MITSUBISHI ICs (Monitor) M52348FP WIDE FREQUENCY BAND ANALOG SWITCH DESCRIPTION PIN CONFIGURATION (TOP VIEW) The M52348FP is an semiconductor IC for RGBHV interface that switches signals input from two types of image source and outputs them to CRT display etc. VCC1(R) 1 The synchronous signal meets the INPUT1(R) 2 frequency band of 10 kHz to 200 kHz and is output with TTL. The VCC1(G) 3 IC adopts 250 MHz for the frequency band width of video signal, providing high resolution images. It is optimum as an IC for 36 VCC2(R) 35 OUTPUT(R) 34 GND NC 4 33 NC INPUT1(G) 5 32 NC interface with various types of new media including high resolution VCC1(B) 6 CRT. 31 VCC2(G) INPUT1(B) 7 • INPUT1(V) 9 • • Frequency band : RGB...................................................250MHz HV..........................................10Hz to 200kHz Input level : RGB...........................................0.7 V P-P (typ.) HV TTL IN PUT 3 to 5 Vo-p (bipolar) Only the G channel is equipped with output for sync-on-video. HV output adopts TTL format. 30 OUTPUT(G) M52348FP FEATURES INPUT1(H) 8 GND 10 29 GND 28 VCC2(B) 27 OUTPUT(B) 26 GND INPUT2(R) 11 GND 12 24 VCC NC 14 23 NC APPLICATION CRT display, TV, VCR, etc. RECOMMENDED OPERATING CONDITINO 25 OUTPUT(Sync on G) INPUT2(G) 13 GND 15 22 OUTPUT(H) INPUT2(B) 16 21 OUTPUT(V) INPUT2(H) 17 20 GND INPUT2(V) 18 19 SWITCH Supply voltage range.......................................................4.5 to 5.5V Outline 36P2R-D Rated supply voltage..................................................................5.0V NC : NO CONNECTION BLOCK DIAGRAM OUTPUT OUTPUT(R) GND NC NC 35 34 33 32 2 3 4 5 VCC2(R) 36 1 VCC2(G) INPUT1(R) VCC1(R) 1 VCC1(G) NC OUTPUT(B) OUTPUT(G) VCC2(B) 31 30 29 28 6 7 8 9 VCC1(B) INPUT1(G) GND INPUT1(H) INPUT1(B) GND 27 26 10 11 GND INPUT1(V) NC (Sync on G) VCC 25 24 12 13 GND INPUT2(R) INPUT2(G) OUTPUT(V) OUTPUT(H) 23 22 14 15 NC GND 21 20 16 17 INPUT2(B) GND SWITCH 19 18 INPUT2(V) INPUT2(H) MITSUBISHI ICs (Monitor) M52348FP WIDE FREQUENCY BAND ANALOG SWITCH ABSOLUTE MAXIMUM RAGINGS (Ta=25˚C) Symbol VCC Pd Topr Tstg Vopr Vopr’ Sarge Parameter Supply voltage Power dissipation Operating temperature Storage temperature Recommended operating supply voltage Recommended operating supply voltage range Electrostatic discharge Ratings 7.0 1603 -20 to +85 -40 to +150 5.0 4.5 to 5.5 ±200 Unit V mW ˚C ˚C V V V ELECTRICAL CHARACTERISTICS (VCC=5V, Ta=25˚C) Symbol Parameter Test point Power supply Vcc ICC1 Circuit current 1 (no signal) A 5 ICC1 Circuit current 2 (no signal) A 5 Test conditions SW SW2 Rin1 SW5 Gin1 SW7 Bin1 SW8 Hin1 SW9 SW11 SW13 SW16 SW17 SW18 Vin1 Rin2 Gin2 Bin2 Hin2 Vin2 SW19 Swich b b - b b - b b - b b - b b - b b - b b - b b - b b - b b - b GND a OPEN Limits Unit Min. Typ. Max. 46 66 86 mA 46 66 86 mA RGB SW block VDC1 Output DC voltage 1 T.P.35 T.P.30 T.P.27 5 b - b - b - b - b - b - b - b - b - b - b GND 1.8 2.2 2.6 V VDC2 Output DC voltage 2 T.P.35 T.P.30 T.P.27 5 b - b - b - b - b - b - b - b - b - b - a OPEN 1.8 2.2 2.6 V T.P.25 5 b b - b b - b b - b b - b b - b b - b b - b b - b GND a OPEN 1.5 1.9 V 5 b b - 1.1 T.P.25 b b - 1.1 1.5 1.9 V b - b - b - b - b - b - b - b GND 1.4 1.6 - VP-P b - b - b - b - a OPEN 1.4 1.6 - VP-P b - b - b - b - b GND -0.5 0.1 0.7 dB -0.6 0 0.6 dB -0.5 0.1 0.7 dB -0.6 0 0.6 dB VDC3 VDC4 Output DC voltage 3 Output DC voltage 4 Vimax1 Maximum allowable input 1 T.P.2 T.P.5 T.P.7 5 Vimax2 Maximum allowable input 2 T.P.11 T.P.13 T.P.16 5 GV1 Voltage gain 1 T.P.35 T.P.30 T.P.27 5 ∆GV1 Relative voltage gain 1 abb bab bba SG1 SG1 SG1 b - b - b - abb bab bba SG2 SG2 SG2 abb bab bba SG1 SG1 SG1 b - b - b - Takes ratio of the values above T.P.35 T.P.30 T.P.27 5 b - b - b - b - b - abb bab bba SG2 SG2 SG2 b - b - a OPEN GV2 Voltage gain 2 ∆GV2 Relative voltage gain 2 GV3 Voltage gain 3 T.P.25 5 b - a SG2 b - b - b - b - b - b - b - b - b GND -0.4 0.2 0.8 dB GV4 Voltage gain 4 T.P.25 5 b - b - b - b - b - b - a SG2 b - b - b - a OPEN -0.4 0.2 0.8 dB FC1 Frequency characteristics 1 (100MHz) T.P.35 T.P.30 T.P.27 5 b - b - b - b - b - b - b - b GND -0.1 0 1.0 dB ∆FC1 Relative frequency characteristics 1 (100MHz) -0.1 0 1.0 dB FC2 Frequency characteristics 2 (100MHz) -0.1 0 1.0 dB ∆FC2 Relative frequency characteristics 2 (100MHz) -0.1 0 1.0 dB FC3 Frequency characteristics 3 (100MHz) T.P.35 T.P.30 T.P.27 5 FC4 Relative frequency characteristics 4 (250MHz) T.P.35 T.P.30 T.P.27 5 Takes ratio of the values above. abb bab bba SG4 SG4 SG4 Takes ratio of the values above T.P.35 T.P.30 T.P.27 5 b - b - b - b - b - abb bab bba SG4 SG4 SG4 b - b - a OPEN Takes ratio of the values above abb bab bba SG5 SG5 SG5 b - b - b - b - b - b - b - b - b - b - abb bab bba SG5 SG5 SG5 b - b - b GND -3.0 1.5 1.0 dB b - b - a OPEN -3.0 1.5 1.0 dB 2 MITSUBISHI ICs (Monitor) M52348FP WIDE FREQUENCY BAND ANALOG SWITCH ELECTRICAL CHARACTERISTICS (cont.) Symbol Parameter Test point Power supply Vcc Test conditions SW2 Rin1 SW5 Gin1 Crosstalk 1 between 2 inputs (10MHz) T.P.35 T.P.30 T.P.27 5 Crosstalk 2 between 2 inputs (10MHz) T.P.35 T.P.30 T.P.27 5 Crosstalk 3 between 2 inputs (100MHz) T.P.35 T.P.30 T.P.27 5 Crosstalk 4 between 2 inputs (100MHz) T.P.35 T.P.30 T.P.27 5 C.T.C.1 Crosstalk 1 between channels (10MHz) T.P.35 T.P.30 T.P.27 5 C.T.C.2 Crosstalk 2 between channels (10MHz) T.P.35 T.P.30 T.P.27 5 Crosstalk 3 between channels (100MHz) Crosstalk 4 between channels (100MHz) T.P.35 T.P.30 T.P.27 5 T.P.35 T.P.30 T.P.27 5 T.P.35 T.P.30 T.P.27 5 Tf1 T.P.35 T.P.30 T.P.27 5 Tr2 T.P.35 T.P.30 T.P.27 5 b - b - T.P.35 T.P.30 T.P.27 5 b - C.T.I.1 C.T.I.2 C.T.I.3 C.T.I.4 C.T.C.3 C.T.C.4 Tr1 Pulse characteristics 1 Pulse characteristics 2 Tf2 SW7 Bin1 abb bab bba SG3 SG3 SG3 SW8 Hin1 SW SW9 SW11 SW13 SW16 SW17 SW18 Vin1 Rin2 Gin2 Bin2 Hin2 Vin2 b - b - b - b - b - b - b - b - b - b - b - b - b - b - b - b - a a a SG6 SG6 SG6 b - b - b - b - a a a SG6 SG6 SG6 b - b - b - b - b - b - b - b - b - b - b - b - b - b - b b - b b - b b - b c 0V b b - b b - b - b - b - abb bab bba SG4 SG4 SG4 b - b - b - abb bab bba SG3 SG3 SG3 b - b - b - abb bab bba SG4 SG4 SG4 b - b - b - b - b - b - SW19 Swich Limits Unit Min. Typ. Max. - -60 -50 dB - -60 -50 dB - -40 -35 dB - -40 -35 dB GND b - b - b - b - b - b - b - b - b - b - b GND - -50 -40 dB b - b - a OPEN - -50 -40 dB b - b - b