STMICROELECTRONICS LSM330DLC

LSM330DLC
iNEMO inertial module:
3D accelerometer and 3D gyroscope
Datasheet — production data
Features
■
Analog supply voltage: 2.4 V to 3.6 V
■
Digital supply voltage IOs: 1.8 V
■
Low power mode
■
Power-down mode
■
3 independent acceleration channels and 3
angular rate channels
LGA-28L (4x5x1.1 mm)
■
±2 g/±4 g/±8 g/±16 g dynamically selectable
full scale
■
±250/±500/±2000 dps dynamically selectable
full scale
■
SPI/I2C serial interface (16-bit data output)
■
Programmable interrupt generator for free-fall
and motion detection
■
ECOPACK® RoHS and “Green” compliant
The various sensing elements are manufactured
using specialized micromachining processes,
while the IC interfaces are developed using a
CMOS technology that allows the design of a
dedicated circuit which is trimmed to better match
the sensing element characteristics.
The LSM330DLC has dynamically userselectable full scale acceleration range of
±2 g/±4 g/±8 g/±16 g and angular rate of
±250/±500/±2000 deg/sec.
The accelerometer and gyroscope sensors can
be either activated or separately put in Low
power/Power-down mode for applications
optimized for power saving.
Application
■
GPS navigation systems
■
Impact recognition and logging
■
Gaming and virtual reality input devices
■
Motion activated functions
■
Intelligent power saving for handheld devices
■
Vibration monitoring and compensation
■
Free-fall detection
■
6D orientation detection
The LSM330DLC is available in a plastic land grid
array (LGA) package.
Table 1.
Device summary
Part number
Description
Temperature
Package Packing
range [°C]
LSM330DLC
-40 to +85
LSM330DLCTR
-40 to +85
Tray
LGA-28L
(4x5x1.1
Tape
mm)
and reel
The LSM330DLC is a system-in-package
featuring a 3D digital accelerometer and a 3D
digital gyroscope.
ST’s family of MEMS sensor modules leverages
the robust and mature manufacturing processes
already used for the production of micromachined
accelerometers.
September 2012
This is information on a product in full production.
Doc ID 022162 Rev 2
1/66
www.st.com
66
Contents
LSM330DLC
Contents
1
2
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Module specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5
3
4
SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2
I2C - inter IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2
Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1
4.2
2/66
2.4.1
Normal mode, Low power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.1
Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2
6D/4D orientation detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.3
“Sleep-to-wake” and “Return to sleep” . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Linear acceleration digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.1
FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.2
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.3
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.4
Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.5
Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.6
Retrieve data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3
Gyroscope digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4
FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.1
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4.2
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Doc ID 022162 Rev 2
LSM330DLC
4.5
4.6
5
6
Contents
4.4.3
Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.4
Bypass-to-stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.5
Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.6
Retrieve data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Level-sensitive / Edge-sensitive data enable . . . . . . . . . . . . . . . . . . . . . . 24
4.5.1
Level-sensitive trigger stamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5.2
Edge-sensitive trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1
External capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2
Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1
I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1.1
6.2
I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2.1
SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2.2
SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2.3
SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7
Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8
Register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.1
CTRL_REG1_A (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.2
CTRL_REG2_A (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.3
CTRL_REG3_A (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.4
CTRL_REG4_A (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.5
CTRL_REG5_A (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.6
CTRL_REG6_A (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.7
REFERENCE/DATACAPTURE_A (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.8
STATUS_REG_A (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.9
OUT_X_L_A, OUT_X_H_A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.10
OUT_Y_L_A, OUT_Y_H_A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.11
OUT_Z_L _A, OUT_Z_H_A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Doc ID 022162 Rev 2
3/66
Contents
4/66
LSM330DLC
8.12
FIFO_CTRL_REG_A (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.13
FIFO_SRC_REG_A (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.14
INT1_CFG_A (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.15
INT1_SRC_A (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.16
INT1_THS_A (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.17
INT1_DURATION_A (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.18
CLICK_CFG _A (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.19
CLICK_SRC_A (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.20
CLICK_THS_A (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.21
TIME_LIMIT_A (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.22
TIME_LATENCY_A (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.23
TIME WINDOW_A (3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.24
Act_THS (3Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.25
Act_DUR (3Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.26
WHO_AM_I_G (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.27
CTRL_REG1_G (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.28
CTRL_REG2_G (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.29
CTRL_REG3_G (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.30
CTRL_REG4_G (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.31
CTRL_REG5_G (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.32
REFERENCE_G (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
8.33
OUT_TEMP_G (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.34
STATUS_REG_G (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.35
OUT_X_L_G, OUT_X_H_G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.36
OUT_Y_L_G, OUT_Y_H_G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.37
OUT_Z_L_G, OUT_Z_H_G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.38
FIFO_CTRL_REG_G (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.39
FIFO_SRC_REG_G (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.40
INT1_CFG_G (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.41
INT1_SRC_G (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.42
INT1_THS_XH_G (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.43
INT1_THS_XL_G (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.44
INT1_THS_YH _G (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Doc ID 022162 Rev 2
LSM330DLC
Contents
8.45
INT1_THS_YL_G (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.46
INT1_THS_ZH_G (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.47
INT1_THS_ZL_G (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.48
INT1_DURATION_G (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
10
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Doc ID 022162 Rev 2
5/66
List of tables
LSM330DLC
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
6/66
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Operating mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 28
Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 28
Linear acceleration SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Angular rate SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
CTRL_REG1_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CTRL_REG1_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
CTRL_REG2_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CTRL_REG2_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CTRL_REG3_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CTRL_REG3_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
CTRL_REG4_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
CTRL_REG4_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
CTRL_REG5_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
CTRL_REG5_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
CTRL_REG6_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
CTRL_REG6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
REFERENCE_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
REFERENCE register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
STATUS_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
STATUS_REG_A register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
FIFO_CTRL_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
FIFO_CTRL_REG_A register description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
FIFO_SRC_REG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
FIFO_SRC_REG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
INT1_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
INT1_CFG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
INT1_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
INT1_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
INT1_THS_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
INT1_THS_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Doc ID 022162 Rev 2
LSM330DLC
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.
List of tables
INT1_DURATION_Aregister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
INT1_DURATION_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
CLICK_CFG_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CLICK_CFG_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CLICK_SRC_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CLICK_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
CLICK_THS_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
CLICK_SRC_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
TIME_LIMIT_A register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
TIME_LIMIT_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
TIME_LATENCY_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
TIME_LATENCY_A description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
TIME_WINDOW_A register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
TIME_WINDOW_A description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Act_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Act_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Act_DUR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Act_DUR description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
WHO_AM_I_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
CTRL_REG1_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
CTRL_REG1_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
DR and BW configuration setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Power mode selection configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
CTRL_REG2_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
CTRL_REG2_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
High-pass filter cut-off frequency configuration [Hz] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
CTRL_REG3_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
CTRL_REG3_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
CTRL_REG4_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
CTRL_REG4_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
CTRL_REG5_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
CTRL_REG5_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
REFERENCE_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
REFERENCE_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
OUT_TEMP_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
OUT_TEMP_G register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
STATUS_REG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
FIFO_CTRL_REG_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
FIFO_CTRL_REG_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
FIFO_SRC_REG_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
FIFO_SRC_REG_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
INT1_CFG_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
INT1_CFG_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
INT1_SRC_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
INT1_SRC_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
INT1_THS_XH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
INT1_THS_XH_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
INT1_THS_XL_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
INT1_THS_XL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Doc ID 022162 Rev 2
7/66
List of tables
Table 101.
Table 102.
Table 103.
Table 104.
Table 105.
Table 106.
Table 107.
Table 108.
Table 109.
Table 110.
Table 111.
8/66
LSM330DLC
INT1_THS_YH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
INT1_THS_YH_G description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
INT1_THS_YL_G register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
INT1_THS_YL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
INT1_THS_ZH_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
INT1_THS_ZH_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
INT1_THS_ZL_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
INT1_THS_ZL_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
INT1_DURATION_G register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
INT1_DURATION_G description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Doc ID 022162 Rev 2
LSM330DLC
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
LSM330DLC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Gyroscope block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Bypass-to-stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Trigger stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Level-sensitive trigger stamping (LVLen = 1; EXTRen = 0) . . . . . . . . . . . . . . . . . . . . . . . . 23
Edge-sensitive trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
LSM330DLC electrical connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Multiple-byte SPI read protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Multiple bytes SPI write protocol (2 bytes example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
INT1_Sel and Out_Sel configuration block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Wait disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Wait enabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
LGA-28 (4x5x1.1 mm): mechanical data and package dimensions . . . . . . . . . . . . . . . . . . 60
Doc ID 022162 Rev 2
9/66
Block diagram and pin description
LSM330DLC
1
Block diagram and pin description
1.1
Block diagram
Figure 1.
LSM330DLC block diagram
Sensing Block
Sensing Interface
X+
Y+
I (a)
CS_A/G
CHARGE
AMPLIFIER
Z+
SDA/SDI_A/G
+
A/D
converter
MUX
SDO_A/G
I2C/SPI
-
Control
Logic
ZY-
INT1_A
INT2_A
X-
INT1_G
X+
CHARGE
AMPLIFIER
Y+
DRDY_G\INT2_G
DEMODULATOR
Z+
I ( Ω)
+
MUX
LOW-PASS
FILTER
SCL_A/G
-
ZY-
ANALOG
CONDITIONING
X-
Feedback+
Feedback-
AUTOMATIC
GAIN
CONTROL
DriveVOLTAGE
GAIN
AMPLIFIER
Drive+
REFERENCE
CONTROL LOGIC
&
INTERRUPT GEN.
TRIMMING
CIRCUITS
CLOCK
PHASE
GENERATOR
AM10160V1
10/66
Doc ID 022162 Rev 2
X
1
DIRECTION OF
DETECTABLE
ACCELERATIONS
SDO_A
Z
28
21
INT1_A
SDA_A/G
Y
SDO_G
Pin connection
VDD_IO
Figure 2.
SCL_A/G
Pin description
VDD_IO
1.2
CS_A
Block diagram and pin description
CS_G
LSM330DLC
20
1
INT1_G
Z
X
CAP
RES
FILTIN Y
15
DIRECTION OF
DETECTABLE
ANGULAR RATES
6
GND
FILTOUT Y/ OUT Y
VDD
RES
VDD
7
14
VDD
X
RES
DEN_G
RES
1
X
RES
+Ω
z
RES
+Ω
Y
RES
FILTVDD
(BOTTOM VIEW)
DRDY_G/INT2_G
RES
+Ω
GND
RES
INT2_A
AM10161V1
Table 2.
