MITSUBISHI M52348FP

MITSUBISHI ICs (Monitor)
M52348FP
WIDE FREQUENCY BAND ANALOG SWITCH
DESCRIPTION
PIN CONFIGURATION (TOP VIEW)
The M52348FP is an semiconductor IC for RGBHV interface that
switches signals input from two types of image source and outputs
them to CRT display etc.
VCC1(R) 1
The synchronous signal meets the
INPUT1(R) 2
frequency band of 10 kHz to 200 kHz and is output with TTL. The
VCC1(G) 3
IC adopts 250 MHz for the frequency band width of video signal,
providing high resolution images.
It is optimum as an IC for
36 VCC2(R)
35 OUTPUT(R)
34 GND
NC 4
33 NC
INPUT1(G) 5
32 NC
interface with various types of new media including high resolution
VCC1(B) 6
CRT.
31 VCC2(G)
INPUT1(B) 7
•
INPUT1(V) 9
•
•
Frequency band : RGB...................................................250MHz
HV..........................................10Hz to 200kHz
Input level :
RGB...........................................0.7 V P-P (typ.)
HV TTL IN PUT
3 to 5 Vo-p (bipolar)
Only the G channel is equipped with output for sync-on-video.
HV output adopts TTL format.
30 OUTPUT(G)
M52348FP
FEATURES
INPUT1(H) 8
GND 10
29 GND
28 VCC2(B)
27 OUTPUT(B)
26 GND
INPUT2(R) 11
GND 12
24 VCC
NC 14
23 NC
APPLICATION
CRT display, TV, VCR, etc.
RECOMMENDED OPERATING CONDITINO
25 OUTPUT(Sync on G)
INPUT2(G) 13
GND 15
22 OUTPUT(H)
INPUT2(B) 16
21 OUTPUT(V)
INPUT2(H) 17
20 GND
INPUT2(V) 18
19 SWITCH
Supply voltage range.......................................................4.5 to 5.5V
Outline 36P2R-D
Rated supply voltage..................................................................5.0V
NC : NO CONNECTION
BLOCK DIAGRAM
OUTPUT
OUTPUT(R)
GND
NC
NC
35
34
33
32
2
3
4
5
VCC2(R)
36
1
VCC2(G)
INPUT1(R)
VCC1(R)
1
VCC1(G)
NC
OUTPUT(B)
OUTPUT(G)
VCC2(B)
31
30
29
28
6
7
8
9
VCC1(B)
INPUT1(G)
GND
INPUT1(H)
INPUT1(B)
GND
27
26
10
11
GND
INPUT1(V)
NC
(Sync on G)
VCC
25
24
12
13
GND
INPUT2(R)
INPUT2(G)
OUTPUT(V)
OUTPUT(H)
23
22
14
15
NC
GND
21
20
16
17
INPUT2(B)
GND
SWITCH
19
18
INPUT2(V)
INPUT2(H)
MITSUBISHI ICs (Monitor)
M52348FP
WIDE FREQUENCY BAND ANALOG SWITCH
ABSOLUTE MAXIMUM RAGINGS (Ta=25˚C)
Symbol
VCC
Pd
Topr
Tstg
Vopr
Vopr’
Sarge
Parameter
Supply voltage
Power dissipation
Operating temperature
Storage temperature
Recommended operating supply voltage
Recommended operating supply voltage range
Electrostatic discharge
Ratings
7.0
1603
-20 to +85
-40 to +150
5.0
4.5 to 5.5
±200
Unit
V
mW
˚C
˚C
V
V
V
ELECTRICAL CHARACTERISTICS (VCC=5V, Ta=25˚C)
Symbol
Parameter
Test
point
Power
supply
Vcc
ICC1
Circuit current 1
(no signal)
A
5
ICC1
Circuit current 2
(no signal)
A
5
Test conditions
SW
SW2
Rin1
SW5
Gin1
SW7
Bin1
SW8
Hin1
SW9 SW11 SW13 SW16 SW17 SW18
Vin1 Rin2 Gin2 Bin2 Hin2 Vin2
SW19
Swich
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
GND
a
OPEN
Limits
Unit
Min.
