STMICROELECTRONICS M39P0R9070E0ZAD

M39P0R9070E0
512 Mbit (x16, Multiple Bank, Multi-Level, Burst) Flash Memory
128 Mbit Low Power SDRAM, 1.8V Supply, Multi-Chip Package
PRELIMINARY DATA
Features summary
■
Multi-chip package
– 1die of 512 Mbit (32Mb x 16, Multiple Bank,
Multi-Level, Burst) Flash memory
– 1 die of 128 Mbit (4 Banks of 2Mb x16) Low
Power Synchronous Dynamic RAM
■
Supply voltage
– VDDF = VCCP = VDDQ = 1.7 to 1.95V
– VPPF = 9V for fast program (12V tolerant)
■
Electronic signature
– Manufacturer Code: 20h
– Device Code: 8819
■
FBGA
TFBGA105 (ZAD)
9 x 11mm
■
100,000 program/erase cycles per block
■
Block locking
– All Blocks locked at power-up
– Any combination of Blocks can be locked
with zero latency
– WPF for Block Lock-Down
– Absolute Write Protection with VPPF = VSS
■
Common Flash Interface (CFI)
Package
– ECOPACK® (RoHS compliant)
Flash memory
■
Synchronous / asynchronous read
– Synchronous Burst Read mode:
108MHz, 66MHz
■
LPSDRAM
– Asynchronous Page Read mode
– Random Access: 93ns
■
Programming time
– 4µs typical Word program time using Buffer
Enhanced Factory Program command
128Mbit synchronous dynamic RAM
– Organized as 4 Banks of 2 MWords, each
16 bits wide
■
Synchronous burst read and write
– Fixed Burst Lengths: 1, 2, 4, 8 words or Full
Page
– Burst Types: Sequential and Interleaved.
– Maximum Clock Frequency: 104MHz
– CAS Latency 2, 3
■
Automatic precharge
■
Low power features:
– PASR (Partial Array Self Refresh),
– Automatic TCSR (Temperature
Compensated Self Refresh)
– Driver Strength (DS)
– Deep Power-Down Mode
■
Auto Refresh and Self Refresh
■
Memory organization
– Multiple Bank Memory Array: 64 Mbit
Banks
– Four Extended Flash Array (EFA) Blocks of
64 Kbits
■
Dual operations
– program/erase in one Bank while read in
others
– No delay between read and write
operations
■
Security
– 64-bit unique device number
– 2112-bit user programmable OTP Cells
November 2005
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to
change without notice.
Rev. 1
1/26
www.st.com
1
M39P0R9070E0
Contents
1
Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2
Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1
Address inputs (A0-A24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2
LPSDRAM Bank Select Address Inputs (BA0-BA1) . . . . . . . . . . . . . . . . . . . . 9
2.3
Data Inputs/Outputs (DQ0-DQ15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4
Flash Memory Chip Enable Input (EF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5
Flash Memory Output Enable (GF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6
Flash Memory Write Enable (WF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7
Flash Memory Write Protect Input (WPF) . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8
Flash Memory Reset (RPF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.9
Deep Power-Down (DPDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.10
Flash Memory Latch Enable (LF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.11
Flash Memory Clock (KF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.12
Flash Memory Wait (WAITF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.13
LPSDRAM Chip Select (ES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.14
LPSDRAM Column Address Strobe (CASS) . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.15
LPSDRAM Row Address Strobe (RASS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.16
LPSDRAM Write Enable (WS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.17
LPSDRAM Clock Input (KS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.18
LPSDRAM Clock Enable (KES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.19
LPSDRAM Lower/Upper Data Input/Output Mask (LDQMS/UDQMS) . . . . . 12
2.20
Flash Memory VDDF Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.21
LPSDRAM VDDS Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.22
VDDQ Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.23
Flash Memory VPPF Program Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . 13
2.24
VSS Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2/26
M39P0R9070E0
5
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6
Package mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
7
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3/26
M39P0R9070E0
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
4/26
Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Flash Memory DC Characteristics - Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Flash Memory DC Characteristics - Voltages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
LPSDRAM DC Characteristics 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
LPSDRAM DC Characteristics 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
TFBGA105 9x11mm - 9x12 active ball array, 0.8mm pitch, mechanical data . . . . . . . . . . 23
Ordering Information Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
M39P0R9070E0
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
AC Measurement I/O Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
TFBGA105 9x11mm - 9x12 active ball array, 0.8mm pitch, package outline . . . . . . . . . . . 22
5/26
M39P0R9070E0
1 Summary description
1
Summary description
The M39P0R9070E0 combines two memory devices in one Multi-Chip Package:
●
512-Mbit Multiple Bank Flash memory (the M58PR512J)
●
128-Mbit Low Power Synchronous DRAM (the M65KA128AL)
This datasheet should be read in conjunction with the M58PR512J and M65KA128AL
datasheets, available from www.st.com.
