <14> <13> <12> I/O G2 I/O G2 <9> <10> GOE 3 N P I/O G2 I/O G2 CLK 1 I/O G2 <17> <15> <16> I/O G2 SET/ I/O G2 I/O G2 <7> RESET <8> <11> P R I/O G2 I/O G2 I/O G2 I/O G0 <18> <19> <20> <13> I/O G0 I/O G2 I/O G2 I/O G2 <10> <4> <5> <6> R T I/O G2 I/O G2 I/O G2 I/O G0 <21> <22> <23> <18> I/O G0 I/O G2 I/O G2 I/O G2 <11> <1> <2> <3> T U VCCIO I/O G0 I/O G2 VCCIO <9> <0> U V I/O G0 I/O G0 I/O G0 NC1 <14> <15> <17> I/O B6 I/O B6 I/O B6 I/O B4 I/O B4 I/O B4 I/O B4 I/O B0 I/O B0 VCCIO I/O B0 I/O G0 I/O G0 VCCIO I/O G0 CLKEN <8> <5> <1> <10> <7> <4> <0> <1> <0> <7> <8> <11> <7> V W I/O G0 VCCIO I/O G0 I/O B6 VCCIO I/O B6 I/O B6 I/O B4 I/O B4 I/O B4 I/O B4 <19> <22> <10> <4> <0> <8> <6> <3> <1> Y I/O G0 I/O G0 I/O G0 I/O B6 I/O B6 I/O B6 I/O B4 I/O B4 I/O B4 GOE CLK 0 VCCIO <20> <21> <23> <11> <7> <3> <11> <5> <2> 0 A VCCIO B I/O G5 I/O G5 I/O G5 I/O B6 I/O B6 I/O B4 I/O B4 I/O B4 I/O B4 I/O B4 VCCIO <15> <19> <22> <12> <18> <12> <14> <17> <18> <21> C I/O G5 I/O G5 I/O G5 I/O B6 I/O B6 I/O B6 I/O B6 I/O B4 I/O B4 GOE EPEN VCCIO 2 <14> <17> <20> <14> <16> <20> <23> <20> <23> D I/O G4 I/O G5 I/O G5 GND <12> <12> <18> E I/O G4 I/O G4 I/O G5 I/O G5 <18> <14> <13> <21> F I/O G4 I/O G4 I/O G4 I/O G4 <21> <19> <17> <13> G VCCIO H I/O G3 I/O G3 I/O G4 I/O G4 <20> <22> <22> <20> J I/O G3 I/O G3 I/O G3 VCC <19> <21> <23> GND GND GND K I/O G3 I/O G3 I/O G3 VCC <16> <17> <18> GND L I/O G3 I/O G3 I/O G3 VCC <13> <14> <15> M QIOCLK 1 GOE I/O G3 VCC 1 <12> N 20 GND I/O B6 I/O B6 I/O B4 <15> <19> <13> VCC 17 QIOCLK 2 VCC CLK 2 ispLSI 8840V Bottom View VCCIO I/O G0 I/O G0 I/O B6 I/O B6 I/O B6 I/O B4 VCC GND <12> <16> <9> <6> <2> <9> 18 VCC IOCLKEN TCK VCCIO I/O G4 I/O G4 I/O G4 <23> <16> <15> 19 VCC NC1 VCCIO VCCIO I/O B0 I/O B0 <18> <21> 4 16 15 14 13 12 VCC 11 VCC 10 VCC NC1 9 I/O B0 I/O B0 I/O B0 <10> <5> <4> TDI VCCIO VCCIO I/O B0 I/O B0 TMS I/O G0 I/O G0 I/O G0 <3> <5> <6> W I/O B0 I/O B0 I/O B0 I/O B0 I/O G0 I/O G0 I/O G0 <4> <9> <8> <3> <0> <1> <2> Y <6> QIOCLK 0 8 GND QIOCLK 3 7 6 <2> 5 4 3 2 1 272 BGA/8840v.eps 1. NCs are not to be connected to any active signals, Vcc or GND. Note: Ball A1 indicator dot on top side of package. 24 Specifications ispLSI 8840V Signal Configuration ispLSI 8840 492-Ball BGA Signal Diagram 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 A I/O B6 I/O B6 I/O B6 I/O B6 I/O B5 I/O B5 I/O B5 I/O B4 I/O B4 I/O B4 <12> <15> <17> <20> <12> <16> <20> <13> <17> <21> B I/O B6 I/O B6 I/O B6 I/O B6 I/O B5 I/O B5 I/O B4 I/O B4 I/O B4 I/O B4 I/O B3 I/O B3 I/O B2 I/O B2 I/O B2 I/O B1 I/O B1 I/O B1 I/O B0 I/O B0 I/O B0 TDO EPEN