Typ.
Max.
46
66
86
mA
46
66
86
mA
RGB SW block
VDC1
Output DC
voltage 1
T.P.35
T.P.30
T.P.27
5
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND
1.8
2.2
2.6
V
VDC2
Output DC
voltage 2
T.P.35
T.P.30
T.P.27
5
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
a
OPEN
1.8
2.2
2.6
V
T.P.25
5
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
b
-
b
GND
a
OPEN
1.5
1.9
V
5
b
b
-
1.1
T.P.25
b
b
-
1.1
1.5
1.9
V
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND
1.4
1.6
-
VP-P
b
-
b
-
b
-
b
-
a
OPEN
1.4
1.6
-
VP-P
b
-
b
-
b
-
b
-
b
GND
-0.5
0.1
0.7
dB
-0.6
0
0.6
dB
-0.5
0.1
0.7
dB
-0.6
0
0.6
dB
VDC3
VDC4
Output DC
voltage 3
Output DC
voltage 4
Vimax1
Maximum allowable input 1
T.P.2
T.P.5
T.P.7
5
Vimax2
Maximum allowable input 2
T.P.11
T.P.13
T.P.16
5
GV1
Voltage gain 1
T.P.35
T.P.30
T.P.27
5
∆GV1
Relative voltage
gain 1
abb bab bba
SG1 SG1 SG1
b
-
b
-
b
-
abb bab bba
SG2 SG2 SG2
abb bab bba
SG1 SG1 SG1
b
-
b
-
b
-
Takes ratio of the values above
T.P.35
T.P.30
T.P.27
5
b
-
b
-
b
-
b
-
b
-
abb bab bba
SG2 SG2 SG2
b
-
b
-
a
OPEN
GV2
Voltage gain 2
∆GV2
Relative voltage
gain 2
GV3
Voltage gain 3
T.P.25
5
b
-
a
SG2
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND
-0.4
0.2
0.8
dB
GV4
Voltage gain 4
T.P.25
5
b
-
b
-
b
-
b
-
b
-
b
-
a
SG2
b
-
b
-
b
-
a
OPEN
-0.4
0.2
0.8
dB
FC1
Frequency characteristics 1
(100MHz)
T.P.35
T.P.30
T.P.27
5
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND
-0.1
0
1.0
dB
∆FC1
Relative frequency
characteristics 1
(100MHz)
-0.1
0
1.0
dB
FC2
Frequency characteristics 2
(100MHz)
-0.1
0
1.0
dB
∆FC2
Relative frequency
characteristics 2
(100MHz)
-0.1
0
1.0
dB
FC3
Frequency characteristics 3
(100MHz)
T.P.35
T.P.30
T.P.27
5
FC4
Relative frequency
characteristics 4
(250MHz)
T.P.35
T.P.30
T.P.27
5
Takes ratio of the values above.
abb bab bba
SG4 SG4 SG4
Takes ratio of the values above
T.P.35
T.P.30
T.P.27
5
b
-
b
-
b
-
b
-
b
-
abb bab bba
SG4 SG4 SG4
b
-
b
-
a
OPEN
Takes ratio of the values above
abb bab bba
SG5 SG5 SG5
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
abb bab bba
SG5 SG5 SG5
b
-
b
-
b
GND
-3.0
1.5
1.0
dB
b
-
b
-
a
OPEN
-3.0
1.5
1.0
dB
2
MITSUBISHI ICs (Monitor)
M52348FP
WIDE FREQUENCY BAND ANALOG SWITCH
ELECTRICAL CHARACTERISTICS (cont.)