Recommended operating conditions do not allow more than one memory to be active at the
same time.
The memory is offered in a Stacked TFBGA105 package. It is supplied with all the bits erased
(set to ‘1’).
Figure 1.
Logic Diagram
VDDF
VDDQ
VDDS
VPPF
16
25
DQ0-DQ15
A0-A24
BA0-BA1
2
EF
WAITF
GF
WF
RPF
WPF
LF
M39P0R9070E0
KF
DPDF
ES
WS
KES
KS
RASS
CASS
UDQMS
LDQMS
VSS
6/26
Ai11735b
M39P0R9070E0
Table 1.
1 Summary description
Signal Names
A0-A24(1)
Address Inputs
DQ0-DQ15
Common Data Input/Output
VDDQ
Common Flash and LPSDRAM Power Supply for I/O Buffers
VPPF
Flash Memory Optional Supply Voltage for Fast Program & Erase
VDDF
Flash Memory Power Supply
VDDS
LPSDRAM Power Supply
VSS
Ground
NC
Not Connected Internally
DU
Do Not Use as Internally Connected
Flash Memory
EF
Chip Enable input
GF
Output Enable Input
WF
Write Enable input
RPF
Reset input
WPF
Write Protect input
LF
Latch Enable input
KF
Burst Clock
WAITF
Wait Output
DPDF
Deep Power-Down
Low Power SDRAM
ES
Chip Enable Input
WS
Write Enable input
KS
LPSDRAM Clock input
KES
LPSDRAM Clock Enable input
CASS
Column Address Strobe Input
RASS
Row Address Strobe Input
BA0, BA1
Bank Select Inputs
UDQMS
Upper Data Input/Output Mask
LDQMS
Lower Data Input/Output Mask
Note: 1 A12-A24 are Address Inputs for the Flash memory component only.
7/26
M39P0R9070E0
1 Summary description
Figure 2.
TFBGA Connections (Top view through package)
1
2
3
4
5
6
7
8
9
A
DU
A4
A6
A7
A19
A23
A24
NC
DU
B
A2
A3
A5
A17
A18
DPDF
A22
NC
A16
C
A1
VSS
VSS
VSS
VDDS
VSS
VSS
VSS
A15
D
A0
NC
VDDS
VDDF
LF
VDDF
VDDS
NC
A14
E
WPF
WF
NC
NC
NC
A21
A10
A13
F
NC
ES
CASS
RASS
NC
A20
A9
A12
G
NC
NC
EF
BA0
KES
RPF
A8
A11
H
NC
NC
NC
BA1
NC
WS
GF
UDQMS
LDQMS
J
VPPF
VDDQ
VDDQ
VDDF
KS
VDDF
VDDQ
VDDQ
WAITF
K
DQ2
VSS
VSS
VSS
KF
VSS
VSS
VSS
DQ13
L
DQ1
DQ3
DQ5
DQ6
DQ7
DQ9
DQ11
DQ12
DQ14
M
DU
DQ0
NC
DQ4
DQ8
DQ10
NC
DQ15
DU
AI10961
8/26
M39P0R9070E0
2
2 Signal descriptions
Signal descriptions
See Figure 1., Logic Diagram and Table 1., Signal Names, for a brief overview of the signals
connect-ed to this device.