Pin description
Pin#
Name
Function
1
GND
0 V supply
2
Res
Reserved. Connect to GND
3
Res
Reserved. Connect to GND
4
Res
Reserved. Connect to GND
5
Res
Reserved. Connect to GND
6
GND
0 V supply
7
Vdd
Power supply
8
Vdd
Power supply
9
Vdd
Power supply
10
Res
Reserved. Connect to Vdd
11
Res
Reserved. Connect to Vdd
12
Res
Reserved. Connect to Vdd
13
Res
Reserved. Connect to Vdd
14
Res
Reserved. Connect to Vdd
15
Cap
Connect to GND with ceramic capacitor, 10 nF (+/-10%), 25 V
16
DEN_G
17
DRDY_G/
INT2_G
18
INT1_G
Gyroscope data enable
Gyroscope data ready/interrupt signal 2
Gyroscope interrupt signal
Doc ID 022162 Rev 2
11/66
Block diagram and pin description
Table 2.
Pin description (continued)
Pin#
Name
19
INT2_A
Accelerometer interrupt signal
20
INT1_A
Accelerometer interrupt signal
21
Vdd_IO
Power supply for IO pins
22
CS_G
Gyroscope: SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I2C disabled)
23
CS_A
Accelerometer: SPI enable
I2C/SPI mode selection (1: SPI idle mode / I2C communication
enabled; 0: SPI communication mode / I2C disabled)
24
SCL_A/G
25
Vdd_IO
Power supply for IO pins
26
SDO_G
Gyroscope:
SPI serial data output (SDO)
I2C least significant bit of the device address (SA0)
27
SDO_A
Accelerometer:
SPI serial data output (SDO)
I2C least significant bit of the device address (SA0)
28
12/66
LSM330DLC
SDA_A/G
Function
I2C serial clock (SCL)/SPI serial port clock (SPC)
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
Doc ID 022162 Rev 2
LSM330DLC
Module specifications
2
Module specifications
2.1
Mechanical characteristics
@ Vdd = 3V, T = 25 °C unless otherwise noted (a)
Table 3.
Symbol
Mechanical characteristics
Parameter
Test conditions
Min.
Typ.(1)
Max.
Unit
±2
LA_FS
Linear acceleration measurement
range(2)
User-selectable
±4
g
±8
±16
±250
G_FS
Angular rate
measurement range(3)
User-selectable
±500
dps
±2000
LA_So
G_So
LA_So
Linear acceleration sensitivity
Angular rate sensitivity
Linear acceleration sensitivity
change vs. temperature
FS = ±2 g
1
FS = ±4 g
2
FS = ±8 g
4
FS = ±16 g
12
FS = ±250 dps
8.75
FS = ±500 dps
17.50
FS = ±2000 dps
70
FS = ±2 g
mg/digit
mdps/
digit
±0.05
%/°C
G_SoDr
Angular rate sensitivity change vs.
From -40 °C to +85 °C
temperature
±2
%
LA_TyOff
Linear acceleration typical zero-g
level offset accuracy(3)
FS bit set to 00
±60
mg
FS = 250 dps
±10
G_TyOff
Angular rate typical zero-rate
level(4)
FS = 500 dps
±15
FS = 2000 dps
±25
Max delta from 25 °C
±0.5
mg/°C
±0.05
dps/°C
LA_TCOff
Linear acceleration zero-g level
change vs. temperature
G_TCOff
Zero-rate level change vs.
temperature
An
Acceleration noise density
FS = ±2 g, Normal mode
Table 9, ODR bit set to
1001 Table 19
220
dps
µg/
Hz
a. The product is factory calibrated at 3.0 V. The operational power supply range is from 2.4 V to 3.6 V.
Doc ID 022162 Rev 2
13/66
Module specifications
Table 3.
LSM330DLC
Mechanical characteristics (continued)
Symbol
Parameter
Rn
Rate noise density
Top
Operating temperature range
Test conditions
Min.
FS = ±250 dps, BW = 50 Hz
Typ.(1)
Max.
0.03
-40
Unit
dps/
+85
Hz
°C
1. Typical specifications are not guaranteed.
2. Verified by wafer level test and measurement of initial offset and sensitivity.
3. Typical zero-g level offset value after MSL3 preconditioning.
4. Offset can be eliminated by enabling the built-in high-pass filter.
2.2
Electrical characteristics
@ Vdd = 3 V, T = 25 °C unless otherwise noted
Table 4.
Symbol
Vdd
Electrical characteristics
Parameter
Test conditions
Min.
Typ.(1)
Max.
Unit
Supply voltage
2.4
3.6
V
Vdd_IO
Power supply for I/O
1.71
Vdd+0.1
V
LA_Idd
Accelerometer current
consumption in Normal mode
Accelerometer current
LA_IddLowP consumption in Low power
mode
ODR = 50 Hz
11
ODR = 1 Hz
2
ODR = 50 Hz
6
µA
µA
LA_IddPdn
Accelerometer current
consumption in Power-down
mode
0.5
µA
G_Idd
Gyroscope current
consumption in Normal mode
6.1
mA
Gyroscope supply current
in Sleep mode(2)
2
mA
Gyroscope current
consumption in Power-down
mode
5
µA
G_IddLowP
G_IddPdn
VIH
Digital high level input voltage
VIL
Digital low level input voltage
VOH
High level output voltage
VOL
Low level output voltage
Top
Operating temperature range
0.8*Vdd_IO
0.2*Vdd_IO
0.9*Vdd_IO
-40
1. Typical specifications are not guaranteed.
2. Sleep mode introduces a faster turn-on time compared to Power-down mode.
14/66
V
Doc ID 022162 Rev 2
V
V
0.1*Vdd_IO
V
+85
°C
LSM330DLC
2.3
Module specifications
Temperature sensor characteristics
@ Vdd = 3V, T = 25 °C unless otherwise noted (b)
Table 5.
Symbol
Electrical characteristics
Parameter
TSDr
Temperature sensor output
change vs. temperature
TODR
Temperature refresh rate
Top
Test condition
Min.
-
Operating temperature range
-40
Typ.(1)
Max.
Unit
-1
°C/digit
1
Hz
+85
°C
1. Typical specifications are not guaranteed.
b. The product is factory calibrated at 3.0 V.
Doc ID 022162 Rev 2
15/66
Module specifications
LSM330DLC
2.4
Communication interface characteristics
2.4.1
SPI - serial peripheral interface
Subject to general operating conditions for Vdd and TOP.
Table 6.
SPI slave timing values
Value (1)
Symbol
Parameter
Unit
Min
tc(SPC)
SPI clock cycle
fc(SPC)
SPI clock frequency
tsu(CS)
CS setup time
6
th(CS)
CS hold time
8
tsu(SI)
SDI input setup time
5
th(SI)
SDI input hold time
15
tv(SO)
SDO valid output time
th(SO)
SDO output hold time
tdis(SO)
Max
100
ns
10
MHz
ns
50
9
SDO output disable time
50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results. Not
tested in production.
Figure 3.
CS
SPI slave timing diagram(c)(d)
(3)
(3)
tc(SPC)
tsu(CS)
SPC
(3)
(3)
tsu(SI)
SDI
(3)
th(SI)
LSB IN
MSB IN
tv(SO)
SDO
th(CS)
(3)
LSB OUT
3. Data on CS, SPC, SDI and SDO refer to pins: CS_A, CS_G, SCL_A/G, SDA_A/G, SDO_A / SDO_G.
c.
The SDO output line features an internal pull-up.
d. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.
16/66
tdis(SO)
th(SO)
MSB OUT
Doc ID 022162 Rev 2
(3)
(3)
LSM330DLC
Module specifications
I2C - inter IC control interface
2.4.2
Subject to general operating conditions for Vdd and TOP.
Table 7.
I2C slave timing values
I2C standard mode (1)
Parameter(1)
Symbol
f(SCL)
I2C fast mode (1)
Unit
SCL clock frequency
Min
Max
Min
Max
0
100
0
400
tw(SCLL)
SCL clock low time
4.7
1.3
tw(SCLH)
SCL clock high time
4.0
0.6
tsu(SDA)
SDA setup time
250
100
th(SDA)
SDA data hold time
0.01
KHz
µs
ns
3.45
0
0.9
tr(SDA) tr(SCL)
SDA and SCL rise time
1000
20 + 0.1Cb (2)
300
tf(SDA) tf(SCL)
SDA and SCL fall time
300
20 + 0.1Cb (2)
300
th(ST)
START condition hold time
4
0.6
tsu(SR)
Repeated START condition
setup time
4.7
0.6
tsu(SP)
STOP condition setup time
4
0.6
4.7
1.3
µs
ns
µs
Bus free time between STOP
and START condition
tw(SP:SR)
1. SCL (SCL_A/G pin), SDA (SDA_A/G pin)
2. Cb = total capacitance of one bus line, in pF
Figure 4.
I2C slave timing diagram(e)
5(3($7('
67$57
67$57
WVX65
WZ6365
6'$
WI6'$
WVX6'$
WU6'$
67$57
WK6'$
WVX63
6723
6&/
WK67
WZ6&//
WZ6&/+
WU6&/
WI6&/
!-V
e. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports
Doc ID 022162 Rev 2
17/66
Module specifications
2.5
LSM330DLC
Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 8.
Absolute maximum ratings(1)
Symbol
Vdd
Vdd_IO
Vin
Ratings
Maximum value
Unit
Supply voltage
-0.3 to 4.8
V
I/O pins supply voltage
-0.3 to 4.8
V
-0.3 to Vdd_IO +0.3
V
Input voltage on any control pin (SCL_A/G, SDA_A/G,
SDO_A, SDO_G, CS_A, CS_G, DEN_G)
3000 g for 0.5 ms
APOW
Acceleration (any axis, powered, Vdd = 3 V)
AUNP
Acceleration (any axis, unpowered)
TOP
Operating temperature range
-40 to +85
°C
TSTG
Storage temperature range
-40 to +125
°C
ESD
Electrostatic discharge protection
2 (HBM)
kV
10000 g for 0.1 ms
3000 g for 0.5 ms
10000 g for 0.1 ms
1. Supply voltage on any pin should never exceed 4.8 V.
This is a mechanical shock sensitive device, improper handling can cause permanent
damage to the part.
This is an ESD sensitive device, improper handling can cause permanent damage to
the part.
18/66
Doc ID 022162 Rev 2
LSM330DLC
3
Terminology
3.1
Sensitivity
Terminology
Linear acceleration sensitivity can be determined e.g. by applying 1 g acceleration to the
device. Because the sensor can measure DC accelerations, this can be done easily by
pointing the selected axis towards the ground, noting the output value, rotating the sensor
180 degrees (pointing towards the sky) and noting the output value again. By doing so, ±1 g
acceleration is applied to the sensor. Subtracting the larger output value from the smaller
one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value
changes very little over temperature and over time. The sensitivity tolerance describes the
range of sensitivities of a large number of sensors.