GND - -30 -25 dB b - b - a OPEN - -30 -25 dB b - b - b - b GND - 1.6 2.5 nsec b - b - b - b GND - 1.6 2.5 nsec a a a SG6 SG6 SG6 b - b - a OPEN - 1.6 2.5 nsec a a a SG6 SG6 SG6 b - b - a OPEN - 1.6 2.5 nsec 4.5 5.0 - V 4.5 5.0 - V - 0.2 5.0 V - 0.2 5.0 V 2.0 2.5 3.0 V 2.0 2.5 3.0 V - 100 150 nsec - 100 150 nsec - 50 100 nsec - 50 100 nsec c 0.5 1.5 2.0 V c 0.5 1.5 2.0 V abb bab bba SG3 SG3 SG3 b - b - b - abb bab bba SG4 SG4 SG4 b - b - b - abb bab bba SG3 SG3 SG3 b - b - b - abb bab bba SG4 SG4 SG4 OPEN OPEN GND GND OPEN OPEN GND HV SW portion 3 VOH1 High-level output voltage 1 T.P.21 T.P.22 5 VOH2 High-level output voltage 2 T.P.21 T.P.22 5 VOL1 Low-level output voltage 1 T.P.21 T.P.22 5 VOL2 Low level output voltage 2 T.P.21 T.P.22 5 Vith1 Input threshold voltage 1 T.P.8 T.P.9 5 b b - Vith2 Input threshold voltage 2 T.P.17 T.P.18 5 b - b - b - Trd1 Rising delay time 1 T.P.21 T.P.22 5 Trd2 Rising delay time 2 T.P.21 T.P.22 5 b b - b b - b b - Tfd1 Falling delay time 1 T.P.21 T.P.22 5 Tfd2 Falling delay time 2 T.P.21 T.P.22 5 b b - b b - b b - Vsth1 Switching threshold voltage 1 T.P.19 5 Vsth2 Switching threshold voltage 2 T.P.19 5 c c 5.0V 5.0V b - b - b - b - b c 0V b b - b b - b b - b c b c Variable Variable b b - b b - b b - b b GND c a c 5.0V 5.0V OPEN b b b GND c a c 0V 0V OPEN b b b GND b - b - b - b - b - c c Variable Variable a a SG7 SG7 b b - b b - b b - b b - b b b GND a a a SG7 SG7 OPEN a a SG7 SG7 b b - b b - b b - b b - b b b GND a a a SG7 SG7 OPEN a a a a a b b b b b SG1 SG1 SG1 SG7 SG7 b b b b b a a a a a - SG1 SG1 SG1 SG7 SG7 a OPEN MITSUBISHI ICs (Monitor) M52348FP WIDE FREQUENCY BAND ANALOG SWITCH ELECTORICAL CHARACTERISTICS TEST METHOD 2. When this is the case, measure the output amplitude of T.P.25. 3. As in the case of GV1, ∆GV1, GV2 and ∆GV2, find GV3 and GV4. Note) Omitted because the signal input pins and SW No. have been described in the Electrical Characteristics Table. SWA shall take FC1, ∆FC1 frequency characteristics 1, relative frequency side a unless otherwise noted. characteristics 1 (100 MHz) FC2, ∆FC2 frequency characteristics 2, relative frequency ICC1, ICC2 Circuit current 1, circuit current 2 (no signal) characteristics 2 (100 MHz) The conditions shall be as provided in the Electrical Characteristics 1. The conditions shall be as provided in the Electrical Table. When SW19 is assigned to GND (or OPEN), and SWA is Characteristics Table. This measurement shall use active probe. placed on side b, take measurements in ampere meter A and 2. Assign SW19 to GND and input SG2 into pin 2 only. When this is specify the value to be Icc1 (or ICC2). the case, specify the output amplitude of T.P.35 to be VOR1. In the same manner, specify the output to be VOR2 with SG4 VDC1, VDC2 Output DC voltage 1, output DC voltage 2 When SW19 is assigned to GND (or OPEN), and no signal is input, measure T.P.35 (T.P.30, T.P.27) output DC voltage. Specify the input. 3. In this case, calculate frequency characteristics F C1 by the following formula: voltage to be VDC1 (or VDC2). FC1 = 20LOG VDC3, VDC4, Output DC voltage 3, output DC voltage 4 Measure the output DC voltage of T.P.25 in the same manner as in VDC1 and VDC2, and specify the voltage to be VDC3 (VDC4). VOR2 [VP-P] VOR1 [VP-P] 4. In response to inputs into pin 5 and pin 7 (dB) only, find frequency characteristics Fc1 in the same manner. 