2.1
Address inputs (A0-A24)
A0-A11 are common to the Flash memory and LPSDRAM components. A12-A24 are Address
Inputs for the Flash memory component only. In the Flash memory, the Address Inputs select
the cells in the memory array to access during Bus Read operations. During Bus Write
operations they control the commands sent to the Command Interface of the Program/Erase
Controller. In the LPSDRAM, the A0-A11 Address Inputs are used to select the row or column
to be made active. If a row is selected, all A0-A11 Address Inputs are used. If a column is
selected, only the nine least significant Address Inputs, A0-A8, are used. In this latter case, A10
determines whether Auto Precharge is used. If A10 is High (set to ‘1’) during Read or Write, the
Read or Write operation includes an Auto Precharge cycle. If A10 is Low (set to ‘0’) during
Read or Write, the Read or Write cycle does not include an Auto Precharge cycle.
2.2
LPSDRAM Bank Select Address Inputs (BA0-BA1)
The BA0 and BA1 Bank Select Address Inputs are used by the LPSDRAM to select the bank to
be made active. The LPSDRAM must be enabled, the Row Address Strobe, RASS, must be
Low, VIL, the Column Address Strobe, CASS, and W must be High, VIH, when selecting the
addresses. The address inputs are latched on the rising edge of the clock signal, KS.
2.3
Data Inputs/Outputs (DQ0-DQ15)
In the Flash memory, the Data I/O output the data stored at the selected address during a Bus
Read operation or input a command or the data to be programmed during a Bus Write
operation. In the LPSDRAM, the Data Inputs/Outputs are common to all memory components.
They output the data stored at the selected address during a Read operation, or are used to
input the data during a write operation.
2.4
Flash Memory Chip Enable Input (EF)
The Chip Enable input activates the memory control logic, input buffers, decoders and sense
amplifiers. When Chip Enable is at VIL and Reset is at VIH the device is in active mode. When
Chip Enable is at VIH the memory is deselected, the outputs are high impedance and the power
consumption is reduced to the standby level. It is not allowed to have EF and ES all at VIL at the
same time, only one memory component should be enabled at a time.
9/26
2 Signal descriptions
2.5
M39P0R9070E0
Flash Memory Output Enable (GF)
The Output Enable input controls data outputs during the Bus Read operation of the memory.
2.6
Flash Memory Write Enable (WF)
The Write Enable input controls the Bus Write operation of the Flash memory’s Command
Interface. The data and address inputs are latched on the rising edge of Chip Enable or Write
Enable whichever occurs first.
2.7
Flash Memory Write Protect Input (WPF)
Write Protect is an input that gives an additional hardware protection for each block. When
Write Protect is at VIL, the Lock-Down is enabled and the protection status of the Locked-Down
blocks cannot be changed. When Write Protect is at VIH, the Lock-Down is disabled and the
Locked-Down blocks can be locked or unlocked. (See M58PR512J datasheet for details).
2.8
Flash Memory Reset (RPF)
The Reset input provides a hardware reset of the memory. When
Reset is at VIL, the memory is in reset mode: the outputs are high impedance and the current
consumption is reduced to the Reset Supply Current
IDD2. Refer to Table 6., Flash Memory DC Characteristics - Currents, for the value of IDD2. After
Reset all blocks are in the Locked state and the Configuration Register is reset. When Reset is
at VIH, the device is in normal operation. Exiting reset mode the device enters asynchronous
read mode, but a negative transition of Chip Enable or Latch Enable is required to ensure valid
data outputs. The Reset pin can be interfaced with 3V logic without any additional circuitry. It
can be tied to VRPH (refer to Table 7., Flash Memory DC Characteristics - Voltages).
2.9
Deep Power-Down (DPDF)
The Deep Power-Down input is used to put the Flash memory in Deep Power-Down mode.
When the Flash memory is in Standby mode and the Enhanced Configuration Register bit
ECR15 is set, asserting the Deep Power-Down input will cause the memory to enter the Deep
Power-Down mode.
When the device is in the Deep Power-Down mode, the memory cannot be modified and the
data is protected.
The polarity of the DPDF pin is determined by ECR14. The Deep Power-Down input is active
Low by default.
10/26
M39P0R9070E0
2.10
2 Signal descriptions
Flash Memory Latch Enable (LF)
The Latch Enable input latches the address bits on its rising edge. The address latch is
transparent when Latch Enable is at VIL and it is inhibited when Latch Enable is at VIH. Latch
Enable can be kept Low (also at board level) when the Latch Enable function is not required or
supported.