Angular Rate Sensitivity describes the angular rate gain of the sensor and can be
determined by applying a defined angular velocity to it. This value changes very little over
temperature and also very little over time.
3.2
Zero-g level
Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output
signal from the ideal output signal if no acceleration is present. A sensor in a steady state on
a horizontal surface will measure 0 g on both the X axis and Y axes, whereas the Z axis will
measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content
of OUT registers 00h, data expressed as 2’s complement number). A deviation from the
ideal value in this case is called zero-g offset.
Offset is to some extent a result of stress to MEMS sensor and therefore the offset can
slightly change after mounting the sensor onto a printed circuit board or exposing it to
extensive mechanical stress. Offset changes little over temperature, see “Linear
acceleration zero-g level change vs. temperature” in Table 3. The zero-g level tolerance
(TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.
Angular rate zero-rate level describes the actual output value if there is no angular rate
present. zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the
sensor and therefore zero-rate level can slightly change after mounting the sensor onto a
printed circuit board or after exposing it to extensive mechanical stress. This value changes
very little over temperature and over time.
Doc ID 022162 Rev 2
19/66
Functionality
4
LSM330DLC
Functionality
The LSM330DLC is a system-in-package featuring a 3D digital accelerometer and a 3D
digital gyroscope.
The device includes specific sensing elements and two IC interfaces capable to measuring
both the acceleration and angular rate applied to the module and to provide a signal to
external applications through an SPI/I2C serial interface.
The various sensing elements are manufactured using specialized micromachining
processes, while the IC interfaces are developed using a CMOS technology that allows the
design of a dedicated circuit which is trimmed to better match the sensing element
characteristics.
The LSM330DLC may also be configured to generate an inertial wakeup and free-fall
interrupt signal according to a programmed acceleration event along the enabled axes.
4.1
Normal mode, Low power mode
The LSM330DLC provides two different operating modes: Normal mode and Low power
mode. Normal mode guarantees high resolution, while Low power mode further reduces
current consumption.
The table below summarizes how to select the operating mode and the corresponding
characteristics.
Table 9.
Operating mode selection
CTRL_REG1[3]
CTRL_REG4[3]
(LPen bit)
(HR bit)
Low power mode (8-bit)
1
Normal mode (12-bit)
0
Operating mode
4.1.1
BW [Hz]
Turn-on time [ms]
0
ODR/2
1
1
ODR/9
7/ODR(kHz)
Self-test
Self-test allows the checking of sensor functionality without moving it. The self-test function
is off when the self-test bit (ST) is programmed to ‘0’. When the self-test bit is programmed
to ‘1’ an actuation force is applied to the sensor, simulating a definite input acceleration. In
this case, the sensor outputs exhibit a change in their DC levels which are related to the
selected full scale through the device sensitivity. When self-test is activated, the device
output level is given by the algebraic sum of the signals produced by the acceleration acting
on the sensor and by the electrostatic test-force. If the output signals change within the
amplitude specified in Table 3, then the sensor is working properly and the parameters of
the interface chip are within the defined specifications.
4.1.2
6D/4D orientation detection
The LSM330DLC includes 6D/4D orientation detection. In this configuration the interrupt is
generated when the device is stable in a known direction. In 4D configuration, Z axis
position detection is disabled.
20/66
Doc ID 022162 Rev 2
LSM330DLC
4.1.3
Functionality
“Sleep-to-wake” and “Return to sleep”
The LSM330DLC can be programmed to automatically switch to Low power mode upon
recognition of a determined event. Once the event condition is over, the device returns to the
preset Normal mode.
To enable this function, the desired threshold value must be stored in the Act_THS register,
while the duration value is written in the Act_DUR register.
When the internally high-pass filtered acceleration becomes lower than the threshold value
on all the three axes, the device automatically switches to Low power mode (10Hz ODR).
During this condition, the ODRx bits and LPen bit in the CTRL_REG1_G register and the
HR bit in the CTRL_REG3_G register are not considered.
When the acceleration goes back over the threshold (on at least one axis), the system
restores the operating mode and ODRs as per the CTRL_REG1_G register and
CTRL_REG3_G register settings.
4.2
Linear acceleration digital main blocks
4.2.1
FIFO
The LSM330DLC embeds 32 slots of data FIFO for each of the three output channels: X, Y
and Z. This allows consistent power saving for the system, since the host processor does
not need to continuously poll data from the sensor, but it can wake up only when needed
and burst the significant data out from the FIFO. This buffer can work accordingly in four
different modes: Bypass mode, FIFO mode, Stream mode and Stream-to-FIFO mode. Each
mode is selected by the FIFO_MODE bits in the FIFO_CTRL_REG_A register.
Programmable watermark level, FIFO_empty or FIFO_Full events can be enabled to
generate dedicated interrupts on the INT1_A/INT2_A pin (configured through the
FIFO_CTRL_REG_A register).
4.2.2
Bypass mode
In Bypass mode, the FIFO is not operational and for this reason it remains empty. For each
channel only the first address is used. The remaining FIFO slots are empty.
4.2.3
FIFO mode
In FIFO mode, data from the X, Y and Z channels are stored into the FIFO. A watermark
interrupt can be enabled (FIFO_WTMK_EN bit in the FIFO_CTRL_REG_A register in order
to be raised when the FIFO is filled to the level specified into the FIFO_WTMK_LEVEL bits
of the FIFO_CTRL_REG_A register. The FIFO continues filling until it is full (32 slots of data
for X, Y and Z). When full, the FIFO stops collecting data from the input channels.
4.2.4
Stream mode
In Stream mode, data from X, Y and Z measurement are stored into the FIFO. A watermark
interrupt can be enabled and set as in FIFO mode.The FIFO continues filling until it is full (32
slots of data for X, Y and Z). When full, the FIFO discards the older data as the new data
arrives.
Doc ID 022162 Rev 2
21/66
Functionality
4.2.5
LSM330DLC
Stream-to-FIFO mode
In Stream-to-FIFO mode, data from X, Y and Z measurement is stored in the FIFO. A
watermark interrupt can be enabled (FIFO_WTMK_EN bit in the FIFO_CTRL_REG_A
register) in order to be raised when the FIFO is filled to the level specified in the
FIFO_WTMK_LEVEL bits of the FIFO_CTRL_REG_A register. The FIFO continues filling
until it is full (32 slots of 8 -bit data for X, Y and Z). When full, the FIFO discards the older
data as the data new arrives. Once trigger event occurs, the FIFO starts operating in FIFO
mode.
4.2.6
Retrieve data from FIFO
FIFO data is read through OUT_X_L_A, OUT_X_H_A, OUT_Y_L_A, OUT_Y_H_A and
OUT_Z_L _A, OUT_Z_H_A. When the FIFO is in Stream, Trigger or FIFO mode, a read
operation to the OUT_X_L_A, OUT_X_H_A, OUT_Y_L_A, OUT_Y_H_A or OUT_Z_L _A,
OUT_Z_H_A registers provides the data stored in the FIFO. Each time data is read from the
FIFO, the oldest X, Y and Z data are placed in the OUT_X_L_A, OUT_X_H_A,
OUT_Y_L_A, OUT_Y_H_A and OUT_Z_L _A, OUT_Z_H_A registers and both single read
and read_burst operations can be used.
4.3
Gyroscope digital main blocks
Figure 5.
Gyroscope block diagram
Out_Sel
00
01
0
LPF2
ADC
LPF1
HPF
10
11
DataReg
FIFO
32x16x3
I2C
SPI
1
HPen
INT_Sel
10
11
01
Interrupt
generator
00
SCR REG
CONF REG
INT1
AM07230v1
22/66
Doc ID 022162 Rev 2
LSM330DLC
4.4
Functionality
FIFO
The LSM330DLC embeds 32 slots of 16-bit data FIFO for each of the three output channels:
yaw, pitch and roll. This allows consistent power saving for the system, since the host
processor does not need to continuously poll data from the sensor, but can wake up only
when needed and burst the significant data out from the FIFO. This buffer can work
accordingly in five different modes: Bypass mode, FIFO mode, Stream mode, Bypass-toStream mode and Stream-to-FIFO mode. Each mode is selected by the FIFO_MODE bits in
the FIFO_CTRL_REG_G register. Programmable watermark level, FIFO_empty or
FIFO_Full events can be enabled to generate dedicated interrupts on the DRDY_G/INT2_G
pin (configured through the CTRL_REG3_G register and event detection information is
available in the FIFO_SRC_REG_G register. Watermark level can be configured to WTM4:0
in the FIFO_CTRL_REG_G register.
4.4.1
Bypass mode
In Bypass mode, the FIFO is not operational and for this reason it remains empty. As
described in Figure 6 below, for each channel only the first address is used. The remaining
FIFO slots are empty. When new data is available the old data is overwritten.
Bypass mode
xi,yi,zi
empty
x0
y0
z0
x1
y1
z1
x2
y2
z2
x 31
y 31
l
Figure 6.
z31
AM07231v1
4.4.2
FIFO mode
In FIFO mode, data from the yaw, pitch and roll channels is stored in the FIFO. A watermark
interrupt can be enabled (I2_WMK bit in the CTRL_REG3_G register) in order to be raised
when the FIFO is filled to the level specified in the WTM 4:0 bits of the FIFO_CTRL_REG_G
register. The FIFO continues filling until it is full (32 slots of 16-bit data for yaw, pitch and
roll). When full, the FIFO stops collecting data from the input channels. To restart data
collection, the FIFO_CTRL_REG_G register must be written back to Bypass mode.
FIFO mode is represented in Figure 7: FIFO mode.
Doc ID 022162 Rev 2
23/66
Functionality
LSM330DLC
Figure 7.
FIFO mode
xi,yi,zi
x0
y0
z0
x1
y1
z1
x2
y2
z2
x 31
y 31
z31
AM07232v1
4.4.3
Stream mode
In Stream mode, data from yaw, pitch and roll measurement is stored in the FIFO. A
watermark interrupt can be enabled and set as in FIFO mode.The FIFO continues filling until
it is full (32 slots of 16-bit data for yaw, pitch and roll). When full, the FIFO discards the older
data as the new data arrives. Programmable watermark level events can be enabled to
generate dedicated interrupts on the DRDY_G/INT2_G pin (configured through the
CTRL_REG3_G register.
Stream mode is represented in Figure 8: Stream mode.
24/66
Doc ID 022162 Rev 2
LSM330DLC
Functionality
Figure 8.
Stream mode
xi,yi,zi
x0
y0
z0
x1
y1
z1
x2
y2
z2
x 30
y 30
z30
x 31
y 31
z31
AM07234v1
Doc ID 022162 Rev 2
25/66
Functionality
4.4.4
LSM330DLC
Bypass-to-stream mode
In Bypass-to-stream mode, the FIFO starts operating in Bypass mode and once a trigger
event occurs (related to INT1_CFG_G register events) the FIFO starts operating in Stream
mode. Refer to Figure 9 below.