Symbol
Parameter
Test
point
Power
supply
Vcc
Test conditions
SW2
Rin1
SW5
Gin1
Crosstalk 1
between 2 inputs
(10MHz)
T.P.35
T.P.30
T.P.27
5
Crosstalk 2
between 2 inputs
(10MHz)
T.P.35
T.P.30
T.P.27
5
Crosstalk 3
between 2 inputs
(100MHz)
T.P.35
T.P.30
T.P.27
5
Crosstalk 4
between 2 inputs
(100MHz)
T.P.35
T.P.30
T.P.27
5
C.T.C.1
Crosstalk 1
between channels
(10MHz)
T.P.35
T.P.30
T.P.27
5
C.T.C.2
Crosstalk 2
between channels
(10MHz)
T.P.35
T.P.30
T.P.27
5
Crosstalk 3
between channels
(100MHz)
Crosstalk 4
between channels
(100MHz)
T.P.35
T.P.30
T.P.27
5
T.P.35
T.P.30
T.P.27
5
T.P.35
T.P.30
T.P.27
5
Tf1
T.P.35
T.P.30
T.P.27
5
Tr2
T.P.35
T.P.30
T.P.27
5
b
-
b
-
T.P.35
T.P.30
T.P.27
5
b
-
C.T.I.1
C.T.I.2
C.T.I.3
C.T.I.4
C.T.C.3
C.T.C.4
Tr1
Pulse characteristics 1
Pulse characteristics 2
Tf2
SW7
Bin1
abb bab bba
SG3 SG3 SG3
SW8
Hin1
SW
SW9 SW11 SW13 SW16 SW17 SW18
Vin1 Rin2 Gin2 Bin2 Hin2 Vin2
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
a
a
a
SG6 SG6 SG6
b
-
b
-
b
-
b
-
a
a
a
SG6 SG6 SG6
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
b
-
b
b
-
b
b
-
b
c
0V
b
b
-
b
b
-
b
-
b
-
b
-
abb bab bba
SG4 SG4 SG4
b
-
b
-
b
-
abb bab bba
SG3 SG3 SG3
b
-
b
-
b
-
abb bab bba
SG4 SG4 SG4
b
-
b
-
b
-
b
-
b
-
b
-
SW19
Swich
Limits
Unit
Min.
Typ.
Max.
-
-60
-50
dB
-
-60
-50
dB
-
-40
-35
dB
-
-40
-35
dB
GND
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
-
b
GND
-
-50
-40
dB
b
-
b
-
a
OPEN
-
-50
-40
dB
b
-
b
-
b
GND
-
-30
-25
dB
b
-
b
-
a
OPEN
-
-30
-25
dB
b
-
b
-
b
-
b
GND
-
1.6
2.5
nsec
b
-
b
-
b
-
b
GND
-
1.6
2.5
nsec
a
a
a
SG6 SG6 SG6
b
-
b
-
a
OPEN
-
1.6
2.5
nsec
a
a
a
SG6 SG6 SG6
b
-
b
-
a
OPEN
-
1.6
2.5
nsec
4.5
5.0
-
V
4.5
5.0
-
V
-
0.2
5.0
V
-
0.2
5.0
V
2.0
2.5
3.0
V
2.0
2.5
3.0
V
-
100
150
nsec
-
100
150
nsec
-
50
100
nsec
-
50
100
nsec
c
0.5
1.5
2.0
V
c
0.5
1.5
2.0
V
abb bab bba
SG3 SG3 SG3
b
-
b
-
b
-
abb bab bba
SG4 SG4 SG4
b
-
b
-
b
-
abb bab bba
SG3 SG3 SG3
b
-
b
-
b
-
abb bab bba
SG4 SG4 SG4
OPEN
OPEN
GND
GND
OPEN
OPEN
GND
HV SW portion
3
VOH1
High-level output
voltage 1
T.P.21
T.P.22
5
VOH2
High-level output
voltage 2
T.P.21
T.P.22
5
VOL1
Low-level output
voltage 1
T.P.21
T.P.22
5
VOL2
Low level output
voltage 2
T.P.21
T.P.22
5
Vith1
Input threshold
voltage 1
T.P.8
T.P.9
5
b
b
-
Vith2
Input threshold
voltage 2
T.P.17
T.P.18
5
b
-
b
-
b
-
Trd1
Rising delay time 1
T.P.21
T.P.22
5
Trd2
Rising delay time 2
T.P.21
T.P.22
5
b
b
-
b
b
-
b
b
-
Tfd1
Falling delay
time 1
T.P.21
T.P.22
5
Tfd2
Falling delay
time 2
T.P.21
T.P.22
5
b
b
-
b
b
-
b
b
-