2.11
Flash Memory Clock (KF)
The clock input synchronizes the memory to the microcontroller during synchronous read
operations; the address is latched on a Clock edge (rising or falling, according to the
configuration settings) when Latch Enable is at VIL. Clock is ignored during asynchronous read
and in write operations.
2.12
Flash Memory Wait (WAITF)
Wait is an output signal used during synchronous read to indicate whether the data on the
output bus are valid. This output is high impedance when Chip Enable is at VIH, Output Enable
is at VIH, or Reset is at VIL. It can be configured to be active during the wait cycle or one data
cycle in advance.
2.13
LPSDRAM Chip Select (ES)
The Chip Select input ES activates the LPSDRAM state machine, address buffers and decoders
when driven Low, VIL. When High, VIH, the device is not selected.
2.14
LPSDRAM Column Address Strobe (CASS)
The Column Address Strobe, CASS, is used in conjunction with Address Inputs A8-A0 and
BA1-BA0, to select the starting column location prior to a Read or Write.
2.15
LPSDRAM Row Address Strobe (RASS)
The Row Address Strobe, RASS, is used in conjunction with Address Inputs A11-A0 and BA1BA0, to select the starting address location prior to a Read or Write.
2.16
LPSDRAM Write Enable (WS)
The Write Enable input, WS, controls writing to the LPSDRAM.
11/26
2 Signal descriptions
2.17
M39P0R9070E0
LPSDRAM Clock Input (KS)
The Clock signal, KS, is used to clock the Read and Write cycles. During normal operation, the
Clock Enable pin, KES, is High, VIH. The clock signal KS can be suspended to switch the device
to the Self Refresh, Power-Down or Deep Power-Down mode by driving KES Low, VIL.
2.18
LPSDRAM Clock Enable (KES)
The Clock Enable, KES, pin is used to control the synchronizing of the signals to Clock signal
KS. The signals are clocked when KES is High, VIH When KES is Low, VIL, the signals are no
longer clocked and data Read and Write cycles are extended. KES is also involved in switching
the device to the Self Refresh, Power-Down and Deep Power-Down modes.
2.19
LPSDRAM Lower/Upper Data Input/Output Mask (LDQMS/
UDQMS)
Lower Data Input/Output Mask and Upper Data Input/Output Mask pins are input signals used
to mask the Read or Write data.
2.20
Flash Memory VDDF Supply Voltage
VDDF provides the power supply to the internal core of the Flash memory component. It is the
main power supply for all operations (Read, Program and Erase).
2.21
LPSDRAM VDDS Supply Voltage
VDDS provides the power supply to the internal core of the LPSDRAM component. It is the main
power supply for all operations (Read and Write).
2.22
VDDQ Supply Voltage
VDDQ is common to the Flash memory and LPSDRAM memory components. It provides the
power supply to the I/O pins and enables all Outputs to be powered independently of VDDF for
the Flash memory, or VDDS for the LPSDRAM. VDDQ can be tied to VDDF or VDDS, or can use a
separate supply.
12/26
M39P0R9070E0
2.23
2 Signal descriptions
Flash Memory VPPF Program Supply Voltage
VPPF is both a control input and a power supply pin. The two functions are selected by the
voltage range applied to the pin. If VPP is kept in a low voltage range (0V to VDDQ) VPP is seen
as a control input. In this case a voltage lower than VPPLK gives an absolute protection against
program or erase, while VPP > VPP1 enables these functions (see Tables 6 and 7, DC
Characteristics for the relevant values). VPP is only sampled at the beginning of a program or
erase; a change in its value after the operation has started does not have any effect and
program or erase operations continue. If VPP is in the range of VPPH it acts as a power supply
pin. In this condition VPP must be stable until the Program/Erase algorithm is completed.
2.24
VSS Ground
VSS ground is common to the LPSDRAM and Flash memory components. It is the reference for
the core supply. It must be connected to the system ground.