Figure 9.
xi,yi,zi
Empty
Bypass-to-stream mode
x0
y 0i
z0
x1
y1
z1
x2
y2
z2
x 31
y 31
xi,yi,zi
y0
z0
x1
y1
z1
x2
y2
z2
x 30
y 30
z30
x 31
y 31
z31
z31
Bypass mode
Stream mode
Trigger event
4.4.5
x0
AM07235v1
Stream-to-FIFO mode
In Stream-to-FIFO mode, data from yaw, pitch and roll measurement is stored in the FIFO. A
watermark interrupt can be enabled on pin DRDY/INT2 by setting the I2_WTM bit in
CTRL_REG3_G register to be raised when the FIFO is filled to the level specified in the
WTM4:0 bits of the FIFO_CTRL_REG_G register. The FIFO continues filling until it is full
(32 slots of 16-bit data for yaw, pitch and roll). When full, the FIFO discards the older data as
the new data arrives. Once a trigger event occurs (related to INT1_CFG_G register events),
the FIFO starts operating in FIFO mode. Refer to Figure 10: Trigger stream mode.
26/66
Doc ID 022162 Rev 2
LSM330DLC
Functionality
Figure 10. Trigger stream mode
xi,yi,zi
x0
y0
z0
x1
y1
z1
x2
y2
z2
x 30
y 30
z30
x 31
y 31
z31
xi,yi,zi
Stream Mode
x0
y 0i
z0
x1
y1
z1
x2
y2
z2
x 31
y 31
z31
FIFO Mode
Trigger event
AM07236v1
4.4.6
Retrieve data from FIFO
FIFO data is read through OUT_X_L_G, OUT_X_H_G, OUT_Y_L_G, OUT_Y_H_G and
OUT_Z_L_G, OUT_Z_H_G. When the FIFO is in Stream, Trigger or FIFO mode, a read
operation to the OUT_X_L_G, OUT_X_H_G, OUT_Y_L_G, OUT_Y_H_G or OUT_Z_L_G,
OUT_Z_H_G registers provides the data stored in the FIFO. Each time data is read from the
FIFO, the oldest pitch, roll and yaw data are placed in the OUT_X_L_G, OUT_X_H_G,
OUT_Y_L_G, OUT_Y_H_G and OUT_Z_L_G, OUT_Z_H_G registers and both single read
and read_burst (X,Y & Z with autoincremental address) operations can be used. When data
included in OUT_Z_H_G is read, the system again starts to read information from addr
OUT_X_L _G.
4.5
Level-sensitive / Edge-sensitive data enable
The LSM330DLC allows external trigger level recognition through the enabling of the
EXTRen and LVLen bits in the CTRL_REG2_G register. Two different modes can be used:
Level-sensitive or Edge-sensitive trigger.
Doc ID 022162 Rev 2
27/66
Functionality
LSM330DLC
Figure 11. Level-sensitive trigger stamping (LVLen = 1; EXTRen = 0)
Level-sensitive
Trigger enabled
on X-Axis
Xen=1,Yen=Zen=0
Level-sensitive
Trigger enabled
on Y-axis
Yen=1, Xen=Zen=0
Level-sensitive
Trigger enabled
on Z-axis
Zen=1, Xen=Yen=0
xi,yi,zi
xi,yi,zi
xi,yi,zi
xi(15-1)
D
E
N
xi-N+1
(15-1)
D
E
N
Zi(15-0)
yi(15-0)
yi-N+1
zi-N+1
(15-0)
(15-0)
yi(15-1)
D
E
N
Zi(15-0)
xi-N+1
(15-0)
yi-N+1
(15-1)
D
E
N
Zi-N+1
(15-0)
xi(15-0)
yi(15-0)
xi-N+1
yi-N+1
(15-0)
xi(15-0)
(15-0)
Zi(15-1)
D
E
N
zi-N+1
(15-1)
D
E
N
AM10162V1
4.5.1
Level-sensitive trigger stamping
Once enabled, DEN level replaces the LSb of the X, Y or Z axes, configurable through the
Xen, Yen, Zen bits in the CTRL_REG1_G register. Data is stored in the FIFO with the
internally-selected ODR.
4.5.2
Edge-sensitive trigger
Once enabled by setting EXTRen = 1, FIFO is filled with the pitch, roll and yaw data on the
rising edge of the DEN input signal. When selected ODR is 800 Hz, the maximum DEN
sample frequency is fDEN = 1/TDEN = 400 Hz.
28/66
Doc ID 022162 Rev 2
LSM330DLC
Functionality
Figure 12. Edge-sensitive trigger
4.6
Factory calibration
The IC interface is factory calibrated for sensitivity and zero level. The trimming values are
stored in the device in non volatile memory. Any time the device is turned on, the trimming
parameters are downloaded to the registers to be used during normal operation. This allows
use of the device without further calibration.
Doc ID 022162 Rev 2
29/66
Application hints
5
LSM330DLC
Application hints
Figure 13. LSM330DLC electrical connection
Vdd_IO
Z
Y
X
1
C2
DIRECTION OF
DETECTABLE
ACCELERATIONS
SDA_A/G
SDO_A
SDO_G
VDD_IO
SCL_A/G
CS_A
VDD_IO
GND
CS_G
100 nF
+Ω
+Ω
Y
Z
z
1
X
21
INT1_A
20
1
DIRECTION OF
DETECTABLE
ANGULAR RATE
RES
(BOTTOM VIEW)
FILTVDD
RES
DEN_G
CAP
GND
RES
DRDY_G
10nF(25V)
X
X
28
INT2_A
INT1_G
+Ω
RES
FILTIN Y
15
6
GND
FILTOUT Y/ OUT Y
C1
7
14
VDD
VDD
VDD
RES
RES
RES
RES
RES
GND
GND
Vdd
C3
C4
* C1 must guarantee 1 nF value under 11 V bias condition
100 nF
GND
10 µF
GND
Digital signal from/to signal controller.Signals levels are defined by proper selection of Vdd
AM10163V1
5.1
External capacitors
The device core is supplied through the Vdd line. Power supply decoupling capacitors (C2,
C3=100 nF ceramic, C4=10 µF Al) should be placed as near as possible to the supply pin of
the device (common design practice).
All voltage and ground supplies must be present at the same time to achieve proper
behavior of the IC (refer to Figure 13).
The functionality of the device and the measured acceleration/angular rate data is
selectable and accessible through the SPI/I2C interface.
The functions, the threshold and the timing of the two interrupt pins for each sensor can be
completely programmed by the user through the SPI/I2C interface.
30/66
Doc ID 022162 Rev 2
LSM330DLC
5.2
Application hints
Soldering information
The LGA package is compliant with ECOPACK®, RoHS and “Green” standards. It is
qualified for soldering heat resistance according to JEDEC J-STD-020D.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com/mems.
Doc ID 022162 Rev 2
31/66
Digital interfaces
6
LSM330DLC
Digital interfaces
The registers embedded in the LSM330DLC may be accessed through both the I2C and SPI
serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
To select/exploit the I2C interface, the CS line must be tied high (i.e. connected to Vdd_IO).
Table 10.
Serial interface pin description
Pin name
CS_A
Linear acceleration SPI enable
Linear acceleration I2C/SPI mode selection (1: I2C mode; 0: SPI enabled)
CS_G
Angular rate SPI enable
Angular rate I2C/SPI mode selection (1: I2C mode; 0: SPI enabled)
SCL_A/G
I2C serial clock (SCL)
SPI serial port clock (SPC)
SDA_A/G
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
SDO_A
SDO_G
6.1
Pin description
I2C least significant bit of the device address (SA0)
SPI serial data output (SDO)
I2C serial interface
The LSM330DLC I2C is a bus slave. The I2C is employed to write the data to the registers,
whose content can also be read back.
The relevant I2C terminology is provided in the table below.
Table 11.
Serial interface pin description
Term
Transmitter
Receiver
Description
The device which sends data to the bus
The device which receives data from the bus
Master
The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave
The device addressed by the master
There are two signals associated with the I2C bus: the Serial Clock Line (SCL) and the
Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the
data to/from the interface.
32/66
Doc ID 022162 Rev 2
LSM330DLC
6.1.1
Digital interfaces
I2C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits, and
the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the master.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which
has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded in the LSM330DLC behaves like a slave device and the following
protocol must be adhered to. After the start condition (ST), a slave address is sent. Once a
slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the
7 LSb represent the actual register address while the MSb enables address auto increment.
If the MSb of the SUB field is ‘1’, the SUB (register address) will be automatically increased
to allow multiple data read/write.
Table 12.
Transfer when master is writing one byte to slave
Master
ST
SAD + W
SUB
Slave
SAK
Table 13.
Master
SAD + W
Slave
SAK
DATA
DATA
SAK
SAK
SP
SAK
Transfer when master is receiving (reading) one byte of data from slave
ST
SAD + W
Slave
Master
SAK
SUB
SAK
Table 14.
Table 15.
SP
Transfer when master is writing multiple bytes to slave
ST
Slave
Master
DATA
SUB
SAK
SR
SAD + R
SAK
NMAK
SAK
SP
DATA
Transfer when master is receiving (reading) multiple bytes of data from slave
ST SAD+W
SUB
SAK
SR SAD+R
SAK
MAK
SAK
DATA
MAK
DATA
NMAK
SP
DATA
Data is transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of
bytes sent per transfer is unlimited. Data is transferred with the most significant bit (MSb)
first. If a receiver cannot receive another complete byte of data until it has performed some
other function, it can hold the clock line, SCL, LOW to force the transmitter into a wait state.
Doc ID 022162 Rev 2
33/66
Digital interfaces
LSM330DLC
Data transfer only continues when the receiver is ready for another byte and releases the
data line. If a slave receiver does not acknowledge the slave address (i.e. it is not able to
receive because it is performing some real-time function) the data line must be left HIGH by
the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the
address of first register to be read.
In the communication format presented, MAK is Master Acknowledge and NMAK is No
Master Acknowledge.
Default address:
The SDO/SA0 pin (SDO_A / SDO_G) can be used to modify the least significant bit of the
device address. If the SA0 pad is connected to voltage supply, the LSb is ‘1’ (ex. address
0011001b), otherwise if the SA0 pad is connected to ground, the LSb value is ‘0’ (ex
address 0011000b).
The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated
START (SR) condition will have to be issued after the two sub-address bytes; if the bit is ‘0’
(Write) the master will transmit to the slave with direction unchanged. Table 16 and 17
explain how the SAD+Read/Write bit pattern is composed, listing all the possible
configurations.
Linear acceleration address: the default (factory) 7-bit slave address is
001100xb.
Table 16.
