Ordering number : EN7962 Monolithic Linear IC LA76835NM For PAL/NTSC Color Television Sets VIF/SIF/Y/C/Deflection Implemented in a Single Chip Overview The LA76835NM is VIF/SIF/Y/C/Deflection implemented in a single chip for PAL/NTSC color television sets Functions • VIF/SIF/Y/C/Deflection implemented in a single chip. • I2C bus control. Specifications Maximum Ratings at Ta = 25°C Parameter Maximum supply voltage Maximum supply current Symbol Conditions Unit 7.0 V V32 max 7.0 V V53 max 7.0 V V74 max 9.3 V I17 max 25 mA 35 mA I29 max Allowable power dissipation Ratings V5 max Pd max Ta ≤ 65°C * 1.5 W Operating temperature Topr -10 to +65 °C Storage temperature Tstg -55 to +150 °C * Mounted on a board: 114.3×76.1×1.6mm3 glass epoxy board Any and all SANYO Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO Semiconductor representative nearest you before using any SANYO Semiconductor products described or contained herein in such applications. SANYO Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor products described or contained herein. D2006 MS PC B8-7038 No.7962-1/50 LA76835NM Operating Conditions at Ta = 25°C Parameter Recommended supply voltage Symbol Conditions Ratings Unit V5 5.0 V V32 V53 5.0 V 5.0 V V74 9.0 V Recommended supply current I17 19 mA 29 mA Operating supply voltage range V5 op 4.7 to 5.3 V V32 op 4.7 to 5.3 V I29 Operating supply current range V53 op 4.7 to 5.3 V V74 op 8.7 to 9.3 V I19 op 26 to 32 mA I26 op 24 to 33 mA Electrical Characteristics Ta = 25°C, VCC1 = V5 = V53 = 5.0V, VCC2 = V74 = 9.0V, ICC1 = I17 = 19mA, ICC2 = I29 = 29mA Parameter Symbol Ratings Conditions min typ Unit max Circuit voltage, current IF supply current I5 V5 = 5V, V76 = 2.5V 42.0 50.0 58.0 mA RGB supply voltage V17 I17 = 19mA 8.0 V Horizontal supply voltage V29 I29 = 29mA 5.0 V Video/Vertical supply current I53 I53 = 5V CPU Reset operating voltage VReset FM supply current I74 94.0 mA 3.2 3.6 4.0 V V74 = 9V 7.0 8.0 9.0 mA CW = 80dBµ, DAC = 0 8.5 9.0 0.2 VIF block Maximum RFAGC voltage Minimum RFAGC voltage VRFH CW = 80dBµ, DAC = 63 0.0 RF AGC Delay Pt (@DAC = 0) RFAGC0 DAC = 0 95 RF AGC Delay Pt (@DAC = 63) RFAGC63 DAC = 63 Input sensitivity VRFL Vdc dBµ 85 dBµ 45 50 dBµ VOn No signal IFAGC = “1” 2.9 3.3 3.7 Vdc Sync signal tip level VOtip CW = 80dBµ 1.4 1.7 2.0 Vdc 80dBµ, AM = 78%, fm = 15kHz 1.3 1.4 1.5 Vp-p VO Output-3db 0.7 No-signal video output voltage Video output amplitude Vi Vdc Video S/N S/N CW = 80dBµ 43 47 C-S beat level IC-S V3.58MHz/V920kHz 54 60 Differential gain DG 80dBµ, 87.5% Video MOD DP 80dBµ, 87.5% Video MOD Differential phase 3.0 dB dB 8.0 % 1.0 8.0 deg Maximum AFT output voltage VAFTH CW = 80dBµ, frequency variations 4.3 4.8 5.0 Vdc Minimum AFT output voltage VAFTL CW = 80dBµ, frequency variations 0.0 0.2 0.7 Vdc AFT detection sensitivity 25.0 35.0 mV/kHz VAFTS CW = 80dBµ, frequency variations 15.0 APC pull-in range (U) fPU CW = 80dBµ, frequency variations 1.0 MHz APC pull-in range (L) fPL CW = 80dBµ, frequency variations 1.0 MHz SIF block FM detection output voltage FM limiting sensitivity FM detection output 205 SOADJ SLS Output -3dB SF fm = 100kHz 260 330 mVrms 48 54 dBµ -0.5 3.0 6.0 dB 48 57 f characteristics FM detection output distortion STHD FM = ±25kHz AM rejection ratio SAMR AM = 30% SSN DIN.Andio 57 62 fm = 2.12kHz 1.5 2.5 SIF S/N De-emph time constant SNTC 1.0 % dB dB 3.5 dB Continued on next page. No.7962-2/50 LA76835NM Continued from preceding page. Parameter Symbol Ratings Conditions min typ Unit max AUDIO block Maximum gain AGMAX Variable range ARANGE Frequency characteristics Mute AF AMUTE Distortion ATHD 1kHz, Volume = “127” 1kHz, Volume = “0” 20kHz, Volume = “127” 1kHz, AUDIO MUTE = “1” -3.0 0.0 60 70 -3.0 0.0 70 75 1kHz, Volume = “127” 3.0 dB dB 3.0 dB dB 0.5 % S/N ASN DIN.Audio 60 65 dB Crosstalk ACT 1kHz, AUDIO SW = “0” 70 75 dB Chroma block ACC amplitude characteristics 1 ACCM1_N Input: +6dB/0dB 0dB = 40IRE 0.8 1.0 1.2 Ratio ACC amplitude characteristics 2 ACCM2_N Input: -14dB/0dB 0.7 1.0 1.1 Ratio 100 130 170 % Ratio B-Y/Y amplitude ratio CLRBY Color control 1 CLRMN Color MAX/CEN 1.6 1.8 2.2 characteristics 2 CLRMM Color MAX/MIN 30 45 70 dB CLRSE 1 1.4 4 %/bit 10 deg -50 -40 deg Color control sensitivity Tint center Tint control TINCEN -10 0 MAX TINMAX 40 50 MIN TINMIN deg TINSE 1.4 1.55 1.7 deg Tint dependence on color L CLRPL -3.0 0 3 deg Tint dependence on color H CLRPH -3.0 0 3 0.75 0.85 0.95 Ratio 0.20 0.30 0.40 Ratio 95 105 115 deg 105 115 Tint control sensitivity Demodulation output ratio RB R-Y/B-Y Demodulation output ratio R-Y/B-Y_GainBalance_DAC, deg R-Y/B-Y_Angle_DAC = Center GB G-Y/B-Y R-Y/B-Y_GainBalance_DAC, R-Y/B-Y_Angle_DAC = Center Demodulation angle R-Y/B-Y ANGRB1 R-Y/B-Y_Angle_DAC = Center Demodulation angle ANGRB2 R-Y/B-Y_Angle_DAC = Maximum ANGRB3 R-Y/B-Y_Angle_DAC = Minimum Demodulation angle G-Y/B-Y ANGGB1 R-Y/B-Y_Angle_DAC = Center Demodulation angle ANGGB2 G-Y_Angle_DAC = 1 deg R-Y/B-Y control 1 Demodulation angle 95 105 deg -128 -118 -108 deg -117 -107 -97 deg R-Y/B-Y control 2 G-Y/B-Y control Killer operating point 2 KILL 0dB = 40IRE, ColorKiller ope. = 2 -31 -25 -21 dB Killer operating point 4 KILL4 0dB = 40IRE, ColorKiller ope. = 4 -33 -27 -22 dB Killer operating point difference D_KILL 0.5 2 5 dB Chroma VCO free-running CVCOF KILL-KILL4 -320 0 320 Hz APC pull-in range (+) PLINPO 350 APC pull-in range (-) PLINNO -350 Hz frequency Hz Static phase error + SPER_P Fsc: +200Hz -15 -5 0 deg Static phase error - SPER_N Fsc: -200Hz 0 5 15 deg fsc output amplitude C_FSC reference data 300 mVp-p Residual higher harmonic level B E_CAR_B 300 mVp-p Residual higher harmonic level R E_CAR_R 300 mVp-p Residual higher harmonic level G E_CAR_G 300 mVp-p C-BPF1A (3.08MHz) CBP308 Reference: 3.48MHz -5.0 -1.5 0.0 dB C-BPF1B (3.88/3.28MHz) CBP03 Reference: 3.28MHz -2.0 0.0 2.0 dB C-BPF1C (4.08/3.08MHz) CBP05 Reference: 3.08MHz -3 0 3 dB Continued on next page. No.7962-3/50 LA76835NM Continued from preceding page. Parameter Symbol Ratings Conditions min typ Unit max OSD block OSD Fast SW threshold FSTH Digital OSD Red output ROSDDIG0 0.5 0.8 60 1.1 IRE V ROSDDIG3 150 IRE GOSDDIG0 66 IRE GOSDDIG3 150 IRE BOSDDIGI0 60 IRE BOSDDIGI3 150 IRE amplitude @OSD Cnt: 0 Digital OSD Red output amplitude @OSD Cnt: 3 Digital OSD Green output amplitude @OSD Cnt: 0 Digital OSD Green output amplitude @OSD Cnt: 3 Digital OSD Blue output amplitude @OSD Cnt: 0 Digital OSD Blue output amplitude @OSD Cnt: 3 Analog OSD R output amplitude RRGB 1.0 1.2 1.4 Ratio GRGB 1.0 1.2 1.4 Ratio BRGB 1.0 1.2 1.4 Ratio BRT64 1.9 2.2 2.5 V BRT127 35 40 45 IRE BRT0 -45 -40 -35 IRE Cutoff control (min) Vbias0 1.9 2.2 2.5 V Bias control (max) Vbias255 2.9 3.2 3.5 V gain match Analog OSD G output amplitude gain match Analog OSD B output amplitude gain match RGB output (cutoff drive) block Brightness Normal control Hi brightness Max Low brightness Min Resolution Vbiassns 4 mV/Bit Sub-bias control resolution Vsbiassns 8 mV/Bit Drive adjustment Rbout64 0.60 0.90 1.20 Vp-p RBout127 1.05 1.35 1.65 Vp-p Gout10 0.60 0.90 1.20 Vp-p Gout15 0.70 1.00 1.30 Vp-p 8 10 12 dB DrGainG 1.5 3.5 5.5 dB RGB_DC 0 0.2 V Video signal input 1DC voltage VIN1DC 2.2 Video signal input 1AC voltage VIN1AC Video signal input 2DC voltage VIN2DC Video signal input 2AC voltage VIN2AC SVO terminal DC voltage SVO terminal AC voltage Normal output (R, B) 50IRE Drive adjustment Maximum output (R, B) 50IRE Drive adjustment Normal output (G) 50IRE Drive adjustment Maximum output (G) 50IRE Drive adjustment DrGainRB Output attenuation (R, B) Drive adjustment Output attenuation (G) RGB output DC difference voltage Video SW block 2.5 2.8 1 V Vp-p 2.2 2.5 2.8 SVODC 1.7 2 2.3 V SVOAC 1.7 2 2.3 Vp-p 1 V Vp-p Continued on next page. No.7962-4/50 LA76835NM Continued from preceding page. Parameter Symbol Ratings Conditions min typ Unit max Video block Video overall gain CONT127 8.0 10.0 12.0 dB (Contrast max) Contrast adjust- Normal/max CONT90 -4.5 -3.0 -1.5 dB ment Min/max CONT0 -18.0 -15.0 -12.0 dB Video frequency FILTER BW1 1.4MHz/100kHz -6.0 -3.0 -1.0 dB characteristics SYS = 0 BW2 1.8MHz/100kHz -6.0 -3.0 -1.0 dB BW3 3.4MHz/100kHz -6.0 -3.0 -1.0 dB Ctrap SHARPNESS = 0 dB Characteristics FILTER SYS = 2 FILTER SYS = 4 -38.0 -28.0 -24.0 DC transmission amount 1 ClampG1 DCREST = 00 95.0 100.0 105.0 % DC transmission amount 2 ClampG2 DCREST = 01 100.0 105.0 110.0 % DC transmission amount 3 ClampG3 DCREST = 10 104.0 109.0 116.0 % DC transmission amount 4 ClampG4 DCREST = 11 108.0 113.0 118.0 % FILTER SYS = 000 530.0 580.0 630.0 ns Chroma trap amount Y-DL TIME TRAP1 TdY1 TRAP2 TdY2 FILTER SYS = 010 350.0 400.0 450.0 ns TRAP OFF TdY3 FILTER SYS = 100 300.0 350.0 400.0 ns Pre-Shoot adjustment 1 PreShoot1 Pre-shoot adj. = 00 0.92 0.97 1.02 Pre-Shoot adjustment 2 PreShoot2 Pre-shoot adj. = 11 1.08 1.13 1.18 Black stretch Max BKSTmax Gain = 10, Start = 01 23.0 28.0 33.0 IRE gain Mid BKSTmid Gain = 01, Start = 01 15.0 20.0 25.0 IRE Min BKSTmin Gain = 00, Start = 01 8.0 12.0 18.0 IRE Black stretch Max BKSTTHmax Bain = 01, Start = 10 -8.0 0.0 8.0 IRE start (60IRE ∆V) BKSTTHmid Bain = 01, Start = 01 -8.0 0.0 8.0 IRE BKSTTHmin Bain = 01, Start = 00 -8.0 0.0 8.0 IRE Mid (50IRE ∆V) Min (40IRE ∆V) Sharpness Trap 1 mid Sharp32T1 F = 2.2MHz, FILTER SYS = 000 5.0 8.0 11.0 dB variable range 1 Trap 1 max Sharp63T1 F = 2.2MHz, FILTER SYS = 000 8.5 11.5 13.5 dB Trap 1 min Sharp0T1 F = 2.2MHz, FILTER SYS = 000 -6.5 -3.5 -0.5 dB Sharpness Trap 2 mid Sharp32T2 F = 3MHz, FILTER SYS = 010 5.5 8.5 11.5 dB variable range 2 Trap 2 max Sharp63T2 F = 3MHz, FILTER SYS = 010 9.5 12.5 15.5 dB Trap 2 min Sharp0T2 F = 3MHz, FILTER SYS = 010 -7.0 -4.0 -1.0 dB Sharpness Trap off mid Sharp32T3 F = 5MHz, FILTER SYS = 100 5.0 8.0 11.0 dB variable range 3 Trap off Sharp63T3 F = 5MHz, FILTER SYS = 100 8.5 11.5 14.5 dB Sharp0T3 F = 5MHz, FILTER SYS = 100 max -5.0 -2.0 1.0 dB White peak 1 WPL1 APL = 100%, WPL = 0 158.0 168.0 178.0 IRE limiter 2 WPL2 APL = 100%, WPL = 1 107.0 117.0 127.0 IRE Trap off min operating point 3 WPL3 APL = 100%, WPL = 2 81.0 91.0 101.0 IRE 4 WPL4 APL = 100%, WPL = 3 56.0 66.0 76.0 IRE Continued on next page. No.7962-5/50 LA76835NM Continued from preceding page. Parameter Symbol Ratings Conditions min typ Unit max Y gamma 1 YG1 YGAMMA = 01 89.0 93.0 97.0 effective point 2 YG2 YGAMMA = 10 79.0 83.0 87.0 % 3 YG3 YGAMMA = 11 75.0 79.0 83.0 % GRAY, MODE = 1, CROSS.B/W = 2 11.5 15.0 18.0 IRE 0.1 0.4 0.7 V fH 15576 15734 15891 Hz fH PULL ±400 Horizontal output pulse width Hduty 36.1 37.6 39.1 µs Horizontal output pulse V Hsat 0 0.2 0.4 V GRAY MODE LEVEL Horizontal/vertical blanking GRAY RGBBLK % output level Deflection block Horizontal free-running frequency Horizontal pull-in range Hz saturation voltage Horizontal AFC control current M HAFCM AFCGAIN: 0 130 180 230 µA Horizontal AFC control current H HAFCH AFCGAIN: 1 190 240 290 µA Horizontal AFC control current L HAFCL AFCGAIN: 0 50 90 130 µA 9.5 10.5 11.5 µs Horizontal output pulse phase HPHCEN Horizontal position HPHrange ±2.2 5bit µs adjustment range Horizontal position adjustment HPHstep 200.0 ns maximum variability width Horizontal 2nd pull-in range HPMIN 0.5 1.0 3.0 µs HPMAX 15.2 16.0 17.0 µs VFR60 59.4 60.0 60.6 Hz Hz (min) Horizontal 2nd pull-in range (max) Vertical free-running frequency fV PULL 54.0 60.0 69.0 Horizontal output stop voltage Hstop 3.30 3.60 3.90 V Horizontal left @0 BLKL0 BLKL: 0000 8200 9000 9800 ns blanking left @15 BLKL15 BLKL: 1111 15200 16000 16800 ns right @0 BLKR0 BLKR: 0000 2700 3500 4200 ns right @15 BLKR15 BLKR: 1111 -1100 -300 500 ns Vertical pull-in range Sand castle H pulse crest M1 SANDH 5.3 5.6 5.9 V SANDM1 3.7 4.0 4.3 V L SANDL 0.1 0.4 0.7 V Burst gate Width BGPWD 3.5 4.0 4.5 µs pulse Phase BGPPH 4.9 5.4 5.9 µs VXRAY 0.64 0.69 0.74 V value X-ray protection circuit operating voltage Vertical screen size compensation Vertical ramp NTSC@64 Vsnt64 VSIZE: 1000000 0.75 0.85 0.95 Vp-p output ampli- NTSC @0 Vsnt0 VSIZE: 0000000 0.40 0.50 0.60 Vp-p Vsnt127 VSIZE: 1111111 1.05 1.20 1.35 Vp-p VSIZE0.75: 1 0.70 0.80 0.90 ratio VCOMP: 000 0.83 0.93 0.97 ratio Vdc tude NTSC@127 Vertical size 0.75 VSEZE75 High-voltage dependent vertical size correction Vertical size correction @0 Vsizecomp Vertical screen position adjustment/linearity adjustment/S-shaped correction adjustment Vertical ramp NTSC@32 Vdcnt32 VDC: 100000 2.25 2.40 2.55 DC voltage NTSC@0 Vdcpal0 VDC: 000000 1.85 2.00 2.15 Vdc NTSC@63 Vdcpal63 VDC: 111111 2.65 2.80 2.95 Vdc Continued on next page. No.7962-6/50 LA76835NM Continued from preceding page. Parameter Symbol Ratings Conditions min typ Unit max Vertical @16 Vlint16 V.LIN_TOP: 10000 0.70 1.00 1.30 ratio linearity @0 Vlint00 V.LIN_TOP: 00000 0.40 0.70 1.00 ratio @31 Vlint31 V.LIN_TOP: 11111 0.90 1.20 1.50 ratio Vertical linearity @16 Vlinb16 V.LIN_BOTTOM: 10000 0.70 1.00 1.30 ratio BOTTOM @0 Vlinb0 V.LIN_BOTTOM: 00000 0.40 0.70 1.00 ratio @31 Vlinb31 V.LIN_BOTTOM: 11111 0.90 1.20 1.50 ratio Vertical @16 VScor16 VSC: 10000 0.73 0.88 1.03 ratio S-shaped @0 VScor0 VSC: 00000 1.12 1.27 1.32 ratio @31 VScor31 VSC: 11111 0.49 0.64 0.79 ratio Raster Cut TOP RASCUTT Raster_cut: 1 59 64 69 line BOTTOM RASCUTB 218 223 228 line H Phase BOW @8 HBOW8 H_Phase_BOW: 1000 -1300 -1000 -700 ns @0 HBOW0 H_Phase_BOW: 0000 -300 0 300 ns H_Phase_BOW: 1111 correction Raster_cut: 1 @15 HBOW15 700 1000 1300 ns H Phase @8 HANG8 H_Phase_ANGLE: 1000 -1200 -900 -600 ns ANGLE @0 HANG0 H_Phase_ANGLE: 0000 -300 0 300 ns @15 HANG15 H_Phase_ANGLE: 1111 600 900 1200 ns 11.0 12.0 13.0 µs HS/VS/VBLK HS output pulse width PWHS VS output pulse width PWVS 22.0 25.0 28.0 µs Vertical @0 VBLK0 V_BLK_Select: 00 20 22 24 H Blanking period @1 VBLK1 V_BLK_Select: 01 34 36 28 H @2 VBLK2 V_BLK_Select: 10 44 46 48 H @3 VBLK3 V_BLK_Select: 11 51 53 55 H Horizontal screen size adjustment East/West DC @32 EWdc32 EWDC: 100000 1.90 2.30 2.70 Vdc Voltage @0 Ewdc0 EWDC: 000000 0.90 1.30 1.70 Vdc @63 Ewdc63 EWDC: 111111 2.90 3.30 3.70 Vdc 0.1 0.3 0.50 V High-voltage dependent horizontal size compensation Horizontal size compensation@0 Hsizecomp HCOMP: 000 Pincushion correction East/West @32 EWamp32 EWAMP: 100000 0.90 1.30 1.70 Vp-p amplitude @0 EWamp0 EWAMP: 000000 -0.40 0.00 0.40 Vp-p @63 EWamp63 EWAMP: 111111 2.20 2.60 3.00 Vp-p @32 Ewtilt32 EWTILT: 100000 -0.40 0.00 0.40 V @0 EWtilt0 EWTILT: 000000 -1.40 -1.00 -0.6 V @63 EWtilt63 EWTILT: 111111 0.60 1.00 1.40 V Tilt Correction East/West tilt Corner Correction East/West top EWcorTOP CORTOP: 1111-0000 0.30 0.70 1.10 V corner bottom EWcorBOT CORBOTTOM: 1111-0000 0.30 0.70 1.10 V Continued on next page. No.7962-7/50 LA76835NM Package Dimensions unit : mm 3174A 64 0.8 23.2 20.0 41 65 80 17.2 14.0 40 25 24 1 0.8 0.35 0.15 0.1 (2.7) 3.0max (0.8) SANYO : QIP80E(14X20) No.7962-8/50 LA76835NM Block Diagram and Application Circuit Example 66 67 0.01µF 100µF 0.47µF 600Ω 100kΩ 330Ω 1µF 1000pF 0.01µF 0.01µF 3kΩ 50Ω 10Ω IFSW1 0.01µF (M) 0.022µF (M) 65 66 67 68 69 70 71 64 NC 72 NC 73 74 75 76 77 63 62 GND 61 VCO 59 SPLL VIDEO AMP A2C PLL 60 BPF SW IF AGC DC VOL RF AGC 5V NC 57 56 9 AFT VIDEO DET BPF LIM ANP 8 BUS VIF FM DET 58 7 54 CLMP VIDEO SW 53 TRAP DELAY LINE PEAKING CORING BLACK STRETOH DC REST 12 52 13 51 NC SW 14 50 V/C GND 49 48 APC1 ACC KILLER 47 VCO TINT TINT SYNC SEP CB.CR SW CLMP DELAY COLOR RGB MATRIX OSD SW 17 3.58 18 46 0.47µF 45 CW KIL FEP 43 1/256 AFC2 44 5V VCC 44 HOR C/D HOR VCO 10kΩ 20 22 E/W 21 42 41 40 38 GND 37 39 X-RAY 25 26 27 0.1µF 0.1µF 75Ω 75Ω HOR GND 4.7kΩ 1kΩ METAL FILM ±1% 0.01µF 1µF 10µF 3kΩ 0.015µF 0.01µF (M) 10µF 0.47µF 0.47µF 28 +5V 29 30 31 32 33 34 35 36 VM AMP RESET 24 VDD CPU RESET 23 GND VER RAMP HOR VCC HOR OUT PHASE AFC1 SHIFTER VER SEP VER C/D 19 DRIVE/OUT-OFF AUTO FLESH HS/VS 16 5V 5V VCC VCC 15 CONTRAST BRIGHT COLOR CLAMP DEMO 2ND AMP BPF IST AMP BPF CLMP CL AMP OSD FIX GAIN ERIGHT 11 24kΩ 24kΩ 5V VCC 55 ABL 10 1µF 5.6kΩ 1µF 16kΩ (M) 100Ω 69 71 73 74 75 30kΩ 78 6 40 39 38 37 35 33 32 30 29 28 27 26 25 1kΩ DELAY (9US) +7.6V +7.6V 1 +7.6V 4 5 6 NC LC4528B 3 10kΩ 2 1.5kΩ 7 16 15 14 13 12 11 10 2kΩ 10kΩ WIDTH(12US) 1500pF 2kΩ 20kΩ 2200pF 76 9V 0.01µF 79 5 OFFSW1 0.047µF 20 80 IF GND 4 100µF 16pF 19 1µF 48 75Ω 1µF 20kΩ 17 0.01µF 0.01µF 3 14 GND 2 20kΩ 16 0.01µF 18 50 1kΩ 15 0.01µF 53 0.01µF 52B 52A 1kΩ 1µF 0.01µF 1µF 75Ω 0.01µF 1kΩ 75Ω 54B 54A 100µF 1kΩ 55 10 680kΩ 11A 11B 12A 12B 13A 13B 100kΩ 1µF 100pF 0.47µF 7 56 9 1µF 2kΩ 100pF CLK 100Ω 8 0.1µF 100Ω DETA 82kΩ 100kΩ 6 77 79 50Ω 1 5 0.01µF 100µF 27 8 9 NC OMB06078 No.7962-9/50 LA76835NM Test Conditions Ta = 25°C, VCC1 = V5 = V53 = 5.0V, VCC2 = V74 = 9.0V, ICC1 = I17 = 19mA, ICC2 = I29 = 29mA Circuit voltage, current Parameter IF supply current (pin 5) Symbol Test point Input signal No signal I5 5 Test method Apply a voltage of 5.0V to pin 5 and measure Bus conditions Initial the incoming DC current [mA]. (IF AGC (76pin) 2.5V) RGB supply voltage Horizontal supply voltage Video/vertical supply current CPU Reset operation voltage Apply a current of 19mA to pin 17 and V17 17 measure the voltage at pin 17. 29 measure the voltage at pin 29. 53 measure the incoming DC current [mA]. 35 through pin 32 and measure the pin 32 V29 Apply a current of 29mA to pin 29 and I53 Apply a voltage of 5.0V to pin 53 and Vreset Allow the current to flow slightly at a time Initial Initial Initial Initial voltage at a time when the pin 35 voltage rises. 32 IF supply current (pin 74) No signal I74 74 Apply a voltage of 9.0V to pin 74 and Initial measure the incoming DC current [mA]. No.7962-10/50 LA76835NM VIF Block Input Signals and Test Conditions 1. Input signals must all be input to the PIF IN (pin 79) in the Test Circuit. 2. All input signal voltage values are the levels at the VIF IN (pin 79) in the Test Circuit. 3. Pin 34 = 5V 4. Signal contents and signal levels. Input signal Waveform Conditions SG1 45.75MHz CW 42.17MHz SG2 CW 41.25MHz SG3 CW SG4 Frequency variable CW 45.75MHz SG5 87.5% Video Mod. 10-stairstep wave (Subcarrier: 3.58MHz) 45.75MHz SG6 fm = 15kHz, AM = 78% 5. Before measurement, adjust the DAC as follows. Parameter Test point Video Level DAC Input signal SG6, 80dBµ Adjustment Set the output level at pin 56 as close to 1.4Vp-p as possible. 