Note:
Each device in a system should have VDDF,VDDS, VDDQ and VPPH decoupled with a 0.1µF
ceramic capacitor close to the pin (high frequency, inherently low inductance capacitors should
be as close as possible to the package). See Figure 5., AC Measurement Load Circuit The
PCB track widths should be sufficient to carry the required VPPF program and erase currents.
13/26
M39P0R9070E0
3 Functional description
3
Functional description
The LPSDRAM and Flash memory components have separate power supplies but share the
same grounds. They are distinguished by two Chip Enable inputs: EF for Flash and ES for the
LPSDRAM.
Recommended operating conditions do not allow more than one device to be active at a time.
The most common example is a simultaneous read operations on the Flash memory and the
LPSDRAM which would result in a data bus contention. Therefore it is recommended to put the
other devices in the high impedance state when reading the selected device.
Figure 3.
Functional Block Diagram
VPPF VDDF
A12-A24
EF
WPF
WF
A0-A11
KF
512 Mbit
Flash
Memory
WAITF
GF
RPF
LF
DQ0-DQ15
DPDF
VDDQ
VDDS
BA0-BA1
ES
WS
KS
128 Mbit
LPSDRAM
KES
CASS
RASS
UDQMS
LDQMS
VSS
14/26
Ai11736c
M39P0R9070E0
Table 2.
3 Functional description
Bus Operations
Operation(1)
EF
Bus Read
VIL VIL VIH
Bus Write
(4
VIL VIH VIL VIL VIH
GF
WF
LF
VIL
(4)
RPF
WAITF(2)
KESn-1
KESn
ES
Flash memory(3)
CASS
WS A10 A9, A0-A7 BA0- DQ15-DQ0
A11
BA1
Data
Output
VIH
)
Data
Input
The SDRAM must be disabled.
Data
Output
or Hi-Z
Address Latch
VIL X VIH VIL VIH
Output Disable
VIL VIH VIH
X
VIH
Hi-Z
Standby
VIH X
X
VIH
Hi-Z
(5)
Deep PowerDown
X
X
X
X
VIL
Hi-Z
VIH X
X
X
VIH
Hi-Z
X
Reset
Burst Read
Burst Write
LPSDRAM(3)
RASS
The Flash memory must be
disabled.
Hi-Z
Hi-Z
Any SDRAM operation mode is allowed.
Hi-Z
Hi-Z
VIH
X
VIL VIH
VIL VIH VIL
V
VIH
X
VIL VIH
VIL
V
VIL VIL
SCA BS
(6)
(7)
SCA( BS(7
6)
Data
Output
)
Data
Input
Self Refresh
VIH
VIL VIL VIL
VIL VIH
X
X
–
Auto Refresh
VIH
VIH VIL VIL
VIL VIH
X
X
–
Power-Up
VIH
VIL VIL VIH
VIH VIL
X
X
–
Power-Down
VIH
VIL
VIL VIH
VIH VIH
X
X
–
VIH
VIL VIL VIH
X
X
–
Deep PowerDown
Any Flash memory operation
mode is allowed.
VIH
X
Device Deselect
VIH
X
VIH
No Operation
VIH
X
VIL VIH
X
X
X
VIH VIL
X
X
VIH VIH
X
X
–
X
X
–
1. X = Don't care, V = Valid.
2. WAITF signal polarity is configured using the Set Configuration Register command.
3. For further details, refer to the M58PR512J and M65KA128AL datasheets.
4. LF can be tied to VIH if the valid address has been previously latched.
5. Depends on GF
6. SCA = Start Column Address.
7. BS = Bank Select.
15/26
M39P0R9070E0
4 Maximum rating
4
Maximum rating
Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause
permanent damage to the device. These are stress ratings only and operation of the device at
these or any other conditions above those indicated in the Operating sections of this
specification is not implied. Exposure to Absolute Maximum Rating conditions for extended
periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and
other relevant quality documents.
Table 3.