Linear acceleration SAD+Read/Write patterns
Command
SAD[6:1]
SAD[0] = SDO_A pin
R/W
SAD+R/W
Read
001100
0
1
00110001 (31h)
Write
001100
0
0
00110000 (30h)
Read
001100
1
1
00110011 (33h)
Write
001100
1
0
00110010 (32h)
Angular rate sensor: the default (factory) 7-bit slave address is 110101xb.
Table 17.
34/66
Angular rate SAD+Read/Write patterns
Command
SAD[6:1]
SAD[0] = SDO_G pin
R/W
Read
110101
0
1
11010101 (D5h)
Write
110101
0
0
11010100 (D4h)
Read
110101
1
1
11010111 (D7h)
Write
110101
1
0
11010110 (D6h)
Doc ID 022162 Rev 2
SAD+R/W
LSM330DLC
6.2
Digital interfaces
SPI bus interface
The LSM330DLC SPI is a bus slave. The SPI allows writing and reading the registers of the
device.
The serial interface interacts with the outside world through 4 wires: CS, SPC, SDI and SDO
(SPC, SDI, SD0 are common).
Figure 14. Read and write protocol
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AM10129V1
CS is the serial port enable and is controlled by the SPI master. It goes low at the start of the
transmission and returns high at the end. SPC is the serial port clock and is controlled by
the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are
respectively the serial port data input and output. These lines are driven at the falling edge
of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in
multiples of 8 in case of multiple-byte read/write. Bit duration is the time between two falling
edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge
of CS, while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the
rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written to the device. When 1, the data DO(7:0)
from the device is read. In the latter case, the chip drives SDO at the start of bit 8.
bit 1: MS bit. When 0, the address remains unchanged in multiple read/write commands.
When 1, the address is auto-incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (Write mode). This is the data that will be written to the device (MSb
first).
bit 8-15: data DO(7:0) (Read mode). This is the data that will be read from the device (MSb
first).
In multiple read/write commands, further blocks of 8 clock periods will be added. When the
MS bit is ‘0’, the address used to read/write data remains the same for every block. When
the MS bit is ‘1’, the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
Doc ID 022162 Rev 2
35/66
Digital interfaces
6.2.1
LSM330DLC
SPI read
Figure 15. SPI read protocol
CS
SPC
SDI
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
AM10130V1
The SPI read command is performed with 16 clock pulses. A multiple-byte read command is
performed by adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (Read mode). This is the data that will be read from the device (MSb
first).
bit 16-... : data DO(...-8). Further data in multiple-byte reading.
Figure 16. Multiple-byte SPI read protocol (2-byte example)
CS
SPC
SDI
RW
M S A D5 A D4 AD 3 A D2 A D1 A D0
SD O
DO 7 DO 6 DO 5 DO 4 DO 3 DO 2 DO 1 DO 0 DO 15 DO 14 DO 13 DO 12 DO 11 DO 10 D O9 D O8
AM10131V1
36/66
Doc ID 022162 Rev 2
LSM330DLC
6.2.2
Digital interfaces
SPI write
Figure 17. SPI write protocol
CS
SPC
SDI
D I7 D I6 D I5 D I4 DI3 DI2 DI1 DI0
RW
MS AD5 AD 4 AD 3 AD2 AD 1 AD0
AM10132V1
The SPI write command is performed with 16 clock pulses. A multiple-byte write command
is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple
writing.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (Write mode). This is the data that will be written to the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple-byte writing.
Figure 18. Multiple bytes SPI write protocol (2 bytes example)
CS
SPC
SDI
DI7 D I6 DI5 D I4 DI3 DI2 DI1 DI0 DI15 D I1 4DI13 D I1 2DI11 DI10 DI9 DI8
RW
MS AD5 AD4 AD3 AD2 AD1 AD 0
AM10133V1
6.2.3
SPI read in 3-wire mode
3-wire mode is entered by setting the SIM bit to ‘1’ (SPI serial interface mode selection) in
the CTRL_REG4_G register.
Doc ID 022162 Rev 2
37/66
Digital interfaces
LSM330DLC
Figure 19. SPI read protocol in 3-wire mode
CS
SPC
SDI/O
D O7 D O6 D O5 DO4 DO3 DO2 DO1 DO0
RW
MS AD5 AD 4 AD 3 AD2 AD1 AD 0
AM10134V1
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, do not increment address; when 1, increment address in multiple
reading.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (Read mode). This is the data that will be read from the device (MSb
first).
Multiple read command is also available in 3-wire mode.
38/66
Doc ID 022162 Rev 2
LSM330DLC
7
Register mapping
Register mapping
The table below provides a listing of the 8-bit registers embedded in the device, and their
related addresses:
Table 18.
Register address map
Name
Slave
address
Register address
Type
Default
Hex
Reserved (do not modify)
Table 16
00 - 1F
CTRL_REG1_A
Table 16
rw
20
010 0000
00000111
CTRL_REG2_A
Table 16
rw
21
010 0001
00000000
CTRL_REG3_A
Table 16
rw
22
010 0010
00000000
CTRL_REG4_A
Table 16
rw
23
010 0011
00000000
CTRL_REG5_A
Table 16
rw
24
010 0100
00000000
CTRL_REG6_A
Table 16
rw
25
010 0101
00000000
REFERENCE_A
Table 16
rw
26
010 0110
00000000
STATUS_REG_A
Table 16
r
27
010 0111
00000000
OUT_X_L_A
Table 16
r
28
010 1000
output
OUT_X_H_A
Table 16
r
29
010 1001
output
OUT_Y_L_A
Table 16
r
2A
010 1010
output
OUT_Y_H_A
Table 16
r
2B
010 1011
output
OUT_Z_L_A
Table 16
r
2C
010 1100
output
OUT_Z_H_A
Table 16
r
2D
010 1101
output
FIFO_CTRL_REG
Table 16
rw
2E
010 1110
00000000
FIFO_SRC_REG
Table 16
r
2F
010 1111
INT1_CFG_A
Table 16
rw
30
011 0000
00000000
INT1_SOURCE_A
Table 16
r
31
011 0001
00000000
INT1_THS_A
Table 16
rw
32
011 0010
00000000
INT1_DURATION_A
Table 16
rw
33
011 0011
00000000
INT2_CFG_A
Table 16
rw
34
011 0100
00000000
INT2_SOURCE_A
Table 16
r
35
011 0101
00000000
INT2_THS_A
Table 16
rw
36
011 0110
00000000
INT2_DURATION_A
Table 16
rw
37
011 0111
00000000
CLICK_CFG_A
Table 16
rw
38
011 1000
00000000
CLICK_SRC_A
Table 16
rw
39
011 1001
00000000
CLICK_THS_A
Table 16
rw
3A
011 1010
00000000
TIME_LIMIT_A
Table 16
rw
3B
011 1011
00000000
Doc ID 022162 Rev 2
Comment
Binary
Reserved
39/66
Register mapping
Table 18.
LSM330DLC
Register address map (continued)
Register address
Slave
address
Type
TIME_LATENCY_A
Table 16
TIME_WINDOW_A
Name
Default
Hex
Binary
rw
3C
011 1100
00000000
Table 16
rw
3D
011 1101
00000000
Act_THS
Table 16
rw
3E
011 1110
00000000
Act_DUR
Table 16
rw
3F
011 1111
00000000
Reserved
Table 17
-
00-1E
-
-
WHO_AM_I_G
Table 17
rw
0F
0001111
11010100
Reserved
Table 17
rw
10-1F
-
-
CTRL_REG1_G
Table 17
rw
20
010 0000
00000111
CTRL_REG2_G
Table 17
rw
21
010 0001
00000000
CTRL_REG3_G
Table 17
rw
22
010 0010
00000000
CTRL_REG4_G
Table 17
rw
23
010 0011
00000000
CTRL_REG5_G
Table 17
r
24
010 0100
00000000
REFERENCE_G
Table 17
r
25
010 0101
00000000
OUT_TEMP_G
Table 17
r
26
010 0110
output
STATUS_REG_G
Table 17
r
27
010 0111
output
OUT_X_L_G
Table 17
r
28
010 1000
output
OUT_X_H_G
Table 17
r
29
010 1001
output
OUT_Y_L_G
Table 17
r
2A
010 1010
output
OUT_Y_H_G
Table 17
r
2B
010 1011
output
OUT_Z_L_G
Table 17
rw
2C
010 1100
output
OUT_Z_H_G
Table 17
r
2D
010 1101
output
FIFO_CTRL_REG_G
Table 17
rw
2E
010 1110
00000000
FIFO_SRC_REG_G
Table 17
r
2F
010 1111
output
INT1_CFG_G
Table 17
rw
30
011 0001
output
INT1_SRC_G
Table 17
rw
31
011 0001
output
INT1_TSH_XH_G
Table 17
rw
32
011 0010
00000000
INT1_TSH_XL_G
Table 17
rw
33
011 0011
00000000
INT1_TSH_YH_G
Table 17
rw
34
011 0100
00000000
INT1_TSH_YL_G
Table 17
rw
35
011 0101
00000000
INT1_TSH_ZH_G
Table 17
rw
36
011 0110
00000000
INT1_TSH_ZL_G
Table 17
rw
37
011 0111
00000000
INT1_DURATION_G
Table 17
rw
38
011 1000
00000000
40/66
Doc ID 022162 Rev 2
Comment
Reserved
LSM330DLC
Register mapping
Registers marked as Reserved must not be changed. Writing to those registers may cause
permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibration values. Their content is automatically restored when the device is
powered up.
Doc ID 022162 Rev 2
41/66
Register descriptions
8
LSM330DLC
Register descriptions
The device contains a set of registers which are used to control its behavior and to retrieve
acceleration, angular rate and temperature data. The register addresses, made up of 7 bits,
are used to identify them and to write the data through the serial interface.
8.1
CTRL_REG1_A (20h)
Table 19.
CTRL_REG1_A register
ODR3
ODR2
Table 20.
ODR1
ODR0
LPen
Zen
Yen
Xen
CTRL_REG1_A description
Data rate selection. Default value: 0
(0000: Power-down; Others: refer to Table 21, “Data rate configuration”)
ODR3-0
LPen
Low power mode enable. Default value: 0
(0: Normal mode, 1: Low power mode)
Zen
Z axis enable. Default value: 1
(0: Z axis disabled; 1: Z axis enabled)
Yen
Y axis enable. Default value: 1
(0: Y axis disabled; 1: Y axis enabled)
Xen
X axis enable. Default value: 1
(0: X axis disabled; 1: X axis enabled)
ODR<3:0> is used to set the power mode and ODR selection. Table 21 below provides all
the frequencies resulting from the ODR<3:0> combinations.
Table 21.