56 No.7962-11/50 LA76835NM VIF Block Test Conditions Input signal Maximum RF AGC Symbol Test point 77 voltage Minimum RF AGC VRFL RF AGC (@DAC Delay Pt = 0) (@DAC 77 Measure the DC voltage at pin 77. RF.AGC = "111111" Obtain the input level at which the DC voltage at RF.AGC = "000000" pin 77 becomes 4.5V. Obtain the input level at which the DC voltage at RFAGC63 RF.AGC = "111111" pin 77 becomes 4.5V. = 63) Input sensitivity Bus conditions RF.AGC = "000000" 80dBµ SG1 RFAGC0 Test method Measure the DC voltage at pin 77. 80dBµ SG1 77 voltage Input signal SG1 VRFH SG6 Vi 56 Using an oscilloscope, observe the level at pin 56 and obtain the input level at which the waveform's p-p value becomes 1.0Vp-p. No-signal Von 56 video output voltage Sync signal tip level No signal 56 Video output Vo 56 amplitude Video S/N S/N 56 IF.AGC = “1” pin 56. SG1 Votip Set IF AGC = “1” and measure the DC voltage at Measure the DC voltage at pin 56. 80dBµ SG6 Using an oscilloscope, observe the level at pin 56 80dBµ and measure the waveform’s p-p value. SG1 Measure the noise voltage at pin 56 with an RMS 80dBµ voltmeter through a 10kHz to 4.2MHz band-pass filter. ···· Vsn 20Log (1.0/Vsn) C-S beat level IC-S 56 SG1 Input a 80dBµ SG1 signal and measure the DC SG2 voltage (V76) at pin 76. Mix SG1 = 74dBµ, SG2 = SG3 69dBµ, and SG3 = 49dBµ to enter the mixture in the VIF IN. Apply V76 to pin 76 from an external DC power supply. Using a spectrum analyzer, measure the difference between pin 56’s 3.58MHz component and 920kHz component. Differential gain SG5 DG 56 Differential phase DP Maximum AFT VAFTH 7 output voltage Minimum AFT VAFTL 7 output voltage AFT detection sensitiv- VAFTS 7 ity 80dBµ SG5 56 Using a vector scope, measure the level at pin 56. Using a vector scope, measure the level at pin 56. 80dBµ SG4 Set and input the SG4 frequency to 44.75MHz. 80dBµ Measure the DC voltage at pin 7 at that moment. SG4 Set and input the SG4 frequency to 46.75MHz. 80dBµz Measure the DC voltage at pin 7 at that moment. SG4 Adjust the SG4 frequency and measure frequency 80dBµz deviation ∆f when the DC voltage at pin 7 changes from 1.5V to 3.5V. VAFTS = 2000/∆f [mV/kHz] APC pull-in range (U), (L) fPU, fPL 56 SG4 Connect an oscilloscope to pin 56 and adjust the 80dBµ SG4 frequency to a frequency higher than 45.75MHz to bring the PLL into unlocked mode. (A beat signal appears.) Lower the SG4 frequency and measure the frequency at which the PLL locks again. In the same manner, adjust the SG4 frequency to a lower frequency to bring the PLL into unlocked mode. Higher the SG4 frequency and measure the frequency at which the PLL locks again. No.7962-12/50 LA76835NM SIF Block (FM block) Input Signals and Test Conditions Unless otherwise specified, the following conditions apply when each measurement is made. 1. Bus control condition: IF.AGC. = "1", FM.MUTE = "0" 2. IFSW1 = "ON", pin 34 = 5V 3. Input signals are input to pin 69 and the carrier frequency is 4.5MHz. Parameter FM detection Symbol Test point SOADJ 75 output voltage Input signal Test method 90dBµ, Measure the FM detection output (400Hz com- fm = 400Hz, ponent) of pin 75. Bus conditions FM = ±25kHz FM limiting SLS 75 sensitivity fm = 400Hz, Measure the input level (dBµ) at which the 400Hz FM = ±25kHz component of the FM detection output at pin 75 becomes -3dB relative to SV1. FM detection SF 75 output f characteristics (fm = 100kHz) 90dBµ, Set IFSW1 = "OFF". fm = 100kHz Measure the FM detection output of pin 75. FM = ±25kHz ···· [mVrms] SF = 20Log (SV1/SV2) [dB] FM detection output STHD 75 distortion 90dBµ, Measure the distortion factor of the 400Hz com- fm = 400Hz, ponent of the FM detection output at pin 75. FM = ±25kHz AM rejection ratio SAMR 75 90dBµ, Measure the 400kHz component of the FM detec- fm = 400Hz, tion output at pin 75. AM = 30% ···· SV3 [mVrms] Assign the measured value to SV3. SAMR = 20Log (SV1/SV2) [dB] SIF.S/N 90dBµ, SSN 75 CW Measure the noise level (DIN AUDIO) at pin 75. ···· SV4 [mVrms] SSN = 20Log(SV1/SV4) [dB] de-emphtime constant SNTC 75 90dBµ, Measure the 2.12kHz component of the FM fm = 2.12kHz detection output at pin 75. FM = ±25kHz ···· SV5 [mVrms] SNTC = 20Log (SV1/SV5) [dB] No.7962-13/50 LA76835NM Audio Block Input Signals and Test Conditions Unless otherwise specified, the following conditions apply when each measurement is made. 1. Bus control condition: AUDIO.MUTE = "0", AUDIO.SW = "1", VOL.FIL = "0", IF.AGC. = "1" 2. Input 4.5MHz, 90dBµ and CW at pin 69. 3. Pin 34 = 5V 4. Enter an input signal from pin 66. Parameter Maximum gain Symbol Test point AGMAX 73 Input signal Test method 1kHz, CW Measure the 1kHz component at the pin 73. 500mVrms ···· V1 [mVrms] Bus conditions VOLUME = "1111111" AGMAX = 20Log (V1/500) [dB] Variable range ARANGE 73 1kHz, CW Measure the 1kHz component at the pin 73. 500mVrms ···· V2 [mVrms] VOLUME = "0000000" ARANGE = 20Log (V1/V2) [dB] Frequency AF 73 characteristics 20kHz, CW Measure the 20kHz component at the pin 73. 500mVrms ····V3 [mVrms] VOLUME = "1111111" AF = 20Log (V3/V1) [dB] Mute AMUTE 73 1kHz, CW Measure the 20kHz component at the pin 73. VOLUME = "1111111" 500mVrms ····V4 [mVrms] AUDIO.MUTE = ”1” AMUTE = 20Log (V1/V4) [dB] Distortion ATHD 73 S/N 1kHz, CW Measure the distortion of the 1kHz component at 500mVrms the pin 73. No signal ASN 73 Measure the noise level (DIN AUDIO) at the pin VOLUME = "1111111" VOLUME = "1111111" 73. ····V5 [mVrms] ASN = 20Log (V1/V5) [dB] Crosstalk ACT 73 1kHz, CW Measure the 1kHz component at the pin 73. VOLUME = "1111111" 500mVrms ····V6 [mVrms] AUDIO.SW = "0" ACT = 20Log (V1/V6) [dB] No.7962-14/50 LA76835NM Chroma Block Input Signals and Test Conditions Unless otherwise specified, the following conditions apply when each measurement is made. 1. VIF, SIF blocks: No signal 2. Y input to pin 52: Unless otherwise specified, the deflector must be locked to the synchronous signal when the 0 (IRE) signal and the horizontal/vertical composite signal are entered. 3. C input: C IN (pin 54) input 4. Bus control conditions: Set red and blue drives to DAC at which the Y-signal level of pins 18, 19 and 20 becomes as close to R = G = B as possible. Assume here that Gamma Def. is 1 (default), Video SW=”1”, and C.Ext=”1”. Set the following conditions unless otherwise specified. 5. Adjust an external X-tal of pin 46 so that the series capacity and resistor impedance (Z) become as follows: Z=0deg @3.579545MHz±10Hz -40±[email protected] 6. How to calculate the demodulation ratio and angle as follows: R-Y axis B-Y axis angle = tan-1(B(0)/B(270))+270° R-Y axis angle = tan-1(R(180)/R( 90))+90° G-Y axis angle = tan-1(G(270)/G(180))+180° 90° R(90) R(180) B(270) 0° 180° B(0) B-Y axis G(180) G(270) G-Y axis 270° No.7962-15/50 LA76835NM Chroma input signal: C-1 40IRE Burst 0° 90° 180° 270° 3.58MHz 77IRE signal (L-77) 77 IRE 0 IRE C-2 40IRE Burst 62.5IRE 3.58MHz 346° C-3 40IRE Burst 3.48MHz CW (If a frequency is specified, use the specified frequency.) C-4 40IRE 28° 73° 118° 163° C-5 35µs Burst 3.53MHz Chroma No.7962-16/50 LA76835NM Chroma Block Test Conditions Parameter Symbol 1 ACCM1 ACC Test point Bout amplitude 20 characteris- Input signal Test method C-1 Measure the output when 0dB is applied to the 0dB chroma input and the output amplitude when +6dB +6dB is applied to the chroma input and calculate the tics Bus conditions ratio between them. ACCM1 = 20Log (+6dBdata/0dBdata) 2 ACCM2 C-1 Measure the output when 0dB is applied to the -14dB chroma input and the output amplitude when -14dB is applied to the chroma input and calculate the ratio between them. ACCM2 = 20Log (-14dBdata/0dBdata) CLRBY B-Y/Y amplitude 20 ratio YIN: L77 Measure the Y system’s output level. No signal ···· V1 C-2 Input a signal to the CIN (only sync signal to the YIN) and measure the output level. CLRBY = 100×(V2/V1)+15% Color 1 C-3 CLRMN 20 control characteris- Measure the output amplitude V1 at color control Color: 1111111 (Max) MAX mode and output amplitude V2 at color con- Color: 1000000 (NOM) trol NOM mode.: tics CLRMN = V1/V2 2 Measure the output amplitude V3 at color control CLRMM Color: 0000000 (Min) MIN mode. CLRMM = 20Log (V1/V3) Color control CLRSE C-3 20 sensitivity Measure the output amplitude V4 at color control Color: 1011010 90 mode and output amplitude V5 at color control Color: 0100110 38 mode. CLRSE = 100×(V4-V5)/(V2×52) Tint center C-1 TINCEN 20 Tint control MAX C-1 TINMAX Measure each part of the output waveform and TINT: 1000000 calculate the B-Y axis angle. 20 Measure each part of the output waveform and TINT: 1111111 calculate the B-Y axis angle. TINMAX = B-Y axis angle-TINCEN MIN Measure each part of the output waveform and TINMIN TINT: 0000000 calculate the B-Y axis angle. TINMIN = B-Y axis angle-TINCEN Tint control sensitivity C-1 TINSE 20 Measure the angle A1 at TINT control 85 mode TINT: 1010101 and angle A2 at TINT control 42 mode. TINT: 0101010 TINSE = (A1-A2)/43 Tint L C-1 CLRPL 20 dependence on color Measure the angle of B-Y axis with Color: 44 and COLOR: 00101100 determine CLRPL. CLRPL = B-Y axis angle-TINCEN H CLRPH Measure the angle of B-Y axis with Color: 84 and COLOR: 01010100 determine CLRPH. CLRPH = B-Y axis angle-TINCEN Continued on next page. No.7962-17/50 LA76835NM Continued from preceding page. Parameter R-Y/B-Y Symbol Test point RB 18 Demodulation output ratio Input signal Test method Bus conditions YIN: L77 Input a signal to YIN and adjust DAC in R and B Color: 1000000 C-1: drives so that the Y output levels at pins 18 and 20 Adjustment value in No signal become as close to the level at 19 as possible. (*1) B and R drives: *1 After that, input 0 IRE to YIN and C-3 to CIN. R-Y/B-Y 19 YIN: 0 IRE Measure BOUT output amplitude Vb and ROUT C-3 output amplitude Vr and calculate RB=Vr/Vb. 20 Demodulation GB C-3 19 output ratio G-Y/B-Y Measure GOUT output amplitude Vg and Color: 1000000 calculate GB = Vg/Vb. Adjustment value in For the R/B Drive, the adjustment value: *1 B and R drives: *1 applies. Demodulation C-1 ANGRB1 20 angle R-Y/B-Y Measure each output level of the BOUT and ROUT and calculate the angles of the B-Y axis and R-Y axis. ANGBR1 = (R-Y angle)-(B-Y angle) 18 Demodulation C-1 ANGRB2 20 angle R-Y/B-Y With R-Y/B-Y angle set at maximum, carry out the R-Y/B-Y angle same measurement as for ANGRB1. 