5. Calculate the difference in frequency characteristics between Vimax1, Vimax2, maximum allowable input 1, maximum allowable input 2 channels to find relative frequency characteristics∆Fc1. 6. Assign SW19 to OPEN. In the same manner, find F C2 and ∆FC2. Assign SW19 to GND and input SG1 into pin 2 only. Gradually increasing the SG1 amplitude, read the amplitude of the input FC3, FC4 Frequency characteristics 3, frequency signal when the output waveform of T.P.35 is strained. The value is characteristics 4 (250 MHz) specified to be Vimax1. In the same manner, measure Vimax 1 in In the same manner as finding FC1, ∆FC1, FC2 and∆FC2, find FC3 response to inputs into pin and FC4 in response to input signal SG5. 5 and pin 7 only. Then assign SW19 to OPEN, measure the values at inputs into pins 11 , 13 , and 16 only. Then specify the values to be Vimax2. C.T.I.1 Crosstalk 1 between 2 inputs C.T.I.2 Crosstalk 2 between 2 inputs (10 MHz) 1. The conditions shall be as provided in the Electrical GV1,∆GV1, voltage gain 1, relative voltage gain 1 Characteristics Table. This measurement shall take active probe. GV2, ∆GV2, voltage gain 2, relative voltage gain 2 2. Assign SW19 to GND and input SG3 into pin 1. The conditions shall be as provided in the Electrical Characteristics Table. the case, read the amplitude of T.P.35 output and specify the value as VOR1. GV1=20LOG VOR1 [VP-P] 0.7 [VP-P] (dB) 4. In the same manner, find voltage gain G V1 in response to inputs and pin the output amplitude of T.P.35 at that time and specify the value 3. Assign SW19 to ONPEN, measure the output amplitude of T.P.35 at that time and specify the value to be VOR3'. 4. When this is the case, calculate crosstalk C.T.L1 between 2 3. Calculate voltage gain GV1 by the following formula: 5 only. Measure to be VOR3. 2. Assign SW19 to GND and input SG2 into pin 2 only. When this is into pin 2 7 only. 5. Calculate the difference in voltage gain between channels to find relative voltage gain ∆GV1. 6. In the same manner, find GV2 and ∆GV2. inputs by the following formula: C.T.I.1 = 20LOG VOR3’ [VP-P] VOR3 [VP-P] (dB) 5. In the same manner, find crosstalk between 2 inputs in response to inputs into pin 5 and pin 7 only. 6. Assign SW19 to OPEN and then input SG3 into pin 11 only. Measure the output amplitude of T.P.35 at that time and specify the value to be VOR4'. 7. Assign SW19 to GND and then measure the output amplitude of GV3, ∆GV4 Voltage gain 3, voltage gain 4 T.P.35 at that time. Specify the value to be VOR4'. 1. The conditions shall be as provided in the Electrical Characteristics Table. 