Data rate configuration
ODR3
42/66
ODR2
ODR1
ODR0
Power mode selection
0
0
0
0
Power-down mode
0
0
0
1
Normal / Low power mode (1 Hz)
0
0
1
0
Normal / Low power mode (10 Hz)
0
0
1
1
Normal / Low power mode (25 Hz)
0
1
0
0
Normal / Low power mode (50 Hz)
0
1
0
1
Normal / Low power mode (100 Hz)
0
1
1
0
Normal / Low power mode (200 Hz)
0
1
1
1
Normal / Low power mode (400 Hz)
1
0
0
0
Low power mode (1.620 kHz)
1
0
0
1
Normal (1.344 kHz) / Low power mode (5.376 kHz)
Doc ID 022162 Rev 2
LSM330DLC
8.2
Register descriptions
CTRL_REG2_A (21h)
Table 22.
CTRL_REG2_A register
HPM1
HPM0
Table 23.
HPCF1
FDS
HPCLICK
HPIS2
HPIS1
CTRL_REG2_A description
HPM1 -HPM0
High-pass filter mode selection. Default value: 00
Refer to Table 24, “High pass filter mode configuration”
HPCF2 HPCF1
High-pass filter cut-off frequency selection
FDS
Filtered data selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register and
FIFO)
HPCLICK
High-pass filter enabled for CLICK function.
(0: filter bypassed; 1: filter enabled)
HPIS2
High-pass filter enabled for AOI function on interrupt 2,
(0: filter bypassed; 1: filter enabled)
HPIS1
High-pass filter enabled for AOI function on interrupt 1,
(0: filter bypassed; 1: filter enabled)
Table 24.
High-pass filter mode configuration
HPM1
8.3
HPCF2
HPM0
High-pass filter mode
0
0
Normal mode (reset reading HP_RESET_FILTER)
0
1
Reference signal for filtering
1
0
Normal mode
1
1
Autoreset on interrupt event
CTRL_REG3_A (22h)
Table 25.
I1_CLICK
CTRL_REG3_A register
I1_AOI1
0(1)
I1_DRDY1
I1_DRDY2
I1_WTM
I1_OVERRUN
--
1. This bit has to be set ‘0’ for correct operation
Table 26.
CTRL_REG3_A description
I1_CLICK
CLICK interrupt on INT1_A. Default value 0.
(0: Disable; 1: Enable)
I1_AOI1
AOI1 interrupt on INT1_A. Default value 0.
(0: Disable; 1: Enable)
Doc ID 022162 Rev 2
43/66
Register descriptions
Table 26.
8.4
LSM330DLC
CTRL_REG3_A description (continued)
I1_DRDY1
DRDY1 interrupt on INT1_A. Default value 0.
(0: Disable; 1: Enable)
I1_DRDY2
DRDY2 interrupt on INT1_A. Default value 0.
(0: Disable; 1: Enable)
I1_WTM
FIFO watermark interrupt on INT1_A. Default value 0.
(0: Disable; 1: Enable)
I1_OVERRUN
FIFO Overrun interrupt on INT1_A. Default value 0.
(0: Disable; 1: Enable)
CTRL_REG4_A (23h)
Table 27.
0(1)
CTRL_REG4_A register
BLE
FS1
FS0
HR
0(1)
0(1)
SIM
1. This bit must be set to ‘0’ for correct operation.
Table 28.
8.5
CTRL_REG4_A description
BLE
Big/little endian data selection. Default value 0.
(0: Data LSb @ lower address; 1: Data MSb @ lower address)
FS1-FS0
Full Scale selection. default value: 00
(00: +/- 2G; 01: +/- 4G; 10: +/- 8G; 11: +/- 16G)
HR
High resolution output mode: Default value: 0
(0: High resolution disable; 1: High resolution enable)
SIM
SPI serial interface mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).
CTRL_REG5_A (24h)
Table 29.
BOOT
CTRL_REG5_A register
FIFO_EN
--
--
LIR_INT1
D4D_INT1
1. This bit must be set to ‘0’ for correct operation.
Table 30.
44/66
CTRL_REG5_A description
BOOT
Reboot memory content. Default value: 0
(0: Normal mode; 1: reboot memory content)
FIFO_EN
FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO Enable)
Doc ID 022162 Rev 2
0(1)
0(1)
LSM330DLC
Register descriptions
Table 30.
8.6
CTRL_REG5_A description (continued)
LIR_INT1
Latch interrupt request on INT1_SRC register, with INT1_SRC register
cleared by reading INT1_SRC itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
D4D_INT1
4D enable: 4D detection is enabled on INT1 when 6D bit on INT1_CFG is set
to 1.
CTRL_REG6_A (25h)
Table 31.
CTRL_REG6_A register
I2_CLICKen
I2_INT1
0(1)
BOOT_I2
0(1)
--
H_LACTIVE
--
1. This bit must be set to ‘0’ for correct operation.
Table 32.
8.7
CTRL_REG6 description
I2_CLICKen
Click interrupt on INT2_A. Default value 0.
I2_INT1
Interrupt 1 function enabled on INT2_A. Default 0.
BOOT_I2
Boot on INT2_A.
H_LACTIVE
0: interrupt active high; 1: interrupt active low.
REFERENCE/DATACAPTURE_A (26h)
Table 33.
Ref7
Table 34.
REFERENCE_A register
Ref6
Ref4
Ref3
Ref2
Ref1
Ref0
REFERENCE register description
Ref 7-Ref0
8.8
Ref5
Reference value for interrupt generation. Default value: 0
STATUS_REG_A (27h)
Table 35.
ZYXOR
Table 36.
STATUS_REG_A register
ZOR
YOR
XOR
ZYXDA
ZDA
YDA
XDA
STATUS_REG_A register description
ZYXOR
X, Y and Z axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new set of data has overwritten the previous data)
ZOR
Z axis data overrun. Default value: 0
(0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data)
Doc ID 022162 Rev 2
45/66
Register descriptions
Table 36.
8.9
LSM330DLC
STATUS_REG_A register description (continued)
YOR
Y axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the Y-axis has overwritten the previous data)
XOR
X axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the X-axis has overwritten the previous data)
ZYXDA
X, Y and Z axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
ZDA
Z axis new data available. Default value: 0
(0: new data for the Z-axis is not yet available;
1: new data for the Z-axis is available)
YDA
Y axis new data available. Default value: 0
(0: new data for the Y-axis is not yet available;
1: new data for the Y-axis is available)
OUT_X_L_A, OUT_X_H_A
X-axis acceleration data. The value is expressed in two’s complement.
8.10
OUT_Y_L_A, OUT_Y_H_A
Y-axis acceleration data. The value is expressed in two’s complement.
8.11
OUT_Z_L _A, OUT_Z_H_A
Z-axis acceleration data. The value is expressed in two’s complement.
8.12
FIFO_CTRL_REG_A (2Eh)
Table 37.
FM1
Table 38.
46/66
FIFO_CTRL_REG_A register
FM0
TR
FTH4
FTH3
FTH2
FTH1
FTH0
FIFO_CTRL_REG_A register description
FM1-FM0
FIFO mode selection. Default value: 00 (see Table 39: FIFO mode configuration)
TR
Trigger selection. Default value: 0
0: Trigger event linked to trigger signal on INT1_A
1: Trigger event linked to trigger signal on INT2_A
FTH4:0
Default value: 0
Doc ID 022162 Rev 2
LSM330DLC
Register descriptions
Table 39.
FIFO mode configuration
FM1
8.13
FIFO mode
0
0
Bypass mode
0
1
FIFO mode
1
0
Stream mode
1
1
Trigger mode
FIFO_SRC_REG_A (2Fh)
Table 40.
WTM
FIFO_SRC_REG_A register
OVRN_FIFO
Table 41.
8.14
FM0
EMPTY
FSS4
FSS3
FSS2
FSS1
FSS0
FIFO_SRC_REG_A description
WTM
WTM bit is set high when FIFO content exceeds watermark level
OVRN_FIFO
OVRN bit is set high when FIFO buffer is full, this means that the FIFO buffer
contains 32 unread samples. At the following ODR a new sample set replaces the
oldest FIFO value. The OVRN bit is reset when the first sample set has been read
EMPTY
EMPTY flag is set high when all FIFO samples have been read and FIFO is empty
FSS4-0
FSS[4:0] field always contains the current number of unread samples stored in the
FIFO buffer. When FIFO is enabled, this value increases at ODR frequency until
the buffer is full, whereas, it decreases every time that one sample set is retrieved
from FIFO
INT1_CFG_A (30h)
Table 42.
AOI
6D
Table 43.
INT1_CFG_A register
ZHIE/
ZUPE
ZLIE/
ZDOWNE
YHIE/
YUPE
YLIE/
YDOWNE
XHIE/
XUPE
XLIE/
XDOWNE
INT1_CFG_A description
AOI
And/Or combination of interrupt events. Default value: 0. Refer to Table 44: Interrupt mode, “Interrupt mode”
6D
6 direction detection function enabled. Default value: 0. Refer to Table 44: Interrupt
mode
ZHIE/
ZUPE
Enable interrupt generation on Z high event or on direction recognition. Default
value: 0 (0: disable interrupt request;1: enable interrupt request)
ZLIE/
ZDOWNE
Enable interrupt generation on Z low event or on direction recognition. Default
value: 0 (0: disable interrupt request;1: enable interrupt request)
Doc ID 022162 Rev 2
47/66
Register descriptions
Table 43.
LSM330DLC
INT1_CFG_A description (continued)
YHIE/
YUPE
Enable interrupt generation on Y high event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
YLIE/
YDOWNE
Enable interrupt generation on Y low event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
XHIE/
XUPE
Enable interrupt generation on X high event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
XLIE/XDOWNE Enable interrupt generation on X low event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
The content of this register is loaded at boot.
A write operation at this address is possible only after system boot.
.
Table 44.
Interrupt mode
AOI
6D
Interrupt mode
0
0
OR combination of interrupt events
0
1
6 direction movement recognition
1
0
AND combination of interrupt events
1
1
6 direction position recognition
The difference between AOI-6D = ‘01’ and AOI-6D = ‘11’.
AOI-6D = ‘01’ is movement recognition. An interrupt is generated when the orientation
moves from “unknown zone” to “known zone”. The interrupt signal remains for an ODR
duration.
AOI-6D = ‘11’ is direction recognition. An interrupt is generated when the orientation is
inside a “known zone”. The interrupt signal remains until orientation is within the zone.
8.15
INT1_SRC_A (31h)
Table 45.
0(1)
INT1_SRC_A register
IA
ZH
ZL
YH
YL
XH
XL
1. This bit must be set to ‘0’ for correct operation.
Table 46.
48/66
INT1_SRC_A description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
Z high. Default value: 0
(0: no interrupt, 1: Z High event has occurred)
ZL
Z low. Default value: 0
(0: no interrupt; 1: Z Low event has occurred)
Doc ID 022162 Rev 2
LSM330DLC
Register descriptions
Table 46.
