19-4742; Rev 0; 7/09 +5V Multiprotocol, Pin-Selectable Cable Terminator Features o Supports V.11 and V.35 Termination o Pin-Selectable Termination o Pin-Selectable DCE/DTE Support The MAX13174E contains six pin-selectable, multiprotocol cable termination networks. Each network is capable of terminating V.11 (RS-422, RS-530, RS-530A, RS-449, V.36, and X.21) with a 100Ω differential load, V.35 with a T-network load, or V.28 (RS-232) and V.10 (RS-423) with an open-circuit load for use with transceivers having on-chip termination. The termination protocol can be selected by the serial interface cable wiring or by pin control. The MAX13174E replaces discrete resistor termination networks and expensive relays required for multiprotocol termination, saving space and cost. o Replaces Discrete Resistor Termination Networks and Expensive Relays o Available in 24-Pin SSOP Package o Certified TBR-1 and TBR-2-Compliant Chipset (NET1 and NET2)—Pending Completion of Testing Applications The MAX13174E terminator is ideal to form a complete +5V cable- or pin-selectable multiprotocol DCE/DTE interface port when used with the MAX13170E and MAX13172E transceiver ICs. The MAX13174E terminator can use the V EE power generated by the MAX13170E charge pump, simplifying system design. The MAX13174E/MAX13170E/MAX13172E are pinfor-pin compatible with the MXL1344A/MXL1543/ MXL1544/MAX3175. The MAX13174E is available in a 24-pin SSOP package and is specified for the 0°C to +70°C commercial temperature range. Data Networking PCI Cards CSU and DSU Telecommunication Equipment Data Routers Data Switches Ordering Information PART TEMP RANGE PIN-PACKAGE MAX13174ECAG+ 0°C to +70°C 24 SSOP +Denotes a lead(Pb)-free/RoHS-compliant package. Pin Configuration appears at end of data sheet. Typical Operating Circuit T4 LL CTS DSR R4 R3 R2 DCD R1 MAX13172E T3 DTR RTS T2 T1 RXD RXC R3 R2 TXC R1 MAX13170E T3 SCTE TXD T2 T1 MAX13174E 18 13 5 10 8 22 6 23 20 19 4 1 7 16 3 9 17 12 15 11 24 14 2 TXD A (103) TXD B SCTE A (113) SCTE B TXC A (114) TXC B RXC A (115) RXC B RXD A (104) RXD B SG (102) SHIELD (101) RTS A (105) RTS B DTR A (108) DTR B DCD A (107) DCD B DSR A (109) DSR B CTS A (106) CTS B LL A (141) DB-25 CONNECTOR ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. 1 MAX13174E General Description MAX13174E +5V Multiprotocol, Pin-Selectable Cable Terminator ABSOLUTE MAXIMUM RATINGS (All voltages to GND, unless otherwise noted.) Supply Voltages VCC .......................................................................-0.3V to +6V VEE.....................................................................+0.3V to -7.1V Logic-Input Voltages M0, M1, M2, DCE/DTE, LATCH............................-0.3V to +6V Termination Network Inputs R_A, R_B, R_C.....................................................-15V to +15V R_A to R_B (high-impedance state) ................................±14V R_A to R_B.........................................................................±6V R_C to R_B (high-impedance state) ..................................±3V R_A to R_C.........................................................................±3V R_C to R_A (high-impedance state) ................................±14V Continuous Power Dissipation (TA = +70°C) 24-Pin SSOP (derate 14.9mW/°C above +70°C) .......1196mW Junction-to-Case Thermal Resistance (θJC) (Note 1) 24-Pin SSOP..............................................................24.6°C/W Junction-to-Ambient Thermal Resistance (θJA) (Note 1) 24-Pin SSOP..............................................................66.9°C/W Operating Temperature Range...............................0°C to +70°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a fourlayer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VCC = +4.5V to +5.5V, VEE = -4V to -7.1V, TA = 0°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C, VCC = +5V, VEE = -5V, unless otherwise noted.