4 MITSUBISHI ICs (Monitor) M52348FP WIDE FREQUENCY BAND ANALOG SWITCH 8. When this is the case, calculate crosstalk C.T.I.2 between 2 inputs by the following formula: C.T.I.2 = 20LOG 2. With active probe, measure rising Tri and falling Tfi for 10% to 90% of the input pulse. VOR4’ [VP-P] VOR4 [VP-P] 3. With active probe, measure rising Tro and falling Tfo for 10% to 90% of the output pulse. (dB) 4. The pulse characteristics Tr1 and Tf1 (Tr2 and Tf2) are as follows: 9. As in the same manner, find crosstalk between 2 pints in 100% 90% response to input into pin 13 and pin 16 only. 10% 0% C.T.I.3 Crosstalk 3 between 2 inputs Tr Tf C.T.I.4 Crosstalk 4 between 2 inputs (100 MHz) Specify input signal to be SG4. In the same manner as in C.T.I.1 and C.T.I.2, find crosstalk C.T.I.3/C.T.I.4 between 2 inputs. C.T.C.1 Crosstalk 1 between channels C.T.C.2 Crosstalk 2 between channels (10 MHz) Tr1(Tr2) = (Tro)2 - (Tri)2 (nsec) Tf1(Tf2) = (Tfo)2 - (Tfi)2 (nsec) VOH1, VOH2 High-level output voltage 1 and high-level output 1. The conditions shall be as provided in the Electrical Characteristics Table. This measurement shall take active probe. 2. Assign SW19 to GND and input signal SG3 into pin 2 only. Specify the output amplitude of T.P.35 to be VOR5 at that time. voltage 2 The conditions shall be as provided in the Electrical Characteristics Table. Assign SW19 to GND (or OPEN), apply 5V to the input pin and measure the output voltage. Specify the value to be VOH1 3. In the same status, measure the output amplitude of T.P.30 and (VOH2). T.P.27and specify the values to be VOG5 and VOB5. 4. When this is the case, calculate crosstalk C.T.C1 between channels by the following formula: C.T.C.1 = 20LOG VOG5 or VOB5 [VP-P] VOR5 (dB) Table. Assign SW19 to GND (or OPEN), apply 0V to the input pin [VP-P] and measure the output voltage. Specify the value to be VOL1 5. In the same manner, find crosstalk between channels in response to inputs into pin 5 and pin 7 VOL1, VOL2 Low-level output voltage 1 and low-level output voltage 2 The conditions shall be as provided in the Electrical Characteristics (VOL2). only. 6. Assign SW19 to OPEN and then input signal SG3 into pin 11 Vith1 Input threshold voltage 1 only. Specify the output amplitude of T.P.35 to be VOR6 at that Vith2 Input threshold voltage 2 time. The conditions shall be as provided in the Electrical Characteristics 7. In the same status, measure the output amplitude of T.P.30 and voltage of input pin from 0V, measure the input voltage when the T.P.27. Specify the values to be VOG6 and VOB6. 8. When this is the case, calculate crosstalk C.T.C.2 between VOG6 or VOB6 [VP-P] VOR6 (dB) [VP-P] 9. As in the same manner, find crosstalk between channels in response to inputs into pin 13 output voltage is Hi (4.5V or more). Specify the value to be Vith1 (Vith2). channels by the following formula: C.T.C.2 = 20LOG Table. Assign SW19 to GND (or OPEN). Gradually increasing the and pin 16 only. Trd1, Trd2 Rising delay time 1 and rising delay time 2 Tfd1, Tfd2 Falling delay time 1 and falling delay time 2 The conditions shall be as provided in the Electrical Characteristics Table. Assign SW19 to GND (or OPEN), input SG7 into the input pin and measure the output waveform. Rising delay time Trd1 (Trd2) and falling delay time Tfd1 (Tfd2) shall C.T.C.3 Crosstalk 3 between channels be found according to the following diagram. C.T.C.4 Crosstalk 4 between channels (100 MHz) Specify input signal to be SG4. In the same manner as in C.T.C.1 and C.T.C.2, find crosstalk C.T.C.3/C.T.C.4 between 2 channels. 