Absolute Maximum Ratings
Value
Symbol
Unit
Min
Max
TA
Ambient Operating Temperature
–25
85
°C
TJ
SDRAM Junction Temperature
–25
90
°C
TBIAS
Temperature Under Bias
–25
85
°C
TSTG
Storage Temperature
–55
125
°C
Input or Output Voltage
–0.5
2.6
V
VDDF
Supply Voltage
–1.0
3.0
V
VDDS
LPSDRAM Supply Voltage
–0.5
2.6
V
VDDQ
Input/Output Supply Voltage
–0.5
2.6
V
VPPF
Program Voltage
–1.0
12.6
V
Output Short Circuit Current
100
mA
Time for VPP at VPPH
100
hours
VIO
IO
tVPPH
16/26
Parameter
M39P0R9070E0
5
5 DC and AC parameters
DC and AC parameters
This section summarizes the operating measurement conditions, and the DC and AC
characteristics of the device. The parameters in the DC and AC characteristics Tables that
follow, are derived from tests performed under the Measurement Conditions summarized in
Table 4., Operating and AC Measurement Conditions. Designers should check that the
operating conditions in their circuit match the operating conditions when relying on the quoted
parameters.
Table 4.
Operating and AC Measurement Conditions
Flash memory
LPSDRAM
Parameter(1)(2)
Unit
Min
Max
Min
Typ
Max
VDDF Supply Voltage
1.7
1.95
–
–
–
V
VDDS Supply Voltage
–
–
1.7
1.8
1.95
V
VDDQ Supply Voltage(3)
1.7
1.95
1.7
1.8
1.95
V
VPPF Supply Voltage (Factory environment)
8.5
9.5
–
–
–
V
VPPF Supply Voltage (Application
environment)
–0.4
VDDQ+0.4
–
–
–
V
Ambient Operating Temperature
–25
85
–25
–
85
°C
Load Capacitance (CL)
30
30
pF
Impedance Output (Z0)
50
Ω
Output Circuit Protection Resistance (R)
50
Ω
Input Rise and Fall Times
3
Input Pulse Voltages
Input and Output Timing Ref. Voltages
1
ns
0 to VDDQ
–
V
VDDQ/2
VDDQ/2
V
1. All voltages are referenced to VSS = 0V.
2. TJ = –25 to 90°C, f = 1MHz
3. VDDQ must not exceed the level of VDDS.
Figure 4.
AC Measurement I/O Waveform
VDDQ
VDDQ/2
0V
AI06161
17/26
M39P0R9070E0
5 DC and AC parameters
Figure 5.
AC Measurement Load Circuit
VCCQ/2
R
DEVICE
UNDER
TEST
OUT
Z0
CL
AI06162a
Table 5.
Capacitance
Symbol
Parameter
Test Condition
Min
Max
Unit
CIN
Input Capacitance
VIN = 0V
–
12
pF
COUT
Output Capacitance
VOUT = 0V
–
15
pF
1. Sampled only, not 100% tested.
18/26
M39P0R9070E0
Table 6.
Symbol
ILI
ILO
5 DC and AC parameters
Flash Memory DC Characteristics - Currents
Parameter
Input Leakage Current
Output Leakage Current
Supply Current
Asynchronous Read (f=5MHz)
Supply Current
Page Read (f=13MHz)
Test Condition
Typ
Max
Unit
0V ≤VIN ≤VDDQ
±1
µA
0V ≤VOUT ≤VDDQ
±1
µA
25
30
mA
11
15
mA
EF = VIL, GF = VIH
IDD2
Supply Current (Reset)
8 Word
16 Word
Continuous
8 Word
16 Word
Continuous
RPF = VSS ± 0.2V
512 Mbit
IDD3
Supply Current (Standby)
EF = VDDF ± 0.2V
512 Mbit
50
120
µA
IDD4
Supply Current (Automatic Standby)
EF = VIL, GF = VIH
512 Mbit
50
120
µA
IDD5(1)
Supply Current (Deep Power Down)
2
30
µA
IDD1
Supply Current
Synchronous Read (f=66MHz)
Supply Current
Synchronous Read (f = 108MHz)
IDD7
IDD8(2)
µA
mA
35
50
mA
VPPF = VPPH
35
50
mA
VPPF = VDDF
35
50
mA
VPPF = VPPH
35
50
mA
VPPF = VDDF
35
50
mA
60
80
mA
65
92
mA
50
120
µA
VPPF = VPPH
8
22
mA
VPPF = VDDF
0.05
0.1
µA
VPPF = VPPH
8
22
mA
VPPF = VDD
0.05
0.1
µA
VPPF Supply Current (Read)
VPP ≤VDDF
2
15
µA
VPPF Supply Current (Standby,
Program/Erase Suspend)
VPP ≤VDDF
0.2
5
µA
VPPF = VPPH
0.05
0.1
mA
VPPF = VPP1
0.05
0.1
mA
Supply Current (Erase)
Supply Current
(Dual Operations)
Supply Current Program/ Erase
Suspended (Standby)
VPPF Supply Current (Erase)
IPP4
120
50
IPP1(2)
IPP3(2)
50
35
VPPF Supply Current (Program)
IPP2
mA
mA
mA
mA
mA
mA
VPPF = VPPH
Supply Current (Blank Check)
(2)(3)
32
26
34
36
30
42
VPPF = VDDF
Supply Current (Program)
IDD6 (2)
22
19
25
26
23
30
VPPF Supply Current (Blank Check)