INT1_SRC_A description (continued)
YH
Y high. Default value: 0
(0: no interrupt, 1: Y High event has occurred)
YL
Y low. Default value: 0
(0: no interrupt, 1: Y Low event has occurred)
XH
X high. Default value: 0
(0: no interrupt, 1: X High event has occurred)
XL
X low. Default value: 0
(0: no interrupt, 1: X Low event has occurred)
Interrupt 1 source register. Read only register.
Reading at this address clears INT1_SRC_A IA bit (and the interrupt signal on INT 1 pin)
and allows the refreshing of the data in the INT1_SRC_A register if the latched option was
chosen.
8.16
INT1_THS_A (32h)
Table 47.
INT1_THS_A register
0(1)
THS6
THS5
THS4
THS3
THS2
THS1
THS0
D2
D1
D0
1. This bit has to be set ‘0’ for correct operation.
Table 48.
INT1_THS_A description
THS6 - THS0
8.17
Interrupt 1 threshold. Default value: 000 0000
INT1_DURATION_A (33h)
Table 49.
0(1)
INT1_DURATION_Aregister
D6
D5
D4
D3
1. This bit must be set ‘0’ for correct operation.
Table 50.
D6 - D0
INT1_DURATION_A description
Duration value. Default value: 000 0000
D6 - D0 bits set the minimum duration of the Interrupt 1 event to be recognized. Duration
steps and maximum values depend on the ODR chosen.
Doc ID 022162 Rev 2
49/66
Register descriptions
8.18
CLICK_CFG _A (38h)
Table 51.
--
Table 52.
8.19
CLICK_CFG_A register
--
ZD
ZS
YD
YS
XD
XS
CLICK_CFG_A description
ZD
Enable interrupt double CLICK on Z axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
ZS
Enable interrupt single CLICK on Z axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
YD
Enable interrupt double CLICK on Y axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
YS
Enable interrupt single CLICK on Y axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
XD
Enable interrupt double CLICK on X axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
XS
Enable interrupt single CLICK on X axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
CLICK_SRC_A (39h)
Table 53.
--
Table 54.
50/66
LSM330DLC
CLICK_SRC_A register
IA
DCLICK
SCLICK
Sign
Z
Y
X
CLICK_SRC_A description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
DCLICK
Double CLICK-CLICK enable. Default value: 0 (0:double CLICK-CLICK detection disable, 1: double CLICK-CLICK detection enable)
SCLICK
Single CLICK-CLICK enable. Default value: 0 (0:Single CLICK-CLICK detection disable, 1: single CLICK-CLICK detection enable)
Sign
CLICK-CLICK Sign. 0: positive detection, 1: negative detection
Z
Z CLICK-CLICK detection. Default value: 0
(0: no interrupt, 1: Z High event has occurred)
Doc ID 022162 Rev 2
LSM330DLC
Register descriptions
Table 54.
8.20
CLICK_SRC_A description
Y
Y CLICK-CLICK detection. Default value: 0
(0: no interrupt, 1: Y High event has occurred)
X
X CLICK-CLICK detection. Default value: 0
(0: no interrupt, 1: X High event has occurred)
CLICK_THS_A (3Ah)
Table 55.
--
Table 56.
CLICK_THS_A register
Ths6
--
Table 58.
Ths2
Ths1
Ths0
TLI1
TLI0
TLA1
TLA0
TW1
TW0
CLICK-CLICK threshold. Default value: 000 0000
TIME_LIMIT_A register
TLI6
TLI5
TLI4
TLI3
TLI2
TIME_LIMIT_A description
TLI7-TLI0
CLICK-CLICK Time limit. Default value: 000 0000
TIME_LATENCY_A (3Ch)
Table 59.
TLA7
Table 60.
TIME_LATENCY_A register
TLA6
TLA5
TLA4
TLA3
TLA2
TIME_LATENCY_A description
TLA7-TLA0
8.23
Ths3
TIME_LIMIT_A (3Bh)
Table 57.
8.22
Ths4
CLICK_SRC_A description
Ths6-Ths0
8.21
Ths5
CLICK-CLICK time latency. Default value: 000 0000
TIME WINDOW_A (3Dh)
Table 61.
TW7
TIME_WINDOW_A register
TW6
TW5
TW4
TW3
Doc ID 022162 Rev 2
TW2
51/66
Register descriptions
8.24
Table 62.
TIME_WINDOW_A description
TW7-TW0
CLICK-CLICK time window
Act_THS (3Eh)
Table 63.
--
Acth[6-0]
Acth5
Acth4
Acth3
Acth2
Acth1
Acth0
ActD2
ActD1
ActD0
Act_THS description
Sleep-to-Wake, Return to Sleep activation threshold
1LSb = 16mg
Act_DUR (3Fh)
Table 65.
ActD7
Table 66.
ActD[7-0]
8.26
Act_THS register
Acth6
Table 64.
8.25
LSM330DLC
Act_DUR register
ActD6
ActD5
ActD4
ActD3
Act_DUR description
Sleep-to-Wake, Return to Sleep duration
DUR = (Act_DUR + 1)*8/ODR
WHO_AM_I_G (0Fh)
Table 67.
1
WHO_AM_I_G register
1
0
1
0
1
0
0
BW0
PD
Zen
Xen
Yen
Device identification register.
8.27
CTRL_REG1_G (20h)
Table 68.
DR1
Table 69.
52/66
CTRL_REG1_G register
DR0
BW1
CTRL_REG1_G description
DR1-DR0
Output data rate selection. Refer to Table 70
BW1-BW0
Bandwidth selection. Refer to Table 70
Doc ID 022162 Rev 2
LSM330DLC
Register descriptions
Table 69.
CTRL_REG1_G description
Power-down mode enable. Default value: 0
(0: Power-down mode, 1: Normal mode or Sleep mode)
PD
Zen
Z axis enable. Default value: 1
(0: Z axis disabled; 1: Z axis enabled)
Yen
Y axis enable. Default value: 1
(0: Y axis disabled; 1: Y axis enabled)
Xen
X axis enable. Default value: 1
(0: X axis disabled; 1: X axis enabled)
DR<1:0> is used to set ODR selection. BW <1:0> is used to set bandwidth selection.
Table 70 below provides all the frequencies resulting from the DR / BW bit combinations.
Table 70.
DR and BW configuration setting
DR <1:0>
BW <1:0>
ODR [Hz]
Cut-off
00
00
95
12.5
00
01
95
25
00
10
95
25
00
11
95
25
01
00
190
12.5
01
01
190
25
01
10
190
50
01
11
190
70
10
00
380
20
10
01
380
25
10
10
380
50
10
11
380
100
11
00
760
30
11
01
760
35
11
10
760
50
11
11
760
100
The combination of PD, Zen, Yen, Xen is used to set the device in different modes (Powerdown / Normal / Sleep mode) according to the following table:
Table 71.
Power mode selection configuration
Mode
Power-down
PD
0
Zen
-
Doc ID 022162 Rev 2
Yen
-
Xen
-
53/66
Register descriptions
Table 71.
8.28
LSM330DLC
Power mode selection configuration
Sleep
1
0
0
0
Normal
1
-
-
-
CTRL_REG2_G (21h)
Table 72.
EXTRen
Table 73.
CTRL_REG2_G register
LVLen
HPM1
HPCF3
HPCF2
HPCF1
Edge-sensitive trigger Enable: Default value: 0
(0: external trigger disabled; 1: External trigger enabled)
LVLen
Level-sensitive trigger Enable: Default value: 0
(0: level sensitive trigger disabled; 1: level sensitive trigger enabled)
HPM1HPM0
High-pass filter mode selection. Default value: 00
Refer to Table 74
HPCF3HPCF0
High-pass filter cut-off frequency selection
Refer to Table 75
High-pass filter mode configuration
HPM1
HPM0
High-pass filter mode
0
0
Normal mode (reset reading HP_RESET_FILTER)
0
1
Reference signal for filtering
1
0
Normal mode
1
1
Autoreset on interrupt event
Table 75.
HPCF0
CTRL_REG2_G description
EXTRen
Table 74.
High-pass filter cut-off frequency configuration [Hz]
HPCF3-0
54/66
HPM1
ODR=95 Hz
ODR=190 Hz
ODR=380 Hz
ODR=760 Hz
0000
7.2
13.5
27
51.4
0001
3.5
7.2
13.5
27
0010
1.8
3.5
7.2
13.5
0011
0.9
1.8
3.5
7.2
0100
0.45
0.9
1.8
3.5
0101
0.18
0.45
0.9
1.8
0110
0.09
0.18
0.45
0.9
0111
0.045
0.09
0.18
0.45
Doc ID 022162 Rev 2
LSM330DLC
Register descriptions
Table 75.
8.29
1000
0.018
0.045
0.09
0.18
1001
0.009
0.018
0.045
0.09
CTRL_REG3_G (22h)
Table 76.
I1_Int1
Table 77.
8.30
High-pass filter cut-off frequency configuration [Hz] (continued)
CTRL_REG3_G register
I1_Boot
H_Lactive
PP_OD
I2_DRDY
I2_WTM
I2_ORun
I2_Empty
CTRL_REG3_G description
I1_Int1
Interrupt enable on INT1_G pin. Default value 0. (0: Disable; 1: Enable)
I1_Boot
Boot status available on INT1_G. Default value 0. (0: Disable; 1: Enable)
H_Lactive
Interrupt active configuration on INT1_G. Default value 0. (0: High; 1:Low)
PP_OD
Push-pull / Open drain. Default value: 0. (0: Push-pull; 1: Open drain)
I2_DRDY
Date ready on DRDY_G/INT2_G. Default value 0. (0: Disable; 1: Enable)
I2_WTM
FIFO watermark interrupt on DRDY_G/INT2_G. Default value: 0. (0: Disable; 1: Enable)
I2_ORun
FIFO overrun interrupt on DRDY_G/INT2_G Default value: 0. (0: Disable; 1: Enable)
I2_Empty
FIFO empty interrupt on DRDY_G/INT2_G. Default value: 0. (0: Disable; 1: Enable)
CTRL_REG4_G (23h)
Table 78.
BDU
Table 79.
CTRL_REG4_G register
BLE
FS1
FS0
-
0
0
SIM
CTRL_REG4_G description
BDU
Block data update. Default value: 0
(0: continuous update; 1: output registers not updated until MSb and LSb
reading)
BLE
Big/little endian data selection. Default value 0.
(0: Data LSb @ lower address; 1: Data MSb @ lower address)
FS1-FS0
Full scale selection. Default value: 00
(00: 250 dps; 01: 500 dps; 10: 2000 dps; 11: 2000 dps)
SIM
3-wire SPI Serial interface read mode enable. Default value: 0
(0: 3-wire Read mode disabled; 1: 3-wire read enabled).