50% SG7 Tr1, Tf1, Tr2, Tf2 Pulse characteristics 1 Trd and pulse characteristics 2 1. The conditions shall be as provided in the Electrical Characteristics Table. Assign SW19 to GND (or OPEN). 5 Tfd 50% OOO MITSUBISHI ICs (Monitor) M52348FP WIDE FREQUENCY BAND ANALOG SWITCH TYPICAL CHARACTERISTICS Vsth1 Switching threshold voltage 1 Vsth2 Switching threshold voltage 2 THERMAL DERATING (MAXIMUM RATING) 1. The conditions shall be as provided in the Electrical SG7 into pins 8 and 9 2 , 5 and 7 . Do not input signal into other pins. 2. Apply a voltage of 0V to pin 19 and check each of TP21, TP22, TP25, TP27, TP30 and TP35 for output of signal. 3. Gradually increasing the voltage at pin pin 19 19 , specify the output at to be Vsth1 when the signal is not output from the above pins. 4. As in the same manner, input SG1 into pins input SG7 into pins 11 , 13 and 16 and and 18 . Do not input signal into other 5. Apply a voltage of 5V to pin 19 and check each of TP21, TP22, 17 pins. pin 19 19 1068 1000 750 500 250 -20 0 25 50 75 85 100 125 150 AMBIENT TEMPERATURE Ta (˚C) TP25, TP27, TP30 and TP35 for output of signal. 6. Gradually decreasing the voltage at pin 1250 . Input POWER DISSIPATION Pd(mW) Characteristics Table. Input SG7 into pins , specify the output at to be Vsth2 when the signal is not output from the above pins. INPUT SIGNAL SG No. signals Sine wave (f=60 kHz, 0.7VP-P, amplitude variable) SG1 0.7VP-P (Amplitude variable) SG2 SG3 SG4 SG5 SG6 Sine wave (f=1 MHz, amplitude 0.7V P-P) Sine wave (f=10 MHz, amplitude 0.7V P-P) Sine wave (f=100 MHz, amplitude 0.7V P-P) Sine wave (f=250 MHz, amplitude 0.7V P-P) Pulse of 0.7VP-P in amplitude (f=60kHz, duty 80%) 0.7VP-P Square wave (Amplitude 5.0 VO-P TTL, f=60 kHz, duty = 50%) SG7 5V 0V 6 7 SW A a Vcc 5V A b 47µ 0.01µ 36 1 TP2 47µ a 2 35 0.01µ 0.01µ b 32 0.01µ a 5 NC TP5 SW5 4 3 100µ NC VCC 47µ 33 NC 34 GND b 31 9 SW9 26 GND 10 11 M52348FP 27 12 25 24 13 100µ VCC 23 NC SW7 0.01µ 47µ a b 100µ SW8 SG1 SG2 SG3 SG4 SG5 SG6 c a b TP9 c a b TP8 SW11 0.01µ a TP11 b 100µ SG7 SW13 0.01µ a TP13 b 14 8 28 VCC 47µ NC TP7 29 GND TP25 GOUT (for Sync on G) 6 7 30 0.01µ TP27 B VCC VCC 100µ 0.01µ SW2 VCC VCC 0.01µ TP30 G 0.01µ 0.01µ 0.01µ TP35 R 0.01µ TP16 a 20 b TP18 18 19 c b a OPEN c a b c a b SW18 SW19 SW17 17 GND TP17 100µ 16 21 TP21 V SW16 15 GND 22 TP22 H MITSUBISHI ICs (Monitor) M52348FP WIDE FREQUENCY BAND ANALOG SWITCH TEST CIRCUIT Units Reslstance : Ω Capacitance : F MITSUBISHI ICs (Monitor) M52348FP WIDE FREQUENCY BAND ANALOG SWITCH DESCRIPTION OF PIN Pin No. Name DC voltage (V) Peripheral circuit of pins VCC1(R) VCC1(G) VCC1(B) 1 3 6 Description of function 5.0 800Ω Input at low impedance. 5 INPUT1(G) 7 INPUT1(B) 2.0 2.8V INPUT1(R) 620Ω 2 1.0mA Input pulse of 3V or more and 5V or less. 8 INPUT1(H) 9 INPUT1(V) - 3 to 5V 0V 0.2mA 10 20 12 26 15 29 GND GND 34 800Ω Input at low impedance. 