1111 ANGBR2 = (R-Y angle)-(B-Y angle) Control 1 18 Demodulation C-1 ANGRB3 20 angle R-Y/B-Y With R-Y/B-Y angle set at minimum, carry out the R-Y/B-Y angle same measurement as for ANGRB1. 0000 ANGBR3 = (R-Y angle)-(B-Y angle) Control 2 Reset R-Y/B-Y angle to 1000. 18 Demodulation C-1 ANGGB1 19 angle G-Y/B-Y Measure each output level of the GOUT and calculate the angle of the G-Y axis. ANGBG1 = (G-Y angle)-(B-Y angle) Demodulation C-1 ANGGB2 19 angle G-Y/B-Y control Measure each output level of the GOUT and G-Y_Angle: 1 calculate the angle of the G-Y axis. ANGBG2 = (G-Y angle)-(B-Y angle) Killer operating 20 point 2 Killer operating C-3 KILL 20 point 4 Killer operating C-3 KILL D_KILL Reduce the input signal until the output level Filter Sys: 1 becomes 50mVp-p or less. Measure the input level C. Bypass: 0 at that moment. ColorKillerope.: 2 Reduce the input signal until the output level Filter Sys: 1 becomes 50mVp-p or less. Measure the input level C. Bypass: 0 at that moment. ColorKillerope.: 4 D_KILL = KILL-KILL4 point difference Chroma VCO CVCOF 44 free-running CIN: Measure oscillation frequency f. No signal CVCOF = f-3579545 (Hz) frequency APC pull-in range (+) C-1 PLINP0 20 Decrease the chroma fsc frequency from 3.579545MHz+1000Hz and measure the frequency at which the VCO locks. APC pull-in range (-) C-1 PLINN0 20 Increase the chroma fsc frequency from 3.579545MHz-1000Hz and measure the frequency at which the VCO locks. Static phase error (+) C-1 SPER_P 20 Set the fsc frequency to 3.579545MHz+200Hz, measure the B-Y axis angle. SPER_P = B-Y axis angle-TINCEN Continued on next page. No.7962-18/50 LA76835NM Continued from preceding page. Parameter Static phase error (-) Symbol Test point SPER_N Input signal C-1 20 Test method Bus conditions Set the fsc frequency to 3.579545MHz-200Hz, measure the B-Y axis angle. SPER_N = B-Y axis angle-TINCEN fsc output amplitude C_FSC C-1 Measure 3.58MHz CW output amplitude at pin 44. C-1 Measure the 7.16MHz component output amplitude Burst only at pin 20. 44 Residual higher E_CAR_B 20 harmonic level B Residual higher E_CAR_R Rout Burst only harmonic level R Measure the 7.16MHz component output amplitude at pin 18. 18 Residual higher E_CAR_G Gout harmonic level G C-1 Measure the 7.16MHz component output amplitude Burst only at pin 19. 19 Chroma BPF Block Test Conditions Band-pass amplitude C-3 CBP308 20 characteristic 3.08MHz Measure V5 output amplitude. Set the chroma FILTER.SYS: 1 frequency (CW) to 3.08MHz and measure V6 C.BYPASS: 0 output amplitude. CBE308 = 20Log (V6/V5) Band-pass amplitude C-3 CBP03 20 characteristic Measure V7 output amplitude when the chroma FILTER.SYS: 1 frequency (CW) is 3.28MHz and V8 output C.BYPASS : 0 amplitude when it (CW) is 3.88 MHz. 3.88/3.28MHz CBE = 20Log (V8/V7) Band-pass amplitude characteristic 4.08/3.08MHz C-3 CBP05 20 Set the chroma frequency (CW) to 4.08MHz and FILTER.SYS: 1 measure V9 output amplitude. C.BYPASS: 0 CBE05 = 20Log (V9/V6) No.7962-19/50 LA76835NM Video Block Input Signals and Test Conditions Chroma input signal* chroma or burst signal: 40 IRE Y input signal: 1001RE (714mV) Bus control bit conditions: Initial test state 0IRE signal (L-0): NTSC standard sync signal PEDESTAL LEVEL H SYNC 4.7µs (H/V SYNC: 40IRE: 286mV) XIRE signal (L-X) XIRE (X = 0 to 100) 0IRE CW signal (L-CW) 20IRE CW signal 50IRE BLACK STRETCH 0IRE signal (L-BK) 50µs 100IRE 5µs (Point A) No.7962-20/50 LA76835NM R/G/B IN Input signal RGB Input signal 1 (0-1) to each 20µs 0.7V A B 0.0VDC 0.35V RGB Input signal 2 (0-2) 20µs 30µs 3.0VDC 0.0VDC First conditions: Pin 10:5V, Pin 11: GND, Pin 12: GND, Pin 13: GND, Pin 14: GND. No.7962-21/50 LA76835NM OSD Block Test Conditions Parameter OSD Symbol 20 Fast SW threshold Digital OSD Test point FSTH Cnt: 0 ROSDDIG0 Input signal Bus conditions Apply voltage to pin 14 and measure the voltage at Pin 13B: O-2 O-2 pin 14 at the point where the output signal applied switches to the OSD signal. HT DEF:1 L-50 18 Red output Test method L-0 Measure the output signal’s 50IRE amplitude. ···· CNTCR [Vp-p] amplitude L-0 Measure the OSD output amplitude. Pin 14: 3.5V @OSD O-2 ····OSDHR [Vp-p] Pin 11: O-2 applied Pin 38: 5V Digital OSD: 1 ROSDDIGI0 = 50×(OSDHR0/CNTCR) Cnt: 3 ROSDDIG3 L-50 Measure the output signal’s 50IRE amplitude. ···· CNTCR [Vp-p] L-0 Measure the OSD output amplitude. Pin 14: 3.5V O-2 ···· OSDHR3 [Vp-p] Pin 11B: O-2 applied Pin 38: 5V Digital OSD: 1 OSD Contrast: 3 ROSDDIGI3 = 50×(OSDHR3/CNTCR) Digital OSD Cnt: 0 GOSDDIG0 L-50 19 Green Measure the output signal’s 50IRE amplitude. ····CNTCG [Vp-p] output L-0 Measure the OSD output’s amplitude. Pin 14: 3.5V amplitude O-2 ····OSDHG0 [Vp-p] Pin 12B: O-2 applied @OSD Pin 38: 5V Digital OSD: 1 GOSDDIG0 = 50×(OSDHG0/CNTCG) Cnt: 3 GOSDDIG3 L-50 Measure the output signal’s 50IRE amplitude. ····CNTCG [Vp-p] L-0 Measure the OSD output’s amplitude. Pin 14: 3.5V O-2 ····OSDHG3 [Vp-p] Pin 12B: O-2 applied Pin 38: 5V Digital OSD: 1 OSD Contrast: 3 GOSDDIG3 = 50×(OSDHG3/CNTCG) Digital OSD Cnt: 0 BOSDDIG0 L-50 20 Blue output Measure the output signal’s 50IRE amplitude. ···· CNTCB [Vp-p] amplitude L-0 Measure the OSD output’s amplitude. Pin 14: 3.5V @OSD O-2 ···· OSDHB0 [Vp-p] Pin 13B: O-2 applied With OSD contrast of 3, carry out the similar Pin 38: 5V measurement. Digital OSD: 1 ···· OSDHB3 [Vp-p] BOSDC0 = 50×(OSDHB0/CNTCB) Cnt: 3 BOSDDIG3 L-50 Measure the output signal’s 50IRE amplitude. ···· CNTCB [Vp-p] L-0 Measure the OSD output’s amplitude. Pin 14: 3.5V O-2 ···· OSDHB3 [Vp-p] Pin 13B: O-2 applied Pin 38: 5V Digital OSD: 1 OSD Contrast: 3 BOSDC3 = 50×(OSDHB3/CNTCB) Analog OSD R output amplitude gain match RRGB L-100 18 Measure the output signal’s 50IRE amplitude. ···· CNTHR [Vp-p] L-0 Measure the amplitudes at point B (0.7V portion of Pin 14: 3.5V O-1 the input signal 0-1). Assign the measured values Pin 11A: O-1 applied to (RGBHR [Vp-p]). Pin 38: 5V OSD Contrast: 3 GRGB = RGBHG/CNTHG Continued on next page. No.7962-22/50 LA76835NM Continued from preceding page. Parameter Analog OSD G Symbol Test point GRGB Input signal L-100 19 output amplitude gain match Test method Bus conditions Measure the output signal’s 100IRE amplitude. ···· CNTHG [Vp-p] L-0 Measure the amplitudes at point B (0.7V portion of Pin 14: 3.5V O-1 the input signal 0-1). Assign the measured values Pin 12A: O-1 applied to (RGBHG [Vp-p]). Pin 38: 5V OSD Contrast: 3 GRGB = RGBHG/CNTHG Analog OSD B BRGB L-100 20 output amplitude gain match Measure the output signal’s 100IRE amplitude. ···· CNTHB [Vp-p] L-0 Measure the amplitudes at point B (0.7V portion of Pin 14: 3.5V O-1 the input signal 0-1). Assign the measured values Pin 13A: O-1 applied to (RGBHB [Vp-p]). Pin 38: 5V OSD Contrast: 3 BRGB = RGBHB/CNTHB [RGB Output Block] (Cutoff, Drive Block) Test Conditions Brightness Normal L-0 BRT64 18 control Measure the 0IRE DC levels of the respective Brightness: output signals of R output (18), G output (19), and 01111111 B output (20). Assign the measured values to BRTPCR, BRTPCG, and BRTPCB V, respec- 19 tively. BRT63 = (BRTPCR+BRTPCG+BRTPCB)/3 20 Max BRT127 20 Measure the 0IRE DC level of the output signal of Brightness: B output (20) and assign the measured value to 1111111 BRTPHB. BRT127 = 50×(BRTPHB-BRTPCB)/CNTCB Min BRT0 Measure the 0IRE DC level of the output signal of Brightness: B output (20) and assign the measured value to 0000000 BRTPLB. BRT0 = 50×(BRTPLB-BRTPCB)/CNTCB Bias Min L-50 Vbias0 18 (cutoff) control Measure the 0IRE DC levels (Vbias0 [V]) of the respective output signals of R output (18), G output (19), and B output (20). *: R, G, and B Max Vbias255 19 20 Bias (cutoff) control resolution Vbiassns 18 Measure the 0IRE DC levels (Vbias255 [V]) of the Red/Green/Blue respective output signals of R output (18), G out- Bias: 11111111 put (19), and B output (20). *: R, G, and B Measure the 0IRE DC levels (BAS80 [V]) of the Red/Green/Blue respective output signals of R output (18), G out- Bias:01010000 put (19), and B output (20). *: R, G, and B 19 20 Measure the 0IRE DC levels (BAS48 [V]) of the Red/Green/Blue respective output signals of R output (18), G out- Bias: 00110000 put (19), and B output (20). Vbiassns* = (BAS80*-BAS48*)/32 Continued on next page. No.7962-23/50 LA76835NM Continued from preceding page. Parameter Sub-bias control Symbol Test point Input signal L-50 Vsbiassns 18 resolution Test method Bus conditions Measure the 0IRE DC levels (SBTPM [V]) of the Sub-Brightness: respective output signals of R output (18), G out- 0101010 put (19), and B output (20). *: R, G, B 19 Vsbiassns* = (BRTPC*-SBTPM*) 20 Drive adjustment Rbout64 maximum output Gout10 L-100 18 Measure the 50IRE amplitudes (DRVM [Vp-p]) of the respective output signals of R output (18) and B output (20). 