Doc ID 022162 Rev 2
55/66
Register descriptions
8.31
LSM330DLC
CTRL_REG5_G (24h)
Table 80.
BOOT
Table 81.
CTRL_REG5_G register
FIFO_EN
--
HPen
INT1_Sel1 INT1_Sel0
Out_Sel1
Out_Sel0
CTRL_REG5_G description
BOOT
Reboot memory content. Default value: 0
(0: Normal mode; 1: reboot memory content)
FIFO_EN
FIFO enable. Default value: 0
(0: FIFO disable; 1: FIFO Enable)
HPen
High-pass filter Enable. Default value: 0
(0: HPF disabled; 1: HPF enabled, see Figure 20)
INT1_Sel1INT1_Sel0
INT1 selection configuration. Default value: 0
(see Figure 20)
Out_Sel1Out_Sel1
Out selection configuration. Default value: 0
(see Figure 20)
Figure 20. INT1_Sel and Out_Sel configuration block diagram
Out_Sel <1:0>
00
01
0
LPF2
ADC
LPF1
HPF
10
11
DataReg
FIFO
32x16x3
1
INT1_Sel <1:0>
HPen
10
11
01
Interrupt
generator
00
AM07949V2
8.32
REFERENCE_G (25h)
Table 82.
Ref7
Table 83.
Ref 7-Ref0
56/66
REFERENCE_G register
Ref6
Ref5
Ref4
Ref3
Ref2
Ref1
REFERENCE_G register description
Reference value for interrupt generation. Default value: 0
Doc ID 022162 Rev 2
Ref0
LSM330DLC
8.33
Register descriptions
OUT_TEMP_G (26h)
Table 84.
Temp7
OUT_TEMP_G register
Temp6
Table 85.
Temp4
Temp3
Temp2
Temp1
Temp0
OUT_TEMP_G register description
Temp7-Temp0
8.34
Temp5
Temperature data (1LSb/deg - 8-bit resolution). The value is expressed as
two’s complement.
STATUS_REG_G (27h)
Table 86.
ZYXOR
STATUS_REG_G register
ZOR
Table 87.
YOR
XOR
ZYXDA
ZDA
YDA
XDA
STATUS_REG description
X, Y, Z-axis data overrun. Default value: 0
ZYXOR (0: no overrun has occurred; 1: new data has overwritten the previous data before it was
read)
ZOR
Z axis data overrun. Default value: 0
(0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data)
YOR
Y axis data overrun. Default value: 0
(0: no overrun has occurred; 1: new data for the Y-axis has overwritten the previous data)
XOR
X axis data overrun. Default value: 0
(0: no overrun has occurred; 1: new data for the X-axis has overwritten the previous data)
ZYXDA X, Y, Z -axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
8.35
ZDA
Z axis new data available. Default value: 0
(0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available)
YDA
Y axis new data available. Default value: 0
(0: new data for the Y-axis is not yet available;1: new data for the Y-axis is available)
XDA
X axis new data available. Default value: 0
(0: new data for the X-axis is not yet available; 1: new data for the X-axis is available)
OUT_X_L_G, OUT_X_H_G
X-axis angular rate data. The value is expressed as two’s complement.
8.36
OUT_Y_L_G, OUT_Y_H_G
Y-axis angular rate data. The value is expressed as two’s complement.
Doc ID 022162 Rev 2
57/66
Register descriptions
8.37
LSM330DLC
OUT_Z_L_G, OUT_Z_H_G
Z-axis angular rate data. The value is expressed as two’s complement.
8.38
FIFO_CTRL_REG_G (2Eh)
Table 88.
FIFO_CTRL_REG_G register
FM2
FM1
Table 89.
WTM3
WTM2
FM2-FM0
FIFO mode selection. Default value: 00 (see Table 90)
WTM4-WTM0
FIFO threshold. Watermark level setting
WTM1
WTM0
FSS1
FSS0
FIFO mode configuration
FM2
FM1
FM0
FIFO mode
0
0
0
Bypass mode
0
0
1
FIFO mode
0
1
0
Stream mode
0
1
1
Stream-to-FIFO mode
1
0
0
Bypass-to-stream mode
FIFO_SRC_REG_G (2Fh)
Table 91.
WTM
FIFO_SRC_REG_G register
OVRN
Table 92.
58/66
WTM4
FIFO_CTRL_REG_G description
Table 90.
8.39
FM0
EMPTY
FSS4
FSS3
FSS2
FIFO_SRC_REG_G description
WTM
Watermark status. (0: FIFO filling is lower than WTM level; 1: FIFO filling is equal
or higher than WTM level)
OVRN
Overrun bit status.
(0: FIFO is not completely filled; 1:FIFO is completely filled)
EMPTY
FIFO empty bit.
(0: FIFO not empty; 1: FIFO empty)
FSS4-FSS1
FIFO stored data level
Doc ID 022162 Rev 2
LSM330DLC
8.40
Register descriptions
INT1_CFG_G (30h)
Table 93.
AND/OR
Table 94.
INT1_CFG_G register
LIR
ZHIE
ZLIE
YHIE
YLIE
XHIE
XLIE
INT1_CFG_G description
AND/OR
AND/OR combination of interrupt events. Default value: 0
(0: OR combination of interrupt events 1: AND combination of interrupt events
LIR
Latch Interrupt request. Default value: 0
(0: interrupt request not latched; 1: interrupt request latched)
Cleared by reading INT1_SRC_G reg.
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value lower than
preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value lower than
preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value higher
than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured value lower than
preset threshold)
Configuration register for interrupt source.
8.41
INT1_SRC_G (31h)
Table 95.
0
Table 96.
INT1_SRC_G register
IA
ZH
ZL
YH
YL
XH
XL
INT1_SRC_G description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
Z high. Default value: 0 (0: no interrupt, 1: Z High event has occurred)
Doc ID 022162 Rev 2
59/66
Register descriptions
Table 96.
LSM330DLC
INT1_SRC_G description
ZL
Z low. Default value: 0 (0: no interrupt; 1: Z Low event has occurred)
YH
Y high. Default value: 0 (0: no interrupt, 1: Y High event has occurred)
YL
Y low. Default value: 0 (0: no interrupt, 1: Y Low event has occurred)
XH
X high. Default value: 0 (0: no interrupt, 1: X High event has occurred)
XL
X low. Default value: 0 (0: no interrupt, 1: X Low event has occurred)
Interrupt source register. Read only register.
Reading at this address clears the INT1_SRC_G IA bit (and eventually the interrupt signal
on the INT1_G pin) and allows the refreshing of data in the INT1_SRC_G register if the
latched option was chosen.
8.42
INT1_THS_XH_G (32h)
Table 97.
-
Table 98.
INT1_THS_XH_G register
THSX14
THSX12
THSX11
THSX10
THSX9
THSX8
THSX1
THSX0
THSY9
THSY8
INT1_THS_XH_G description
THSX14 - THSX9
8.43
THSX13
Interrupt threshold. Default value: 0000 0000
INT1_THS_XL_G (33h)
Table 99.
THSX7
INT1_THS_XL_G register
THSX6
THSX5
THSX4
THSX3
THSX2
Table 100. INT1_THS_XL_G description
THSX7 - THSX0
8.44
Interrupt threshold. Default value: 0000 0000
INT1_THS_YH _G (34h)
Table 101. INT1_THS_YH_G register
-
THSY14
THSY13
THSY12
THSY11
THSY10
Table 102. INT1_THS_YH_G description
THSY14 - THSY9
60/66
Interrupt threshold. Default value: 0000 0000
Doc ID 022162 Rev 2
LSM330DLC
8.45
Register descriptions
INT1_THS_YL_G (35h)
Table 103. INT1_THS_YL_G register
THSR7
THSY6
THSY5
THSY4
THSY3
THSY2
THSY1
THSY0
THSZ9
THSZ8
THSZ1
THSZ0
D1
D0
Table 104. INT1_THS_YL_G description
THSY7 - THSY0
8.46
Interrupt threshold. Default value: 0000 0000
INT1_THS_ZH_G (36h)
Table 105. INT1_THS_ZH_G register
-
THSZ14
THSZ13
THSZ12
THSZ11
THSZ10
Table 106. INT1_THS_ZH_G description
THSZ14 - THSZ9
8.47
Interrupt threshold. Default value: 0000 0000
INT1_THS_ZL_G (37h)
Table 107. INT1_THS_ZL_G register
THSZ7
THSZ6
THSZ5
THSZ4
THSZ3
THSZ2
Table 108. INT1_THS_ZL_G description
THSZ7 - THSZ0
8.48
Interrupt threshold. Default value: 0000 0000
INT1_DURATION_G (38h)
Table 109. INT1_DURATION_G register
WAIT
D6
D5
D4
D3
D2
Table 110. INT1_DURATION_G description
WAIT
WAIT enable. Default value: 0 (0: disable; 1: enable)
D6 - D0
Duration value. Default value: 000 0000
D6 - D0 bits set the minimum duration of the interrupt event to be recognized. Duration steps
and maximum values depend on the ODR chosen.
Doc ID 022162 Rev 2
61/66
Register descriptions
LSM330DLC
WAIT bit has the following meaning:
Wait =’0’: the interrupt falls immediately if signal crosses the selected threshold
Wait =’1’: if the signal crosses the selected threshold, the interrupt falls only after the
duration has counted the number of samples at the selected data rate, written into the
duration counter register.
Figure 21. Wait disabled
62/66
Doc ID 022162 Rev 2
LSM330DLC
Register descriptions
Figure 22. Wait enabled
Doc ID 022162 Rev 2
63/66
Package information
9
LSM330DLC
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
Figure 23. LGA-28 (4x5x1.1 mm): mechanical data and package dimensions
Dimensions
Ref.
mm
Min.
Typ.
A1
Max.
Outline and
mechanical data
1.1
A2
0.855
A3
0.200
D1
3.850
4.000
4.150
E1
4.850
5.000
5.150
L1
3.75
L2
2.75
N1
0.500
M
0.075
P1
2.200
P2
1.700
T1
0.265
0.325
0.385
T2
0.19
0.250
0.310
d
0.200
k
0.050
h
0.100
LGA-28 (4x5x1.1mm)
Land Grid Array Package
8181393A
64/66
Doc ID 022162 Rev 2
LSM330DLC
10
Revision history
Revision history
Table 111. Document revision history
Date
Revision
Changes
02-Sep-2011
1
Initial release.
17-Sep-2012
2
Updated Table 3: Mechanical characteristics: Zero-rate level change
vs. temperature.
Document status promoted from preliminary data to datasheet.
Doc ID 022162 Rev 2
65/66
LSM330DLC
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
66/66
Doc ID 022162 Rev 2