13 INPUT2(G) 16 INPUT2(B) 2.0 2.8V INPUT2(R) 620Ω 11 1.0mA 8 MITSUBISHI ICs (Monitor) M52348FP WIDE FREQUENCY BAND ANALOG SWITCH DESCRIPTION OF PIN (cont.) Pin No. Name DC voltage (V) Peripheral circuit of pins Description of function Input pulse of 3V or more and 5V or less. 3 to 5V 17 INPUT2(H) 18 INPUT2(V) 0V 0.2mA 7.3kΩ SWITCH 13kΩ 19 12kΩ 10kΩ Enables switching between OPEN and GND. 2.6 2.3V 21 OUTPUT(V) 22 OUTPUT(H) 24 VCC1(R) (H,V,SWITCH) 1kΩ Contains output resistance. - 4 14 23 32 33 5.0 NC Apply the same voltage. Contains output resistance. 25 27 30 35 OUTPUT (SYNC ONG) OUTPUT(B) OUTPUT(G) OUTPUT(R) 25 430Ω 28 31 36 9 VCC2(B) VCC2(G) VCC2(R) 1.5 2.2 50Ω 50Ω 27 , 30 , 35 500Ω 5.0 MITSUBISHI ICs (Monitor) M52348FP WIDE FREQUENCY BAND ANALOG SWITCH CAUTIONS FOR USING THE IC 1. Standard video inputs for R, G and B are specified to be 0.7 V P-P. CAUTIONS FOR MANUFACTURING BOARDS Built-in wide band analog switch may cause oscillation due to the 2. The H and V inputs are specified to be 5.0 VTTL. wiring shape on the board. Be careful for the following points. 3. Input signals into input pins at fully lowered impedance. • 4. The H and V output pins (pins 21 and 22 ) are as shown in Figure 1. Resistance can be inserted into a portion between power supplies to improve the rising speed. However, set the R value to limit the current to 7.5 mA or less. In Figure 1, R is 2 kΩ or more. 5V • • • • • 5V When inserting an output pull-down resistance, make wire between the output pin and the resistance as short as possible. Make the load capacitance of output pins as small as possible. Install the Vcc-GND bus controller capacitance near the pin. Vcc shall use a stable power supply. (Individual Vcc should use an independent power supply.) Insertion of a resistance of several tens of Ω between the output pin and the circuit at the next stage makes oscillation harder. GND should be as wide as possible. Basically, solid earth should be used. R 1kΩ I=7.5 mA or less Fig. 1 5. The R, G and B output pins (pins 27 , 30 and 35 ) are as shown in Figure 2. Pull-down resistance can be added to between GNDs according to the driving capability. However, set the R value to limit current I to 10 mA or less. In Figure 2, R is 500Ω or more. 5V I=10 mA or less 50Ω 430kΩ R Fig. 2 6. The switch (pin 19 ) can be switched with GND and OPEN. GND: Outputs signal from the INPUT 1 side. OPEN: Outputs signal from the INPUT 2 side. For switching by applying voltage as shown in Figure 3; 0 to 0.5V: Outputs signal from INPUT 1 side. 2 to 5V: Outputs signal from INPUT 2 side. The applied voltage shall be less than Vcc. 19 Fig. 3 10 MITSUBISHI ICs (Monitor) M52348FP WIDE FREQUENCY BAND ANALOG SWITCH Pin configuration comparing of M52348FP and M52348SP M52348FP is different from M52348SP in pin configuration, but function characteristic is same. OUTPUT(R) VCC2(R) 36 NC GND 35 34 32 31 VCC2(G) NC 33 30 32 GND OUTPUT(G) 31 29 30 28 VCC2(B) 29 27 OUTPUT OUTPUT(B) 28 26 25 GND 27 26 24 NC (Sync on G) VCC 25 23 22 OUTPUT(V) OUTPUT(H) 22 SWITCH GND 24 23 21 20 21 20 19 18 17 19 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 INPUT1(R) VCC1(R) VCC1(G) Outside package M52348FP : 36P2R - D M52348SP : 32P4B 11 NC VCC1(B) INPUT1(G) INPUT1(H) INPUT1(B) GND INPUT1(V) GND INPUT2(R) INPUT2(G) NC INPUT2(B) GND M52348FP M52348SP NC 18 INPUT2(V) INPUT2(H)