Vsth1
Switching threshold voltage 1
T.P.19
5
Vsth2
Switching threshold voltage 2
T.P.19
5
c
c
5.0V 5.0V
b
-
b
-
b
-
b
-
b
c
0V
b
b
-
b
b
-
b
b
-
b
c
b
c
Variable
Variable
b
b
-
b
b
-
b
b
-
b
b
GND
c
a
c
5.0V 5.0V OPEN
b
b
b
GND
c
a
c
0V 0V OPEN
b
b
b
GND
b
-
b
-
b
-
b
-
b
-
c
c
Variable
Variable
a
a
SG7 SG7
b
b
-
b
b
-
b
b
-
b
b
-
b
b
b
GND
a
a
a
SG7 SG7 OPEN
a
a
SG7 SG7
b
b
-
b
b
-
b
b
-
b
b
-
b
b
b
GND
a
a
a
SG7 SG7 OPEN
a
a
a
a
a
b
b
b
b
b
SG1 SG1 SG1 SG7 SG7 b
b
b
b
b
a
a
a
a
a
- SG1 SG1 SG1 SG7 SG7
a
OPEN
MITSUBISHI ICs (Monitor)
M52348FP
WIDE FREQUENCY BAND ANALOG SWITCH
ELECTORICAL CHARACTERISTICS TEST
METHOD
2. When this is the case, measure the output amplitude of T.P.25.
3. As in the case of GV1, ∆GV1, GV2 and ∆GV2, find GV3 and GV4.
Note) Omitted because the signal input pins and SW No. have been
described in the Electrical Characteristics Table. SWA shall take
FC1, ∆FC1 frequency characteristics 1, relative frequency
side a unless otherwise noted.
characteristics 1 (100 MHz)
FC2, ∆FC2 frequency characteristics 2, relative frequency
ICC1, ICC2 Circuit current 1, circuit current 2 (no signal)
characteristics 2 (100 MHz)
The conditions shall be as provided in the Electrical Characteristics
1. The conditions shall be as provided in the Electrical
Table. When SW19 is assigned to GND (or OPEN), and SWA is
Characteristics Table. This measurement shall use active probe.
placed on side b, take measurements in ampere meter A and
2. Assign SW19 to GND and input SG2 into pin 2 only. When this is
specify the value to be Icc1 (or ICC2).
the case, specify the output amplitude of T.P.35 to be VOR1.
In the same manner, specify the output to be VOR2 with SG4
VDC1, VDC2 Output DC voltage 1, output DC voltage 2
When SW19 is assigned to GND (or OPEN), and no signal is input,
measure T.P.35 (T.P.30, T.P.27) output DC voltage. Specify the
input.
3. In this case, calculate frequency characteristics F C1 by the
following formula:
voltage to be VDC1 (or VDC2).
FC1 = 20LOG
VDC3, VDC4, Output DC voltage 3, output DC voltage 4
Measure the output DC voltage of T.P.25 in the same manner as in
VDC1 and VDC2, and specify the voltage to be VDC3 (VDC4).
VOR2
[VP-P]
VOR1
[VP-P]
4. In response to inputs into pin
5
and pin
7
(dB)
only, find frequency
characteristics Fc1 in the same manner.
5. Calculate the difference in frequency characteristics between
Vimax1, Vimax2, maximum allowable input 1, maximum
allowable input 2
channels to find relative frequency characteristics∆Fc1.