501RE. *: R and B 19 Measure the 50IRE amplitude of the output signal of G output (19) and assign the measured value to (DRVM [Vp-p]). 20 Output attenuation *: G DrGainRB DrGainG 18 Measure the 50IRE amplitudes (DRVL [Vp-p]) of Red/Blue Drive: the respective output signals of R output (18), and 0000000 B output (20). Green Drive: 0000 *: R and B 19 Measure the 50IRE amplitude of the output signal of G output (19) and assign the measured value to (DRVL [Vp-p]). 20 *: G DrGainRB * = 20Log (DRVH*/DRVL*) DrGainG * = 20Log (DRVH*/DRVL*) Drive adjustment Rbout127 maximum output Gout15 L-100 18 501RE. Measure the 50IRE amplitudes Red/Blue Drive: (DRVH [Vp-p]) of the respective output 1111111 signals of R output (18) and B output (20). Green Drive: 1111 *: R and B 19 Measure the 500IRE amplitude of the output signal of G output (19) and assign the measured 20 RGB output difference voltage value to (DRVH [Vp-p]). *: G Measure the 0IRE DC level (*_DC Vdc) of the RGB_DC 18 output signal of R (18), G (19), and B (20) outputs. 19 20 No.7962-24/50 LA76835NM VIDEO SW Block Test Conditions Parameter Symbol Video signal input 1DC VIN1DC voltage L-100 54 Input signals to pin 54 and measure the voltage of VIDEO SW: 0 the pedestal. VIN2AC Pin 54 recommended input level. 54 L-100 SVODC 50 voltage SVO terminal AC Pin 52 recommended input level. VIN2DC voltage SVO terminal DC Bus conditions VIDEO SW: 1 52 voltage Video signal input 2AC Test method Input signals to pin 52 and measure the voltage of the pedestal. VIN1AC voltage Video signal input 2DC Input signal L-100 52 voltage Video signal input 1AC Test point SVOAC L-100 50 Input signals to pin 52 and measure the voltage of VIDEO SW: 1 the pedestal at pin 50. Input signals to pin 52 and measure the voltage of VIDE0 SW: 1 the pedestal at pin 50. No.7962-25/50 LA76835NM Video Block Test Conditions Parameter Video overall gain Symbol Test point Input signal L-50 CONT127 20 (Contrast max) Test method Bus conditions Measure the output signal’s 50IRE amplitude. CONTRAST: ···· CNTHB [Vp-p] 1111111 CONT127 = 20Log (CNTHB/0.357) Contrast Normal/ adjustment max CONT90 L-50 20 characteristics Measure the output signal’s 50IRE amplitude. ···· CNTCB [Vp-p] CONT63 = 20Log (CNTCB/0.357) Min/ CONT0 max Measure the output signal’s 50IRE amplitude. CONTRAST: ···· CNTLB [Vp-p] 0000000 CONT0 = 20Log (CNTLB/0.357) With the input signal’s continuous wave = 100kHz, FILTER SYS: 000 measure the output signal’s continuous wave SHARPNESS: Character- amplitude. ···· PEAKDC [Vp-p] 000000 istics With the input signal’s continuous wave = 7MHz, Video fre- 1 L-CW BW1 20 quency measure the output signal’s continuous wave amplitude. ····CW1.4 [Vp-p] BW1 = 20Log (CW1.4/PEAKDC) 2 BW2 With the input signal’s continuous wave = 1.8MHz, FILTER SYS: 010 measure the output signal’s continuous wave SHARPNESS: amplitude. ····CW1.8 [Vp-p] 000000 BW2 = 20Log (CW1.8/PEAKDC) 3 BW3 With the input signal’s continuous wave = 3.4MHz, FILTER SYS: 100 measure the output signal’s continuous wave SHARPNESS: amplitude. ····CW3.4 [Vp-p] 000000 BW3 = 20Log (CW3.4/PEAKDC) Chroma trap amount Ctrap L-CW 20 With the input signal’s continuous wave = FILTER SYS: 000 3.58MHz, measure the output signal’s continuous Sharpness: 000000 wave amplitude. ····F00 [Vp-p] CtraP = 20Log (F00/PEAKDC) DC 1 ClampG1 L-0 20 transmis- Measure the output signal’s 0IRE DC level. Brightness: ····BRTPL [V] 0000000 sion CONTRAST: amount 1111111 L-100 Measure the output signal’s 0IRE DC level Brightness: (DRVPH [V]) and 100IRE amplitude (DRVH 0000000 [Vp-p]) CONTRAST: ClampG = 100×(1+(DRVPH - BRTPL)/DRVH) 1111111 (PIN55: 3V) DCREST = 00 BLK.ST.DEF = 1 WPL = 0 2 ClampG2 With DCREST = 01, carry out measurement DC.rest. = 01 similarly to the case of the DC transmission amount 1. (PIN55: 3V) 3 ClampG3 With DCREST = 10, carry out measurement DC.rest = 10 similarly to the case of the DC transmission amount 1. (PIN55: 3V) 4 ClampG4 With DCREST = 11, carry out measurement DC.rest = 11 similarly to the case of the DC transmission amount 1. (PIN55: 3V) Continued on next page. No.7962-26/50 LA76835NM Continued from preceding page. Parameter Y-DL TIME TRAP1 Symbol Test point TdY1 Input signal L-50 20 Test method Obtain the time difference (the delay time) from Bus conditions Filter Sys: 000 when the rise of the input signal's 501RE amplitude to the output signal's 501RE amplitude. TRAP2 TdY2 Obtain the time difference (the delay time) from Filter Sys: 010 when the rise of the input signal's 501RE amplitude to the output signal's 501RE amplitude. TRAP TdY3 Obtain the time difference (the delay time) from OFF Filter Sys: 100 when the rise of the input signal's 501RE amplitude to the output signal's 501RE amplitude. Pre-Shoot 1 PreShoot1 L-100 20 control Measure the pre-shoot width (Tpre) and Pre-shoot adj.= 00 over-shoot width (Tover) at rise of 100IRE am- Filter Sys: 000 plitude of the output signal Sharpness= 111111 PreShoot = Tpre/Tover. 2 PreShoot2 With Pre-shoot adj. = 11, carry out the same Pre-shoot adj.= 11 measurement as for the case of Pre-Shoot 1. Filter Sys: 000 Sharpness= 111111 Black MAX BKSTmax L-BK 20 stretch gain Measure the 0IRE DC level at point A of the Blk.str.gain = 10 output signal in the Black Stretch Defeat (Black Blk.str.start = 01 Stretch OFF) mode. ···· BKST1 [V] Measure the 0IRE DC level at point A of the Blk Str def = 0 output signal in the Black Stretch ON mode. DC.rest = 00 (PIN55: 3V) ····BKST2 [V] BKSTmax = 50×(BKST1-BKST2)/CNTHB MID BKSTmid With Blk.str.gain = 01, carry out the same meas- Blk.str.gain = 01 urement as for the case of black stretch gain Blk.str.start = 01 (MAX). (PIN55: 3V) Blk Str def = 0 DC.rest = 00 MIN BKSTmin With Blk.str.gain = 00, carry out the same meas- Blk.str.gain = 00 urement as for the case of black stretch gain Blk.str.start = 01 (max). (PIN55: 3V) Blk Str def = 0 DC.rest = 00 Black 60IRE stretch start ∆Black BSTTHmax L-60 20 Measure the DC level at 60IRE of the output Blk.str.gain = 01 signal in the Black Stretch ON mode. Blk.str.start = 10 (PIN55: 3V) ····BKST3 [V] Measure the 60IRE DC level of the output signal Blk Str .def = 0 in the Black Stretch Defeat (Black Stretch OFF) DC.rest = 00 mode. ····BKST4 [V] BKSTTHmax = 50×(BKST4-BKST3)/CNTHB 250IRE BKSTTHmid L-50 ∆Black Measure the 50IRE DC level of the output signal Blk.str.gain = 01 in the Black Stretch Defeat ON mode. (PIN55: 3V) Blk.str.start = 01 ····BKST5 [V] Measure the 50IRE DC level of the output signal Blk Str .def = 0 in the Black Stretch Defeat (Black Stretch OFF) DC.rest = 00 mode. ····BKST6 [V] BKSTTHmid = 50×(BKST6-BKST5)/CNTHB 340IRE ∆Black BKSTTHmin L-40 Measure the 40IRE DC level of the output signal Blk.str.gain = 01 in the Black Stretch Defeat ON mode. (PIN55: 3V) Blk.str.start = 00 ····BKST7 [V] Measure the 40IRE DC level of the output signal Blk Str .def = 0 in the Black Stretch Defeat (Black Stretch OFF) DC.rest = 00 mode. ····BKST8 [V] BKSTTHmin = 50×(BKST8-BKST7)/CNTHB Continued on next page. No.7962-27/50 LA76835NM Continued from preceding page. Parameter Sharpness Trap1 Symbol Test point Input signal L-CW Sharp32T1 20 variable range Test method Bus conditions With the input signal’s continuous wave = 2.2MHz, FILTER SYS: 000 measure the output signal’s continuous wave Sharpness: 100000 amplitude. ···· F01S32 [Vp-p] Sharp32T1 = 20Log (F01S32/PEAKDC) Max Sharp63T1 With the input signal’s continuous wave = 2.2MHz, FILTER SYS: 000 measure the output signal’s continuous wave Sharpness: 111111 amplitude. ···· F01S63 [Vp-p] Sharp63T1 = 20Log (F01S63/PEAKDC) Min Sharp0T1 With the input signal’s continuous wave =2.2MHz, FILTER SYS: 000 measure the output signal’s continuous wave Sharpness: 000000 amplitude. ···· F01S0 [Vp-p] Sharp0T1 = 20Log (F01S0/PEAKDC) Sharpness Trap2 L-CW Sharp32T2 20 variable range With the input signal’s continuous wave=3MHz, Filter Sys: 010 measure the output signal’s continuous wave Sharpness: 100000 amplitude. ···· F02S32 [Vp-p] Sharp32T3 = 20Log (F02S32/PEAKDC) Max Sharp63T2 With the input signal’s continuous wave=3MHz, Filter Sys:010 measure the output signal’s continuous wave Sharpness: 111111 amplitude. ···· F02S63 [Vp-p] Sharp63T2 = 20Log (F02S63/PEAKDC) Min Sharp0T2 With the input signal’s continuous wave = 3MHz, Filter Sys: 010 measure the output signal’s continuous wave Sharpness: 000000 amplitude. ···· F02S0 [Vp-p] Sharp0T2 = 20Log (F02S0/PEAKDC) Sharpness Trap3 L-CW Sharp32T3 20 variable range With the input signal’s continuous wave=3MHz, Filter Sys:100 measure the output signal’s continuous wave Sharpness: 100000 amplitude. ···· F03S32 [Vp-p] Sharp32T3 = 20Log (F03S32/PEAKDC) Max Sharp63T3 With the input signal’s continuous wave = 3MHz, Filter Sys: 100 measure the output signal’s continuous wave Sharpness: 111111 amplitude. ···· F03S63 [Vp-p] Sharp63T3 = 20Log (F03S63/PEAKDC) Min Sharp0T3 With the input signal’s continuous wave = 3MHz, Filter Sys: 100 measure the output signal’s continuous wave Sharpness: 000000 amplitude. ···· F03S0 [Vp-p] Sharp0T3 = 20Log (F03S0/PEAKDC) White peak 1 L-100 WPL1 20 limiter operating Prepare the signal that enables change of APL WPL = 0 and set APL = 10%. Increase the input signal and DC.rest = 0 measure the input signal level at which the output point is clipped. (PIN55: 2.5V) 2 WPL2 Prepare the signal that enables change of APL WPL = 1 and set APL = 100%. Increase the input signal DC.rest = 0 and measure the input signal level at which the output is clipped. (PIN55: 2.5V) 3 WPL3 Prepare the signal that enables change of APL WPL = 2 and set APL = 100%. Increase the input signal DC.rest = 0 and measure the input signal level at which the output is clipped. (PIN55: 2.5V) 4 WPL4 Prepare the signal that enables change of APL WPL = 3 and set APL = 100%. Increase the input signal DC.rest = 0 and measure the input signal level at which the output is clipped. (PIN55: 2.5V) Continued on next page. No.7962-28/50 LA76835NM Continued from preceding page. Parameter Y gamma 1 Symbol Test point YG1 Input signal L-100 20 effective Test method Bus conditions Measure the output amplitude (0 to 100 IR) when Y GAMMA is 0. After that, set Y GAMMA to 1 and point measure the output amplitude (0 to 100 IR). This is GAM1. Calculate YG1 with the formula YG1 = GAM1/GAM0 * 100. 2 YG2 Measure the output amplitude (0 to 100 IR) when Y GAMMA is 0. After that, set Y GAMMA to 2 and measure the output amplitude (0 to 100 IR). This is GAM2. Calculate YG1 with the formula YG2 = GAM2/GAM0 * 100. 3 YG3 Measure the output amplitude (0 to 100 IR) when Y GAMMA is 0. After that, set Y GAMMA to 3 and measure the output amplitude (0 to 100 IR). This is GAM3. Calculate YG3 with the formula YG3 = GAM3/GAM0 * 100. GRAY MODE LEVEL GRAY 20 Horizontal/vertical blanking output level L-100 RGBBLK 20 Measure the DC level (deviation from pedestal) of GRAY.MODE = 1 pin20, and transfer IRE. CROSS.B/W = 2 Measure the DC level for the output signal’s blanking period. ···· RGBBLK [V] No.7962-29/50 LA76835NM Deflection Block Input Signals and Test Conditions Unless otherwise specified, the following conditions apply when each measurement is made. 1. VIF, SIF blocks: No signal 2. C input: No. signal 3. Sync input: A horizontal/vertical composite sync signal NTSC: 40IRE, horizontal sync signal (15.734264kHz) and vertical sync signal (59.94kHz) Note: No burst signal, chroma signal shall exist below the pedestal level. Signal unsuitable for Y input Signal suitable for Y input Chroma signal Burst signal 4. Bus control conditions: Initial conditions unless otherwise specified. 5. The delay time from the rise of the horizontal output (pin 31 output) to the fall of the FBP IN (pin 33 input) is 9µs. 6. Pin 25 (vertical size correction circuit input terminal) is connected to VCC (5.0V). No.7962-30/50 LA76835NM Deflection Block Test Conditions Parameter Symbol Horizontal free-running fH Test point 31 frequency Input signal Test method Bus conditions Y IN: Connect a frequency counter to the output of pin No signal 31 (H out) and measure the horizontal free-running Y IN: Hori- Using an oscilloscope, monitor the horizontal sync zontal/ signal which is input to the Y IN (pin 52) and the pin vertical sync 31 output (H out) and vary the horizontal signal signal frequency to measure the pull-in range. Y IN: Hori- Measure the voltage for the pin 31 horizontal zontal/ output pulse’s low-level period. frequency. Horizontal pull-in range fH PULL 52 Horizontal output Hduty 31 pulse length vertical sync signal Horizontal output pulse V Hsat 31 saturation voltage Y IN: Hori- Measure the voltage for the pin 31 horizontal zontal/ output pulse’s low-level period. vertical sync signal Horizontal M HAFCM 30 AFC control current Y IN: Hori- Measure the current incoming into pin 30 hori- zontal/ zontal AFC filter. AFCGAIN: 0 vertical sync signal H HAFCH Measure the current incoming into pin 30 hori- AFCGAIN: 1 zontal AFC filter. L Horizontal output pulse HAFCL HPHCEN 31 Y IN: Measure the current incoming into pin 30 hori- No signal zontal AFC filter. Y IN: Hori- Measure the delay time T from the rise of the pin zontal/ 31 horizontal output pulse to the fall of the Y IN vertical sync horizontal sync signal. signal HPHCEN (ns) = (T-9.0us)×1000 52 AFCGAIN: 0 T 20IRE 2.5V Horizontal output Horizontal position adjustment range HPHrange 31 52 Y IN: Hori- With H PHASE set at 0, 16, and 31, measure the H PHASE: 00000 zontal/ delay time from the rise of the pin 31 horizontal H PHASE: 11111 vertical sync output pulse to the fall of the Y IN horizontal sync signal signal and measure the adjustment range. (Determine the difference from HPHASE16.) Measuring 20IRE Horizontal output Continued on next page. No.7962-31/50 LA76835NM Continued from preceding page. Input signal Horizontal position Symbol Test point HPHstep 31 adjustment maximum variable width Input signal Test method Bus conditions Y IN: Hori- With H PHASE: 0 to 31 varied, measure the delay H PHASE: 00000 zontal/ time from the rise of the pin 31 horizontal output to vertical sync pulse to the fall of the Y IN horizontal sync signal H PHASE: 11111 signal and calculate the variation at each step. Retrieve 52 data for maximum variation. Measuring 20IRE 2.5V Horizontal output Horizontal 2nd AFC HPMIN 31 pull-in range (min) Y IN: Measure the delay time from the rise of the pin 31 Horizontal/ horizontal output pulse to the fall of the Y IN hori- vertical sync zontal sync signal. Note that the delay time from signal the rise of horizontal output (pin 31 output) to the 52 rise of F.B.P IN (pin 33 input) is assumed to be 0µs. T 20IRE 2.5V Horizontal output Horizontal 2nd AFC HPMAX 31 pull-in range (max) Y IN: Measure the delay time from the rise of the pin 31 Horizontal/ horizontal output pulse to the fall of the Y IN hori- vertical sync zontal sync signal. Note that the delay time from signal the rise of horizontal output (pin 31 output) to the 52 rise of F.B.P IN (pin 33 input) is assumed to be 20µs. Vertical free-running VFR60 27 frequency YIN: Measure the cycle T of pin 27 vertical output. No signal 1/THz Vertical output T Vertical pull-in range fvPULL 27 2.5V Y IN: Using an oscilloscope, monitor the vertical ysnc Horizontal/ signal which in input to the Y IN (pin 52) and then vertical sync pin 27 output (V out) and vary the vertical signal signal frequency to measure the pull-in range. Y IN: Decrease the current from a source connected to Horizontal/ pin 29 and measure the pin 29 voltage at which vertical sync HOUT stops. (Horizontal sync frequency: 15734 Hz) Horizontal output stop voltage Hstop 29 signal 31 Continued on next page. No.7962-32/50 LA76835NM Continued from preceding page. Input signal Horizontal @0 Symbol Test point BLKL0 20 Input signal Test method Bus conditions Y IN: Measure the time T from the left end of Hsync at Horizontal/ pin 52 Y IN to the left end of blanking at pin 20 Blue left variable vertical sync OUT with BLKL = 0000. range signal blanking 52 BLKL: 0000 Hsync Y IN T Blue OUT @15 BLKL15 Measure the time T from the left end of Hsync at BLKL: 1111 pin 52 Y IN to the left end of blanking at pin 20 Blue OUT with BLKL = 1111. Y IN Hsync T Blue OUT Y IN: Measure the time T from the left end of Hsync at Horizontal/ pin 52 Y IN to the left end of blanking at pin 20 Blue right vertical sync OUT with BLKR = 0000. variable signal Horizontal @0 BLKR0 20 blanking 52 range Y IN T BLKR: 0000 Hsync Blue OUT @15 BLKR15 Measure the time T from the left end of Hsync at BLKR: 1111 pin 52 Y IN to the left end of blanking at pin 20 Blue OUT with BLKR = 1111. Y IN T Hsync Blue OUT Continued on next page. No.7962-33/50 LA76835NM Continued from preceding page. Input signal Sand castle H Symbol Test point SANDH 33 pulse crest value Input signal Test method Measure the supply voltage at point H of the pin 33 Horizontal/ FBP IN wave form for Hsync period. vertical sync H signal M1 Bus conditions Y IN: SANDM1 Measure the supply voltage at point M1 of the pin 33 FBP IN wave form for Hsync period. M1 L Measure the supply voltage at point L of the pin 33 SANDL FBP IN wave form for Hsync period. L Burst gate pulse length BGPWD 33 Y IN: Measure the BGP width T of the pin 33 FBP IN Horizontal/ wave form for Hsync period. vertical sync T signal Burst gate pulse BGPPH 33 I phase Y IN: Measure the time from the left end of Hsync at pin Horizontal/ 52 Y IN to the left end of the pin 33 FBP IN wave vertical sync form for Hsync period. Hsync signal Y IN 52 T FBP IN X-ray protection circuit operating VXRAY 31 voltage Y IN: Connect a DC power supply to pin 38 and Horizontal/ gradually increase the voltage from 0V until the pin vertical sync 31 horizontal output pulse ceases. Measure the signal DC voltage at pin 38 at that moment. 38 No.7962-34/50 LA76835NM Vertical Screen Size Correction Input signal Vertical @64 Symbol Test point Vsnt64 27 ramp output amplitude Input signal Test method Bus conditions Y IN: Monitor the pin 27 vertical ramp output and Horizontal/ measure the voltage at line 22 and line 262. vertical sync Vsnt64 = Vline262-Vline22 signal Vertical ramp output Line 262 Line 22 @0 Vsnt0 Monitor the pin 27 vertical ramp output and VSIZE: measure the voltage at line 22 and line 262. 