Program/Erase in one Bank,
Asynchronous Read in another Bank
Program/Erase in one Bank,
Synchronous Read (Continuous
f=66MHz) in another Bank
EF = VDDF ± 0.2V
512 Mbit
1. The DPD current is measured 40µs after entering the Deep Power Down mode.
2. Sampled only, not 100% tested.
3. VDDF Dual Operation current is the sum of read and program or erase currents.
19/26
M39P0R9070E0
5 DC and AC parameters
Table 7.
Flash Memory DC Characteristics - Voltages
Symbol
Parameter
Test Condition
Min
Typ
Max
Unit
VIL
Input Low Voltage
0
0.4
V
VIH
Input High Voltage
VDDQ –0.4
VDDQ + 0.4
V
VOL
Output Low Voltage
IOL = 100µA
0.1
V
VOH
Output High Voltage
IOH = –100µA
VDDQ –0.1
VPP1
VPPF Program Voltage-Logic
Program, Erase
1.1
1.8
3.3
V
VPPH
VPPF Program Voltage Factory
Program, Erase
8.5
9.0
9.5
V
VPPLK
Program or Erase Lockout
0.4
V
VLKO
VDDF Lock Voltage
VRPH
RPF pin Extended High Voltage
VLKOQ
VDDQ Lock Voltage
Table 8.
ILO(2)
1
V
3.3
0.9
V
V
LPSDRAM DC Characteristics 1
Test Condition(1)
Min
Max
Unit
Input Leakage Current
0V≤VIN ≤1.8V
–1
1
µA
Output Leakage Current
0V≤ VOUT ≤1.8V
–1.5
1.5
µA
Symbol
ILI
V
Parameter
VIL(3)
Input Low Voltage
VIN = 0V
–0.3(4)
0.3
V
VIH(3)
Input High Voltage
VIN = 0V
0.8VDDQ
VDDQ + 0.3(5)
V
VOL
Output Low Voltage
IOUT = 100µA, VIN = 0V
0.2
V
VOH
Output High Voltage
IOUT = –100µA, VIN = 0V
1. TJ = –25 to 90°C.
2. Data outputs are disabled.
3. VDDQ must not exceed the level of VDDS.
4. VIL may undershoot to -1.0V for less that 5ns.
5. VIH may overshoot to 2.6V for less that 5ns.
20/26
VDDQ –0.2
V
M39P0R9070E0
Table 9.