6. Assign SW19 to OPEN. In the same manner, find F C2 and ∆FC2.
Assign SW19 to GND and input SG1 into pin
2
only. Gradually
increasing the SG1 amplitude, read the amplitude of the input
FC3, FC4 Frequency characteristics 3, frequency
signal when the output waveform of T.P.35 is strained. The value is
characteristics 4 (250 MHz)
specified to be Vimax1. In the same manner, measure Vimax 1 in
In the same manner as finding FC1, ∆FC1, FC2 and∆FC2, find FC3
response to inputs into pin
and FC4 in response to input signal SG5.
5
and pin
7
only.
Then assign SW19 to OPEN, measure the values at inputs into pins
11
,
13
, and
16
only. Then specify the values to be Vimax2.
C.T.I.1 Crosstalk 1 between 2 inputs
C.T.I.2 Crosstalk 2 between 2 inputs (10 MHz)
1. The conditions shall be as provided in the Electrical
GV1,∆GV1, voltage gain 1, relative voltage gain 1
Characteristics Table. This measurement shall take active probe.
GV2, ∆GV2, voltage gain 2, relative voltage gain 2
2. Assign SW19 to GND and input SG3 into pin
1. The conditions shall be as provided in the Electrical
Characteristics Table.
the case, read the amplitude of T.P.35 output and specify the
value as VOR1.
GV1=20LOG
VOR1
[VP-P]
0.7
[VP-P]
(dB)
4. In the same manner, find voltage gain G V1 in response to inputs
and pin
the output amplitude of T.P.35 at that time and specify the value
3. Assign SW19 to ONPEN, measure the output amplitude of T.P.35
at that time and specify the value to be VOR3'.
4. When this is the case, calculate crosstalk C.T.L1 between 2
3. Calculate voltage gain GV1 by the following formula:
5
only. Measure
to be VOR3.
2. Assign SW19 to GND and input SG2 into pin 2 only. When this is
into pin
2
7
only.
5. Calculate the difference in voltage gain between channels to find
relative voltage gain ∆GV1.
6. In the same manner, find GV2 and ∆GV2.
inputs by the following formula:
C.T.I.1 = 20LOG
VOR3’
[VP-P]
VOR3
[VP-P]
(dB)
5. In the same manner, find crosstalk between 2 inputs in response
to inputs into pin
5
and pin
7
only.
6. Assign SW19 to OPEN and then input SG3 into pin
11
only.
Measure the output amplitude of T.P.35 at that time and specify
the value to be VOR4'.
7. Assign SW19 to GND and then measure the output amplitude of
GV3, ∆GV4 Voltage gain 3, voltage gain 4
T.P.35 at that time. Specify the value to be VOR4'.
1. The conditions shall be as provided in the Electrical
Characteristics Table.
4
MITSUBISHI ICs (Monitor)
M52348FP
WIDE FREQUENCY BAND ANALOG SWITCH
8. When this is the case, calculate crosstalk C.T.I.2 between 2
inputs by the following formula:
C.T.I.2 = 20LOG
2. With active probe, measure rising Tri and falling Tfi for 10% to
90% of the input pulse.
VOR4’
[VP-P]
VOR4
[VP-P]
3. With active probe, measure rising Tro and falling Tfo for 10% to
90% of the output pulse.
(dB)
4. The pulse characteristics Tr1 and Tf1 (Tr2 and Tf2) are as follows:
9. As in the same manner, find crosstalk between 2 pints in
100%
90%
response to input into pin
13
and pin
16
only.
10%
0%
C.T.I.3 Crosstalk 3 between 2 inputs
Tr
Tf
C.T.I.4 Crosstalk 4 between 2 inputs (100 MHz)
Specify input signal to be SG4. In the same manner as in C.T.I.1
and C.T.I.2, find crosstalk C.T.I.3/C.T.I.4 between 2 inputs.
C.T.C.1 Crosstalk 1 between channels
C.T.C.2 Crosstalk 2 between channels (10 MHz)
Tr1(Tr2) =
(Tro)2 - (Tri)2
(nsec)
Tf1(Tf2) =
(Tfo)2 - (Tfi)2
(nsec)
VOH1, VOH2 High-level output voltage 1 and high-level output
1. The conditions shall be as provided in the Electrical
Characteristics Table. This measurement shall take active probe.