0000000 Vsnt0 = Vline262-Vline22 Vertical ramp output Line 262 Line 22 @127 Monitor the pin 27 vertical ramp output and Vsnt127 VSIZE: 1111111 measure the voltage at line 22 and line 262. Vsnt127 = Vline262-Vline22 Vertical ramp output Line 262 Line 22 Vertical size 0.75 VSIZE75 27 Y IN: Monitor the pin 27 vertical ramp output and Horizontal/ measure the voltage at line 22, line 262. vertical sync VSIZE75 = (Vline262-Vline22)/Vsent64 signal VSIZE0.75: 1 Vertical ramp output Line 262 Line 142 Line 22 No.7962-35/50 LA76835NM High-voltage Dependent Vertical Size Correction Input signal Vertical size Symbol Test point Vsizecomp 27 correction @0 Input signal Test method Y IN: Monitor the pin 27 vertical ramp output and Horizontal/ measure the voltage at the line 22 and line 262 vertical sync with VCOMP = 000. signal Va = Vline262-Vline22 Bus conditions VCOMP: 000 Apply 4.0V to pin 25 and measure the voltage at the line 22 and line 262 again. Vb = Vline262-Vline22 Vsizecomp = Vb/Va Vertical ramp output Line 262 Line 22 Vertical Screen Position Adjustment Input signal Vertical @32 Symbol Test point Vdcnt32 27 ramp DC Input signal Monitor the pin 27 vertical ramp output and Horizontal/ measure the voltage at line 142. vertical sync voltage Test method Y IN: signal Bus conditions Vertical ramp output Line 142 @0 Vdcnt0 Monitor the pin 27 vertical ramp output and VDC: 000000 measure the voltage at line 142. Vertical ramp output Line 142 @63 Vdcnt63 Monitor the pin 27 vertical ramp output and VDC: 111111 measure the voltage at line 142. Vertical ramp output Line 142 Continued on next page. No.7962-36/50 LA76835NM Continued from preceding page. Input signal Vertical @16 Symbol Test point Vlint16 27 linearity TOP Input signal Test method Bus conditions Y IN: Monitor the pin 27 vertical ramp output and Horizontal/ measure the voltage at line 22, line 142 and 262. vertical sync Assign the respective measured values to Va, Vb signal and Vc. Vlint16 = (Vb-Va)/(Vc-Vb) Vertical ramp output Line 262 Line 142 Line 22 @0 Vlint0 Monitor the pin 27 vertical ramp output and VLIN_TOP: 00000 measure the voltage at line 22, line 142 and 262 with VLIN_TOP = 00000. Assign the respective measured values to Va, Vb and Vc. Vlint0 = (Vb-Va)/(Vc-Vb) Vertical ramp output Line 262 Line 142 Line 22 @31 Vlint31 Monitor the pin 27 vertical ramp output and VLIN_TOP: 11111 measure the voltage at line 22, line 142 and 262 with VLIN_TOP = 11111. Assign the respective measured values to Va, Vb and Vc. Vlint31 = (Vb-Va)/(Vc-Vb) Vertical ramp output Line 262 Line 142 Line 22 Continued on next page. No.7962-37/50 LA76835NM Continued from preceding page. Input signal Vertical @16 Symbol Test point Vlinb16 27 linearity BOTTOM Input signal Test method Bus conditions Y IN: Monitor the pin 27 vertical ramp output and Horizontal/ measure the voltage at line 22, line 142, and 262. vertical sync Assign the respective measured values to Va, Vb, signal and Vc. Vlinb16 = (Vb-Va)/(Vc-Vb) Vertical ramp output Line 262 Line 142 Line 22 @0 Vlinb0 Monitor the pin 27 vertical ramp output and VLIN_BOTTOM: measure the voltage at line 22, line 142 and 262 00000 with VLIN_BOTTOM = 00000. Assign the respective measured values to Va, Vb and Vc. Vlinb0 = (Vb-Va)/(Vc-Vb) Vertical ramp output Line 262 Line 142 Line 22 @31 Vlinb31 Monitor the pin 27 vertical ramp output and VLIN_BOTTOM: measure the voltage at line 22, line 142 and 262 11111 with VLIN_BOTTOM = 11111. Assign the respective measured values to Va, Vb and Vc. Vlinb31 = (Vb-Va)/(Vc-Vb) Vertical ramp output Line 262 Line 142 Line 22 Continued on next page. No.7962-38/50 LA76835NM Continued from preceding page. Input signal Vertical @16 Symbol Test point VScor16 27 S-shaped correction Input signal Test method Y IN: Monitor the pin 27 vertical ramp output and Horizontal/ measure the voltage at line 32, line 52, line 132, vertical sync line 152, line 232 and 252. Assign the respective signal measured values to Va, Vb, Vc, Vd, Ve and Vf. Bus conditions VS:10000 VScor16 = 0.5((Vb-Va)+(Vf-Ve))/ (Vd-Vc) Vertical ramp output Line 252 Line 232 Line 152 Line 132 Line 52 Line 32 @0 VScor0 Monitor the pin 27 vertical ramp output and measure the voltage at the line 32, line 52, line 132, line 152, line 232 and line 252 with VSC = 000. Assign the respective measured values to Va, Vb, Vc, Vd, Ve and Vf. VScor0 = 0.5((Vb-Va)+(Vf-Ve))/ (Vd-Vc) Vertical ramp output Line 252 Line 232 Line 152 Line 132 Line 52 Line 32 @31 VScor31 Monitor the pin 27 vertical ramp output and measure the voltage at the line 32, line 52, line 132, line 152, line 232 and line 252 with VSC = 000. Assign the respective measured values to Va, Vb, Vc, Vd, Ve and Vf. VScor31 = 0.5((Vb-Va)+(Vf-Ve))/ (Vd-Vc) Vertical ramp output VSC: 11111 Line 252 Line 232 Line 152 Line 132 Line 52 Line 32 Continued on next page. No.7962-39/50 LA76835NM Continued from preceding page. Input signal Raster Cut TOP Symbol Test point RASCUTT Input signal Y IN: 27 Horizontal/ vertical sync signal Test method Bus conditions Monitor the pin 27 vertical ramp output and measure the timing with which the changes in the lower part of the ramp output disappear. RASTER_CUT: 1 Vertical ramp output RASCUTT BOTTOM Monitor the pin 27 vertical ramp output and measure the timing with which the changes in the upper part of the ramp output start. RASCUTB RASTER_CUT: 1 Vertical ramp output RASCUTB H Phase @8 HBOW8 Y IN: 31 BOW Horizontal/ vertical sync signal 52 Measure the delay times, at lines 22 and 142, from the rise of the pin 27 horizontal output pulse to the fall of the YIN horizontal sync signal. Let T1 and T2 be these measured values, respectively, and use them to calculate the following formula. HBOW8 = T1-T2 T 20IRE 2.5V Horizontal output @0 HBOW0 Measure the delay times, at lines 22 and 142, from the rise of the pin 27 horizontal output pulse to the fall of the YIN horizontal sync signal. Let T1 and T2 be these measured values, respectively, and use them to calculate the following formula. HBOW0 = T1-T2 H_Phase_BOW: 0000 T 20IRE 2.5V Horizontal output @15 HBOW15 Measure the delay times, at lines 22 and 142, from H_Phase_BOW: the rise of the pin 27 horizontal output pulse to the 1111 fall of the YIN horizontal sync signal. Let T1 and T2 be these measured values, respectively, and use them to calculate the following formula. HBOW15 = T1-T2 T 20IRE 2.5V Horizontal output Continued on next page. No.7962-40/50 LA76835NM Continued from preceding page. Input signal H Phase @8 Symbol Test point HANG8 31 ANGLE 52 Input signal Test method Bus conditions Y IN: Measure the delay times, at lines 22 and 142, from Horizontal/ the rise of the pin 27 horizontal output pulse to the vertical sync fall of the YIN horizontal sync signal. Let T1 and T2 signal be these measured values, respectively, and use them to calculate the following formula. HANG8 = T1-T2 T 20IRE 2.5V Horizontal output @0 HANG0 Measure the delay times, at lines 22 and 142, from H_Phase_ANGLE: the rise of the pin 27 horizontal output pulse to the 0000 fall of the YIN horizontal sync signal. Let T1 and T2 be these measured values, respectively, and use them to calculate the following formula. HANG0 = T1-T2 T 20IRE 2.5V Horizontal output @15 HANG15 Measure the delay times, at lines 22 and 142, from H_Phase_ANGLE: the rise of the pin 27 horizontal output pulse to the 1111 fall of the YIN horizontal sync signal. Let T1 and T2 be these measured values, respectively, and use them to calculate the following formula. HANG15 = T1-T2 T 20IRE 2.5V Horizontal output No.7962-41/50 LA76835NM HS/VS/VBLK Input signal Symbol HS pulse output phase PWHS Test point 15 Input signal Test method Y IN: Monitor the HS output of pin 15 and measure the Horizontal/ pulse width. Bus conditions vertical sync signal VS pulse output phase PWVS 16 Y IN: Monitor the VS output of pin 16 and measure the Horizontal/ pulse width. vertical sync signal Vertical @0 VBLK0 20 blanking period @1 @2 VBLK1 Y IN: Monitor the B output of pin 20 and measure the Horizontal/ vertical blanking period. vertical sync Monitor the B output of pin 20 and measure the signal vertical blanking period. VBLK2 Monitor the B output of pin 20 and measure the V_BLK_Select: 00 V_BLK_Select: 01 V_BLK_Select: 10 vertical blanking period. @3 Monitor the B output of pin 20 and measure the VBLK3 V_BLK_Select: 11 vertical blanking period. Horizontal Size Adjustment Input signal East/Wst @32 Symbol Test point EWdc32 26 DC voltage Input signal Monitor the East/West output (parabolic wave Horizontal, output) of pin 26 and measure the voltage at line vertical sync 142. signal @0 Test method Y IN: EWdc0 East/West output Bus conditions Line 142 Monitor the East/West output (parabolic wave EWDC: 000000 output) of pin 26 and measure the voltage at line 142. East/West output @63 EWdc63 Line 142 Monitor the East/West output (parabolic wave EWDC: 111111 output) of pin 26 and measure the voltage at line 142. East/West output Line 142 High-voltage Dependent