LPSDRAM DC Characteristics 2
Symbol
IDD1(2)
5 DC and AC parameters
Operating Current
IDD2P
IDD2PS
Standby Current in Non Power-Down
Mode
IDD2NS
IDD3PS
IDD3N
IDD3NS
IDD4(2)
Typ
Unit
Burst length = 1, one bank active
tRC ≥ tRC(min), IOL = 0mA
36
mA
KES ≤VIL(max), tCK = 15ns
0.6
Standby Current in Power-Down Mode KES ≤VIL(max), tCK = ∞
Input signal stable
IDD2N
IDD3P
Test Condition(1)
Parameter
KES ≥ VIH (min), ES ≥ VIH (min), tCK =
15ns
Input signals are changed once in 30ns
KES ≥ VIH (min), tCK = ∞
Input signals are stable
Active Standby Current in PowerDown Mode
KES ≤VIL(max), tCK = 15ns
KES ≤VIL(max), tCK = ∞
KES ≥ VIH (min), ES ≥ VIH (min), tCK =
15ns
Active Standby Current in Non Power- Input signals are changed once in 30ns
Down Mode
KES ≥ VIH (min), tCK = ∞
Input signals are stable
mA
0.5
3
mA
1
1
mA
0.8
15
mA
5
Burst Mode Current, CL=2
tCK ≥ tCK (min), IOL = 0mA
35
mA
Burst Mode Current, CL=3
All banks active
52
mA
tRC1 ≥ tRC1(min)
65
mA
See
M65KA128AL
datasheet
µA
10
µA
IDD5(3),
Auto Refresh Current, CL=2
(4)
Auto Refresh Current, CL=3
KES ≤0.2V
IDD6
Self Refresh Current
IDD7
See Deep Power-Down Entry AC
Standby Current in Deep Power-down Waveforms, and Deep Power-Down Exit
Mode
AC Waveforms Figures in M65KA128AL
datasheet.
1. TJ = –25 to 90°C.
2. IDD1 and IDD4 depend on the output loading and cycle rates. All measurements are made with the output open and on
condition that the addresses are changed only once during tCK (min.).
3. The minimum value of tRC (RASS cycle time for Refresh operation) is shown in the Asynchronous AC Characteristics Table
in M65KA128AL datasheet.
4. IDD5 is measured on condition that the addresses are changed only once during tCK (min.).
21/26
M39P0R9070E0
6 Package mechanical
6
Package mechanical
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a Lead-free second-level interconnect. The category of
Second-Level Interconnect is marked on the package and on the inner box label, in compliance
with JEDEC Standard JESD97.
The maximum ratings related to soldering conditions are also marked on the inner box label.
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
Figure 6.
TFBGA105 9x11mm - 9x12 active ball array, 0.8mm pitch, package outline
D
D1
FD
e
E
ddd
SE
E1
BALL "A1"
FE
A
e
b
A2
A1
BGA-Z79
Drawing is not to scale.
22/26
M39P0R9070E0
Table 10.
6 Package mechanical
TFBGA105 9x11mm - 9x12 active ball array, 0.8mm pitch, mechanical data
millimeters
inches
Symbol
Typ
Min
A
Max
Typ
Min
1.20
A1
Max
0.047
0.20
0.008
A2
0.80
0.031
b
0.35
0.30
0.40
0.014
0.012
0.016
D
9.00
8.90
9.10
0.354
0.350
0.358
D1
6.40
0.252
ddd
0.10
10.90
11.10
0.004
E
11.00
0.433
E1
8.80
e
0.80
FD
1.30
0.051
FE
1.10
0.043
SE
0.40
0.016
0.429
0.437
–
–
0.346
–
–
0.031
23/26
M39P0R9070E0
7 Part numbering
7
Table 11.
Part numbering
Ordering Information Scheme
Example:
M39 P
0
R
9
0
7
0
E
0
ZAD
E
Device Type
M39 = Multi-Chip Package (Flash + LPSDRAM)
Flash 1 Architecture
P = Multi-Level, Multiple Bank, Large Buffer
Flash 2 Architecture
0 = No Die
Operating Voltage
R = VDDF = VDDS = VDDQ = 1.7 to 1.95V
Flash 1 Density
9 = 512 Mbits
Flash 2 Density
0 = No Die
RAM 1 Density
7 = 128 Mbit
RAM 0 Density
0 = No Die
Parameter Blocks Location
E = Even Block Flash Memory Configuration
Product Version
0 = 90nm Flash technology, 93ns speed; LPSDRAM
Package
ZAD= stacked TFBGA105 D stacked footprint.
Option
Blank = Standard Packing
E = ECOPACK® Package, Standard packing
F = ECOPACK® Package, Tape & Reel packing
Note:
24/26
Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of
available options (Speed, Package, etc.) or for further information on any aspect of this device,
please contact the STMicroelectronics Sales Office nearest to you.
M39P0R9070E0
8
8 Revision history
Revision history
Date
Version
29-Nov-2005
1
Revision Details
Initial release.
25/26
M39P0R9070E0
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
26/26