2. Assign SW19 to GND and input signal SG3 into pin
2
only.
Specify the output amplitude of T.P.35 to be VOR5 at that time.
voltage 2
The conditions shall be as provided in the Electrical Characteristics
Table. Assign SW19 to GND (or OPEN), apply 5V to the input pin
and measure the output voltage. Specify the value to be VOH1
3. In the same status, measure the output amplitude of T.P.30 and
(VOH2).
T.P.27and specify the values to be VOG5 and VOB5.
4. When this is the case, calculate crosstalk C.T.C1 between
channels by the following formula:
C.T.C.1 = 20LOG
VOG5 or VOB5 [VP-P]
VOR5
(dB)
Table. Assign SW19 to GND (or OPEN), apply 0V to the input pin
[VP-P]
and measure the output voltage. Specify the value to be VOL1
5. In the same manner, find crosstalk between channels in
response to inputs into pin
5
and pin
7
VOL1, VOL2 Low-level output voltage 1 and low-level output
voltage 2
The conditions shall be as provided in the Electrical Characteristics
(VOL2).
only.
6. Assign SW19 to OPEN and then input signal SG3 into pin
11
Vith1 Input threshold voltage 1
only. Specify the output amplitude of T.P.35 to be VOR6 at that
Vith2 Input threshold voltage 2
time.
The conditions shall be as provided in the Electrical Characteristics
7. In the same status, measure the output amplitude of T.P.30 and
voltage of input pin from 0V, measure the input voltage when the
T.P.27. Specify the values to be VOG6 and VOB6.
8. When this is the case, calculate crosstalk C.T.C.2 between
VOG6 or VOB6 [VP-P]
VOR6
(dB)
[VP-P]
9. As in the same manner, find crosstalk between channels in
response to inputs into pin
13
output voltage is Hi (4.5V or more). Specify the value to be Vith1
(Vith2).
channels by the following formula:
C.T.C.2 = 20LOG
Table. Assign SW19 to GND (or OPEN). Gradually increasing the
and pin
16
only.
Trd1, Trd2 Rising delay time 1 and rising delay time 2
Tfd1, Tfd2 Falling delay time 1 and falling delay time 2
The conditions shall be as provided in the Electrical Characteristics
Table. Assign SW19 to GND (or OPEN), input SG7 into the input
pin and measure the output waveform.
Rising delay time Trd1 (Trd2) and falling delay time Tfd1 (Tfd2) shall
C.T.C.3 Crosstalk 3 between channels
be found according to the following diagram.
C.T.C.4 Crosstalk 4 between channels (100 MHz)
Specify input signal to be SG4. In the same manner as in C.T.C.1
and C.T.C.2, find crosstalk C.T.C.3/C.T.C.4 between 2 channels.
50%
SG7
Tr1, Tf1, Tr2, Tf2 Pulse characteristics 1
Trd
and pulse characteristics 2
1. The conditions shall be as provided in the Electrical
Characteristics Table. Assign SW19 to GND (or OPEN).
5
Tfd
50%
OOO
MITSUBISHI ICs (Monitor)
M52348FP
WIDE FREQUENCY BAND ANALOG SWITCH
TYPICAL CHARACTERISTICS
Vsth1 Switching threshold voltage 1
Vsth2 Switching threshold voltage 2
THERMAL DERATING (MAXIMUM RATING)
1. The conditions shall be as provided in the Electrical
SG7 into pins
8
and
9
2
,
5
and
7
. Do not input signal into other pins.
2. Apply a voltage of 0V to pin
19
and check each of TP21, TP22,
TP25, TP27, TP30 and TP35 for output of signal.
3. Gradually increasing the voltage at pin
pin
19
19
, specify the output at
to be Vsth1 when the signal is not output from the above
pins.