Horizontal Size Compensation Input signal Horizontal size compensation @0 Symbol Test point Hsizecomp 26 Input signal Test method Y IN: Monitor the West/East output of pin 26 and Horizontal, measure the voltage (Va) at line 142. Apply 4.0 V vertical sync to pin 25 and measure again the voltage (Vb) at signal line 142. Bus conditions HCOMP: 000 Hsizecomp = Va-Vb No.7962-42/50 LA76835NM Pincushion Distortion Compensation Input signal East/West @32 Symbol Test point EWamp32 26 parabolic amplitude Input signal Test method Y IN: Monitor the East/West output (parabolic wave Horizontal, output) of pin 26 and measure the voltage at line vertical sync 22 (Va) and line 142 (Vb). signal EWamp32 = Vb-Va East/West output Bus conditions Line 142 Line 22 @0 EWamp0 Monitor the East/West output (parabolic wave EWAMP000000 output) of pin 26 and measure the voltage at line 22 (Va) and line 142 (Vb). EWamp0 = Vb-Va East/West output Line 142 Line 22 @63 EWamp63 Monitor the East/West output (parabolic wave EWAMP111111 output) of pin 26 and measure the voltage at line 22 (Va) and line 142 (Vb). EWamp63 = Vb-Va East/West output Line 142 Line 22 No.7962-43/50 LA76835NM Trapezoidal Distortion Compensation Input signal East/West @32 Symbol Test point EWtilt32 26 parabolic tilt Input signal Test method Bus conditions Y IN: Monitor the East/West output (parabolic wave Horizontal, output) of pin 26 and measure the voltage at line vertical sync 22 (Va) and line 262 (Vb). signal EWtilt32 = Va-Vb East/West output Line 262 Line 22 @0 EWtilt0 Monitor the East/West output (parabolic wave EWTILT:000000 output) of pin 26 and measure the voltage at line 22 (Va) and line 262 (Vb). EWtilt0 = Va-Vb East/West output Line 262 Line 22 @63 Monitor the East/West output (parabolic wave EWtilt63 EWTILT:111111 output) of pin 26 and measure the voltage at line 22 (Va) and line 262 (Vb). EWtilt63 = Va-Vb East/West output Line 262 Line 22 Corner Distortion Compensation Input signal East/West TOP Symbol Test point EWcortop 26 parabolic corner Input signal Test method Bus conditions Y IN: Monitor the East/West output (parabolic wave CORTOP: Horizontal, output) of pin 26 and measure the voltage at line 1111-0000 vertical sync 22 under conditions of CORTOP: 1111 (Va) and signal CORTOP: 0000 (Vb). EWcortop = Va-Vb East/West output Line 22 BOTTOM EWcorbot Monitor the East/West output (parabolic wave CORBOTTOM: output) of pin 26 and measure the voltage at line 1111-0000 262 under conditions of CORBOT: 1111 (Va) and CORBOT: 0000 (Vb). EWcorbot = Va-Vb East/West output Line 262 Continued on next page. No.7962-44/50 LA76835NM Control Register Bit Allocation Map Sub address 00000000 00001 MSB Data bits DA0 DA1 T_Disable AFC gain&gate 1 0 1 Vtrans Audio.Mute Video.Mute 0 0 0 0 00010 Sync.Kill 0 1 00011 VSEPUP V.KILL 0 0 00100 V.TEST 00101 V.COMP DA6 DA7 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 H.PAHSE 1 0 V.LIN TOP 0 1 V.LIN BOTTOM 1 1 * * * (0) (0) 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R.BIAS 01000 G.BIAS 0 0 V.SC B.BIAS 0 01010 * 01011 Drive.Test R.DRIVE (0) 1 * 01101 Blank.Def 0 G.DRIVE 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 Sub.Bright 0 1 Bright (0) * 0 Half tone Def B.DRIVE (0) * 0 Half tone 0 01100 01111 DA5 (0) 00111 01110 DA4 V.POSI COUNT.DWN.MOD 1 01001 DA3 H.FREQ V.SIZE 0 00110 DA2 LSB 1 Contrast (0) 1 0 Continued on next page. * Operated on HVCC No.7962-45/50 LA76835NM Continued from preceding page. Sub address MSB Data bits DA0 00010000 DA1 DA2 DA3 * * ODS Contrast (0) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Tint.Test 0 Sharpness 0 0 1 0 0 1 0 0 10100 Video SW * * * (0) (0) 10101 Gray Mode Tint 0 Color.Test 0 11000 11001 11010 Cross B/W 0 * (0) (0) 0 G-Y Angle Color Killer ope, 0 0 0 0 (0) (Fsc Csync) Y.APF C.BPF Test (0) 1 0 (0) Y Gamma Start 0 DC.Rest 1 0 0 Filter.Sys CbCr_IN FBPBLK.SW 0 0 0 0 WPL Ope.Point (W/Defeat) 0 Blk.Str.Shart (W/Defeat) 0 0 Blk.Str.Gain 0 0 0 0 1 Auto.Flesh C.Ext C.Bypass C_Kill ON C_Kill OFF * * * 0 0 1 0 0 (0) (0) (0) Cont.Test Digital OSD Brt.Abl.Def Mid.Stp.Def * - 0 0 0 0 (0) 1 0 0 * * * * (0) (0) (0) (0) 0 0 0 11100 Audio SW 1 11111 Color * Cb DC Offset 11110 0 0 11011 11101 DA7 (0) 10010 10111 DA6 0 Coring Gain (W/Defeat) 10110 DA5 OSD Cnt.Test 10001 10011 LSB DA4 0 0 Bright.Abl.Threshold R-Y/B-Y Angle 1 Cr DC Offset 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Volume 0 0 * VOL.FIL (0) 0 RF.AGC 1 FM.Mute * * 0 (0) (0) VIDEO.LEVEL 1 1 0 0 VIF.Sys.SW * * * IF.AGC (0) (0) (0) (0) 0 * * * * * (0) (0) (0) (0) (0) Continued on next page. No.7962-46/50 LA76835NM Continued from preceding page. Sub address 00100000 100001 100010 100011 MSB DA0 DA1 DA2 * * East/West DC (0) (0) 1 100101 101001 101010 101011 DA7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 (0) 1 0 0 0 1 0 0 * * * * 0 (0) (0) (0) (0) 0 0 1 * Tint. Through East/West Tilt (0) 0 1 0 East/West Amp 0 0 0 0 0 0 0 0 East/West Corner Bottom EW_Cor.SW * 0 (0) East/West Corner TOP East/West Test H.Size.Comp H Phase Bow Correction 0 Pre-Shoot Adjustment Over-Shoot Adjustment 1 Chroma Trap Fil Test 0 0 0 0 0 1 0 0 VSIZE75 Raster cut V BLK Select 0 0 0 H BLK K 1 * H BLK R Sync Sep Sens. VM GAIN * * * * (0) (0) (0) (0) R Width 0 1 H Phase Angle Correction 0 1 101000 DA6 * 0 100111 DA5 (0) 1 100110 DA4 * 0 LSB DA3 (0) 0 100100 Data bits R Offset 0 Y TH 0 * 0 (0) Y GAIN B Width 0 YCMIX_SW 0 0 0 B Offset 0 0 0 BUS Control Register Bit Allocation Map MSB 2nd Byte Data bits LSB DA0 DA1 DA2 DA3 DA4 DA5 DA6 DA7 X.Ray * H.Lock RF.AGC KILLER V.TRI * ST/NONST * (0) * * * * (0) * No.7962-47/50 LA76835NM Initial Conditions Register Register T.Disable 1HEX Blk.Str.Start 3HEX AFC.gain&gate 0HEX Blk.Str.Gain 0HEX H.FREQ 3FHEX Auto.Flesh 0HEX Vtrans 0HEX C.Ext 0HEX Audio.Mute 0HEX C.Bypass 1HEX Video.Mute 0HEX C.Kill.ON 0HEX H.PHASE 10HEX C.Kill.OFF 0HEX Sync.kill 0HEX Cont.Test 0HEX V.SIZE 40HEX Digital.OSD 0HEX V.SEPUP 0HEX Brt.Abl.Def 0HEX V.KILL 0HEX Mid.Stp.def 0HEX V.POSI 20HEX Bright.Abl.Threshold 4HEX V.TEST 0HEX R-Y/B-y.Angle 8HEX CD.MODE 0HEX Cb.DC.Offset 8HEX V.LIN.TOP 10HEX Cr.DC.Offset 8HEX V.COMP 7HEX Audio.SW 0HEX V.LIN.BOTTOM 10HEX Volume 0HEX V.SC BHEX S.TRAP.SW 0HEX R.BIAS 0HEX VOL.FIL 0HEX G.BIAS 0HEX RF.AGC 20HEX B.BIAS 0HEX FM.Mute 0HEX R.DRIVE 40HEX VIF.Sys.SW 0HEX G.DRIVE AHEX IF.AGC 0HEX B.DRIVE 40HEX VIDEO.LEVEL 4HEX Drive.Test 0HEX East/West.DC 20HEX Half.tone 1HEX East/West.Amp 20HEX Half.tone.Def 1HEX East/West.Tilt 20HEX Blank.Def 0HEX Tint.Through 0HEX Sub.Bias 40HEX East/West.Corner.Bottom 0HEX Bright 40HEX East/West.Corner.TOP 0HEX Contrast 40HEX East/West.Corner.SW 0HEX OSD.Contrast 10HEX Hlock.Vdet 0HEX OSD.Cnt.Test 0HEX East/West.Test 0HEX Coring.Gain 0HEX H.Size.Comp 7HEX Sharpness 0HEX H.Phase.Bow.Correction 8HEX Tint 40HEX H.Phase.Angle.Correction 8HEX Tint.Test 0HEX Pre-Shoot.Adjustment 0HEX Color 40HEX Over-Shoot.Adjustment 0HEX Color.Test 0HEX Chroma.Trap.Fil.Test 4HEX Video.SW 0HEX H.BLK.L 8HEX Filter.SYS 0HEX H.BLK.R 8HEX Gray.Mode 0HEX Sync.Sep.Sence 4HEX Cross.B/W 0HEX VM.Gain 4HEX CbCr.IN 0HEX YCMIX.SW 0HEX G-Y.Angle.SW 0HEX V.SIZE0.75 0HEX Color.kill.ope 0HEX Raster.cut 0HEX FBPBLK.SW 1HEX V.BLK.Select 0HEX (fsc.or.Csync) 0HEX Y.TH 0HEX Y.APF 0HEX Y.GAain 0HEX C.BPF.TEST 2HEX R.Width 0HEX WPL.Ope.Point 0HEX R.Offset 0HEX Y.Gamma.Start 0HEX B.Width 0HEX DC.Rest 0HEX B.Offset 0HEX No.7962-48/50 LA76835NM Pin Assignment Pin Function Pin Function 1 F.GND 80 IF GND 2 F.GND 79 PIF Input1 3 F.GND 78 PIF Input2 4 F.GND 77 RF AGC Output 5 IF VCC 76 PIF AGC 6 FM Filter 75 FM Output 7 AFT Output 74 FM&VOL VCC 8 Bus Data 73 AUDIO Output 9 Bus Clock 72 NC 10 ABL 71 FM Noise Filter 11 Red Input 70 NC 12 Green Input 69 SIF Input 13 Blue Input 68 SIF APC Filter 14 Fast Blanking Input 67 SIF Output 15 HS 66 Ext. Audio Input 16 VS 65 APC Filter 17 RGB VCC 64 F.GND 18 Red Output 63 F.GND 19 Green Output 62 F.GND 20 Blue Output 61 F.GND 21 F.GND 60 VCO Coil 1 22 F.GND 59 VCO Coil 2 23 F.GND 58 FLL Filter 24 F.GND 57 NC 25 V Size Comp input 56 Video Output 26 E/W Output 55 DC Rest & Black Level Detector 27 Vertical Output 54 Internal Video Input (S-C IN) 28 Ramp ALC Filter 53 Video/Vertical VCC 29 Horizontal/BUS VCC 52 External Video Input (Y IN) 30 Horizontal AFC Filter 51 NC 31 Horizontal Output 50 Selecterd Video Output 32 CPU VCC 49 Video/Chroma/Vertical GND 33 Flyback pulse Input 48 VM Input 34 H VCO I ref 47 Clamp Filter 35 CPU Reset 46 3.58MHz Crystal 36 H.GND 45 Chroma APC Filter 37 VM Output 44 fsc (3.58MHz) Output 38 X-RAY 43 F.GND 39 Cb Input 42 F.GND 40 Cr Input 41 F.GND No.7962-49/50 LA76835NM Specifications of any and all SANYO Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment. SANYO Semiconductor Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design. In the event that any or all SANYO Semiconductor products (including technical data,services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Semiconductor Co., Ltd. Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor product that you intend to use. Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties. This catalog provides information as of December, 2006. Specifications and information herein are subject to change without notice. PS No.7962-50/50