CLK2 <14> <16> <19> <23> <15> <19> <12> <16> <20> <22> <14> <21> <14> <18> <20> <12> <16> <20> <12> <17> <21> NC QIOCLK 2 1 2 I/O B3 I/O B3 I/O B2 I/O B2 I/O B2 I/O B2 I/O B1 I/O B1 I/O B1 I/O B0 I/O B0 I/O B0 TCK <15> <20> <12> <15> <19> <23> <15> <19> <23> <16> <20> <23> 1 NC1 A NC1 NC1 B C NC1 NC1 NC1 I/O B6 I/O B6 I/O B5 I/O B5 I/O B5 I/O B4 I/O B4 I/O B4 I/O B3 I/O B3 I/O B3 I/O B3 I/O B2 I/O B2 I/O B1 I/O B1 I/O B1 I/O B0 I/O B0 I/O B0 <18> <22> <14> <18> <23> <15> <19> <23> <12> <16> <19> <23> <17> <21> <13> <17> <21> <14> <18> <22> NC1 NC1 NC1 C D NC1 NC1 NC1 I/O B3 I/O B3 I/O B3 I/O B3 I/O B2 I/O B2 I/O B1 I/O B1 I/O B1 I/O B0 I/O B0 I/O B6 I/O B6 I/O B5 I/O B5 I/O B5 I/O B4 I/O B4 GOE 2 <13> <17> <18> <22> <16> <22> <14> <18> <22> <15> <19> <13> <21> <13> <17> <22> <14> <18> NC1 NC1 NC1 D E NC1 NC1 NC1 NC1 GND NC1 VCCIO VCCIO VCC IOCLKEN VCC GND VCCIO VCC GND I/O B2 I/O B0 VCC VCCIO <13> <13> NC1 GND I/O G5 I/O G5 I/O G5 I/O G5 <0> <1> <2> <3> E NC1 VCCIO VCCIO GND VCC I/O G5 I/O G5 I/O G5 I/O G5 <5> <6> <7> <4> F I/O G5 I/O G5 I/O G5 I/O G5 VCC <8> <9> <10> <11> G F I/O G5 I/O G5 I/O G5 I/O G5 VCC <20> <21> <22> <23> GND VCCIO G I/O G5 I/O G5 I/O G5 I/O G5 VCC <16> <17> <18> <19> NC1 H I/O G4 I/O G5 I/O G5 I/O G5 I/O G4 I/O G3 <12> <13> <14> <15> <21> <20> I/O G3 I/O G4 I/O G4 I/O G4 I/O G4 I/O G4 <8> <6> <3> <1> <10> <9> H J I/O G4 I/O G4 I/O G4 I/O G4 I/O G4 VCCIO <17> <15> <14> <13> <16> I/O G4 I/O G4 I/O G4 I/O G4 I/O G4 VCCIO <5> <4> <3> <2> <7> J K I/O G5 I/O G4 I/O G4 I/O G4 I/O G4 VCC <12> <22> <20> <19> <18> I/O G4 VCC I/O G4 VCCIO I/O G3 I/O G3 <0> <1> <11> <0> K L I/O G3 I/O G4 I/O G3 VCCIO VCC <22> <23> <23> GND GND GND GND GND GND TOE I/O G3 I/O G3 I/O G3 I/O G3 <5> <4> <2> <6> L M I/O G3 I/O G3 I/O G3 I/O G3 I/O G3 <19> <21> <18> <17> <16> GND GND GND GND GND GND VCC I/O G3 I/O G3 I/O G3 I/O G3 <8> <10> <9> <7> M N I/O G3 I/O G3 I/O G3 I/O G3 VCC <14> <15> <13> <12> GND GND GND GND GND GND GOE 3 I/O G2 QIOCLK I/O G3 VCCIO 3 <11> <11> N P I/O G2 I/O G2 VCCIO GOE 1 QIOCLK <12> <13> 1 GND GND GND GND GND GND I/O G2 I/O G2 SET/ I/O G2 <10> <9> RESET <8> P R I/O G2 I/O G2 I/O G2 CLK 1 VCC <16> <17> <14> GND GND GND GND GND GND I/O G2 I/O G2 I/O G2 I/O G2 I/O G2 <7> <6> <5> <3> <4> R T I/O G2 I/O G2 I/O G2 I/O G2 I/O G2 <18> <22> <21> <19> <15> GND GND GND GND GND GND I/O G2 I/O G1 I/O G2 VCCIO <0> <0> <1> T U I/O G1 I/O G1 I/O G0 I/O G2 VCCIO VCC <23> <22> <12> <23> I/O G0 I/O G1 I/O G1 I/O G1 I/O G1 VCC <11> <5> <4> <3> <2> U V I/O G1 I/O G1 I/O G1 I/O G1 I/O G1 I/O G0 <20> <19> <18> <17> <16> <16> ispLSI 