4. As in the same manner, input SG1 into pins
input SG7 into pins
11
,
13
and
16
and
and
18
. Do not input signal into other
5. Apply a voltage of 5V to pin
19
and check each of TP21, TP22,
17
pins.
pin
19
19
1068
1000
750
500
250
-20
0
25
50
75 85 100
125
150
AMBIENT TEMPERATURE Ta (˚C)
TP25, TP27, TP30 and TP35 for output of signal.
6. Gradually decreasing the voltage at pin
1250
. Input
POWER DISSIPATION Pd(mW)
Characteristics Table. Input SG7 into pins
, specify the output at
to be Vsth2 when the signal is not output from the above
pins.
INPUT SIGNAL
SG No.
signals
Sine wave (f=60 kHz, 0.7VP-P, amplitude variable)
SG1
0.7VP-P
(Amplitude variable)
SG2
SG3
SG4
SG5
SG6
Sine wave (f=1 MHz, amplitude 0.7V P-P)
Sine wave (f=10 MHz, amplitude 0.7V P-P)
Sine wave (f=100 MHz, amplitude 0.7V P-P)
Sine wave (f=250 MHz, amplitude 0.7V P-P)
Pulse of 0.7VP-P in amplitude
(f=60kHz, duty 80%)
0.7VP-P
Square wave
(Amplitude 5.0 VO-P TTL, f=60 kHz, duty = 50%)
SG7
5V
0V
6
7
SW A
a
Vcc
5V
A
b
47µ
0.01µ
36
1
TP2
47µ
a
2
35
0.01µ
0.01µ
b
32
0.01µ
a
5
NC
TP5
SW5
4
3
100µ
NC
VCC
47µ
33
NC
34
GND
b
31
9
SW9
26
GND
10
11
M52348FP
27
12
25
24
13
100µ
VCC
23
NC
SW7
0.01µ
47µ
a
b
100µ
SW8
SG1
SG2
SG3
SG4
SG5
SG6
c
a b
TP9
c
a b
TP8
SW11
0.01µ
a
TP11
b
100µ
SG7
SW13
0.01µ
a
TP13
b
14
8
28
VCC
47µ
NC
TP7
29
GND
TP25
GOUT
(for Sync on G)
6
7
30
0.01µ
TP27
B
VCC
VCC
100µ
0.01µ
SW2
VCC
VCC
0.01µ
TP30
G
0.01µ
0.01µ
0.01µ
TP35
R
0.01µ
TP16
a
20
b
TP18
18
19
c
b
a OPEN
c a b c
a b
SW18
SW19
SW17
17
GND
TP17
100µ
16
21
TP21
V
SW16
15
GND
22
TP22
H
MITSUBISHI ICs (Monitor)
M52348FP
WIDE FREQUENCY BAND ANALOG SWITCH
TEST CIRCUIT
Units Reslstance : Ω
Capacitance : F
MITSUBISHI ICs (Monitor)
M52348FP
WIDE FREQUENCY BAND ANALOG SWITCH
DESCRIPTION OF PIN
Pin No.
Name
DC voltage
(V)
Peripheral circuit of pins
VCC1(R)
VCC1(G)
VCC1(B)
1
3
6
Description of function
5.0
800Ω
Input at low impedance.
5
INPUT1(G)
7
INPUT1(B)
2.0
2.8V
INPUT1(R)
620Ω
2
1.0mA
Input pulse of 3V or more and 5V or less.
8
INPUT1(H)
9
INPUT1(V)
-
3 to 5V
0V
0.2mA
10
20
12
26
15
29
GND
GND
34
800Ω
Input at low impedance.
13
INPUT2(G)
16
INPUT2(B)
2.0
2.8V
INPUT2(R)
620Ω
11
1.0mA
8
MITSUBISHI ICs (Monitor)
M52348FP
WIDE FREQUENCY BAND ANALOG SWITCH
DESCRIPTION OF PIN (cont.)
Pin No.
Name
DC voltage
(V)
Peripheral circuit of pins
Description of function
Input pulse of 3V or more and 5V or less.
3 to 5V
17
INPUT2(H)
18
INPUT2(V)
0V
0.2mA
7.3kΩ
SWITCH
13kΩ
19
12kΩ
10kΩ
Enables switching between OPEN and
GND.