8840V I/O G1 I/O G1 I/O G1 I/O G1 I/O G1 <8> <6> <7> <10> <9> V W I/O G1 I/O G1 I/O G1 I/O G1 I/O G1 I/O G2 <15> <14> <13> <12> <21> <20> Bottom View I/O G2 I/O G1 I/O G0 I/O G0 I/O G0 I/O G1 <9> <10> <11> <2> <1> <8> W Y I/O G0 I/O G0 I/O G0 VCCIO VCC <13> <14> <15> NC1 I/O G0 I/O G0 I/O G0 I/O G0 VCC <5> <6> <7> <4> Y AA I/O G0 I/O G0 I/O G0 I/O G0 VCC <17> <18> <19> <20> GND VCCIO AB I/O G0 I/O G0 I/O G0 <21> <22> <23> NC1 GND I/O B5 <21> NC1 NC1 NC1 VCC VCC NC 1 VCC VCC VCCIO NC1 I/O B5 <3> NC1 VCC NC1 VCCIO VCCIO VCC CLKEN GND VCC VCCIO GND VCC I/O B2 <10> VCC NC1 VCCIO VCCIO GND VCC NC1 VCC VCCIO I/O B0 <10> GND NC1 I/O B6 I/O B6 I/O B5 I/O B5 I/O B5 I/O B4 I/O B4 I/O B3 I/O B3 I/O B3 I/O B2 I/O B2 I/O B2 I/O B1 I/O B1 I/O B1 I/O B0 CLK 0 <5> <1> <9> <5> <0> <8> <2> <9> <8> <4> <11> <4> <0> <8> <4> <0> <7> I/O G0 I/O G0 I/O G0 I/O G0 <0> <1> <2> <3> AA NC1 NC1 NC1 NC1 AB TMS NC1 NC1 NC1 AC NC1 NC1 NC1 AD AC NC1 NC1 AD NC1 NC1 I/O B6 I/O B6 I/O B6 I/O B6 I/O B5 I/O B5 I/O B4 I/O B4 I/O B4 <11> <8> <4> <0> <8> <4> <11> <7> <3> AE NC1 NC1 I/O B6 I/O B6 I/O B6 I/O B5 I/O B5 I/O B5 I/O B4 I/O B4 I/O B4 I/O B4 QIOCLK I/O B3 I/O B3 I/O B2 I/O B2 I/O B2 I/O B1 I/O B1 I/O B1 I/O B0 I/O B0 I/O B0 I/O B0 0 <10> <7> <3> <11> <7> <2> <10> <6> <4> <0> <5> <1> <8> <6> <2> <10> <6> <2> <9> <5> <2> <0> NC1 AE AF NC1 NC1 I/O B6 I/O B6 I/O B6 I/O B5 I/O B5 I/O B5 I/O B4 I/O B4 I/O B4 GOE 0 I/O B3 I/O B3 I/O B3 I/O B3 I/O B2 I/O B2 I/O B1 I/O B1 I/O B1 I/O B0 I/O B0 I/O B0 I/O B0 <9> <6> <2> <10> <6> <1> <9> <5> <1> <11> <6> <2> <0> <7> <3> <11> <7> <3> <11> <6> <3> <1> TDI AF NC1 NC1 NC1 I/O B3 I/O B3 I/O B3 I/O B2 I/O B2 I/O B2 I/O B1 I/O B1 I/O B1 I/O B0 I/O B0 <10> <7> <3> <9> <5> <1> <9> <5> <1> <8> <4> 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 1. NC pins are not to be connected to any active signals, VCC or GND. Note: Ball A1 indicator dot on top side of package. 25 9 8 7 6 5 4 3 2 1 Specifications ispLSI 8840V Part Number Description ispLSI 8840V - XXX X XXXX X Device Family Grade Blank = Commercial Device Number Package B272 = 272-Ball BGA (Thermally Enhanced) B492 = 492-Ball BGA Speed 125 = 125 MHz fmax 90 = 90 MHz fmax 60 = 60 MHz fmax Power L = Low 0212/8840V Ordering Information COMMERCIAL FAMILY ispLSI fmax (MHz) tpd (ns) ORDERING NUMBER PACKAGE 125 8.5 ispLSI 8840V-125LB272 272-Ball BGA 125 8.5 ispLSI 8840V-125LB492 492-Ball BGA 90 10 ispLSI 8840V-90LB272 272-Ball BGA 90 10 ispLSI 8840V-90LB492 492-Ball BGA 60 15 ispLSI 8840V-60LB272 272-Ball BGA 60 15 ispLSI 8840V-60LB492 492-Ball BGA Table 2-0041/8840V 26