2.6
2.3V
21
OUTPUT(V)
22
OUTPUT(H)
24
VCC1(R)
(H,V,SWITCH)
1kΩ
Contains output resistance.
-
4 14 23
32 33
5.0
NC
Apply the same voltage.
Contains output resistance.
25
27
30
35
OUTPUT
(SYNC ONG)
OUTPUT(B)
OUTPUT(G)
OUTPUT(R)
25
430Ω
28
31
36
9
VCC2(B)
VCC2(G)
VCC2(R)
1.5
2.2
50Ω
50Ω
27 , 30 , 35
500Ω
5.0
MITSUBISHI ICs (Monitor)
M52348FP
WIDE FREQUENCY BAND ANALOG SWITCH
CAUTIONS FOR USING THE IC
1. Standard video inputs for R, G and B are specified to be 0.7 V P-P.
CAUTIONS FOR MANUFACTURING BOARDS
Built-in wide band analog switch may cause oscillation due to the
2. The H and V inputs are specified to be 5.0 VTTL.
wiring shape on the board. Be careful for the following points.
3. Input signals into input pins at fully lowered impedance.
•
4. The H and V output pins (pins
21
and
22
) are as shown in Figure
1. Resistance can be inserted into a portion between power
supplies to improve the rising speed. However, set the R value
to limit the current to 7.5 mA or less. In Figure 1, R is 2 kΩ or
more.
5V
•
•
•
•
•
5V
When inserting an output pull-down resistance, make wire
between the output pin and the resistance as short as possible.
Make the load capacitance of output pins as small as possible.
Install the Vcc-GND bus controller capacitance near the pin.
Vcc shall use a stable power supply. (Individual Vcc should use
an independent power supply.)
Insertion of a resistance of several tens of Ω between the output
pin and the circuit at the next stage makes oscillation harder.
GND should be as wide as possible. Basically, solid earth should
be used.
R
1kΩ
I=7.5 mA or less
Fig. 1
5. The R, G and B output pins (pins
27
,
30
and
35
) are as shown in
Figure 2. Pull-down resistance can be added to between GNDs
according to the driving capability. However, set the R value to
limit current I to 10 mA or less. In Figure 2, R is 500Ω or more.
5V
I=10 mA or less
50Ω
430kΩ
R
Fig. 2
6. The switch (pin
19
) can be switched with GND and OPEN.
GND: Outputs signal from the INPUT 1 side.
OPEN: Outputs signal from the INPUT 2 side.
For switching by applying voltage as shown in Figure 3;
0 to 0.5V: Outputs signal from INPUT 1 side.
2 to 5V: Outputs signal from INPUT 2 side.
The applied voltage shall be less than Vcc.
19
Fig. 3
10
MITSUBISHI ICs (Monitor)
M52348FP
WIDE FREQUENCY BAND ANALOG SWITCH
Pin configuration comparing of M52348FP and M52348SP
M52348FP is different from M52348SP in pin configuration,
but function characteristic is same.
OUTPUT(R)
VCC2(R)
36
NC
GND
35
34
32
31
VCC2(G)
NC
33
30
32
GND
OUTPUT(G)
31
29
30
28
VCC2(B)
29
27
OUTPUT
OUTPUT(B)
28
26
25
GND
27
26
24
NC
(Sync on G)
VCC
25
23
22
OUTPUT(V)
OUTPUT(H)
22
SWITCH
GND
24
23
21
20
21
20
19
18
17
19
1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
INPUT1(R)
VCC1(R)
VCC1(G)
Outside package
M52348FP : 36P2R - D
M52348SP : 32P4B
11
NC
VCC1(B)
INPUT1(G)
INPUT1(H)
INPUT1(B)
GND
INPUT1(V)
GND
INPUT2(R)
INPUT2(G)
NC
INPUT2(B)
GND
M52348FP
M52348SP
NC
18
INPUT2(V)
INPUT2(H)