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS VCC Operating Range VCC 4.5 5 5.5 V VEE Operating Range VEE -7.1 -5 -4 V 1 1.88 2.75 V 2.2 6.15 1.34 2.85 VCC POR Rising Threshold VCC Supply Current ICC All inputs connected to GND or VCC, except no-cable mode ICC_NOCAB VEE = 0V, M[x] = 1111 (Note 3) VEE Supply Current IEE All inputs connected to GND or VCC, except no-cable mode -3.5 -1 mA mA TERMINATOR INPUTS Differential-Mode Impedance V.35 Mode -2V ≤ VCM ≤ +2V, all channels (Figure 1) 90 104 110 Ω Common-Mode Impedance V.35 Mode -2V ≤ VCM ≤ +2V, all channels (Figure 2) 135 153 165 Ω -7V ≤ VCM ≤ +7V, all channels, except nocable mode (Figure 1) 100 104 110 Differential-Mode Impedance V.11 Mode High-Impedance Leakage Current Ω -7V ≤ VCM ≤ +7V, all channels, no-cable mode, VEE = 0V, VAB ≤ 2V (Figure 1) IZ -15V ≤ VR_A ≤ +15V 115 -50 +50 µA Differential Path Enable Time 50 µs Differential Path Disable Time 300 µs Common-Mode Path Enable Time 12 µs Common-Mode Path Disable 2 µs 2 _______________________________________________________________________________________ +5V Multiprotocol, Pin-Selectable Cable Terminator (VCC = +4.5V to +5.5V, VEE = -4V to -7.1V, TA = 0°C to +70°C, unless otherwise noted. Typical values are at TA = +25°C, VCC = +5V, VEE = -5V, unless otherwise noted.) (Note 2) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS LOGIC INPUTS (M0, M1, M2, LATCH, DCE/DTE) Input High Voltage VIH Input Low Voltage VIL Logic Input Current IIN 0.66 x VCC VIN = VCC or GND V 0.33 x VCC V +1 µA -1 ESD PROTECTION R_A, R_B to GND All Other Pins Human Body Model ±15 Air Gap Discharge IEC 61000-4-2 ±10 Contact Discharge IEC 61000-4-2 ±6 Human Body Model ±2 kV kV Note 2: All parameters tested at a single temperature. Specifications over temperature are guaranteed by design. Note 3: M[x] is the input bus DCE/DTE, M2, M1, M0. Typical Operating Characteristics (VCC = +5V, VEE = -5V, TA = +25°C, unless otherwise noted.) 106 105 VCM = 0V 104 103 102 VCM = -7V VCM = +7V 101 108 IMPEDANCE (I) 107 109 100 107 106 105 104 10 20 30 40 50 TEMPERATURE (NC) 60 70 108 107 106 105 104 103 103 102 102 101 101 100 100 0 109 IMPEDANCE (I) 108 110 MAX13174E toc02 109 IMPEDANCE (I) 110 MAX13174E toc01 110 V.11 OR V.35 DIFFERENTIAL IMPEDANCE vs. SUPPLY VOLTAGE (VCC) V.11 OR V.35 DIFFERENTIAL IMPEDANCE vs. COMMON-MODE VOLTAGE (VCM) MAX13174E toc03 V.11 OR V.35 DIFFERENTIAL IMPEDANCE vs. TEMPERATURE -7 -5 -3 -1 1 VCM (V) 3 5 7 4.5 4.7 4.9 5.1 5.3 5.5 VCC (V) _______________________________________________________________________________________ 3 MAX13174E ELECTRICAL CHARACTERISTICS (continued) Typical Operating Characteristics (continued) (VCC = +5V, VEE = -5V, TA = +25°C, unless otherwise noted.) IMPEDANCE (I) 107 106 105 104 103 102 155 VCM = -2V 150 145 MAX13174E toc06 VCM = +2V 160 160 IMPEDANCE (I) 108 165 MAX13174E toc05 109 IMPEDANCE (I) 165 MAX13174E toc04 110 V.35 COMMON-MODE IMPEDANCE vs. COMMON-MODE VOLTAGE (VCM) V.35 COMMON-MODE IMPEDANCE vs. TEMPERATURE V.11 OR V.35 DIFFERENTIAL IMPEDANCE vs. SUPPLY VOLTAGE (VEE) 155 150 145 140 140 101 100 135 135 -7 -6 -5 -4 0 10 20 30 40 50 60 -2 70 -1 0 1 2 VEE (V) TEMPERATURE (NC) VCM (V) V.35 COMMON-MODE IMPEDANCE vs. SUPPLY VOLTAGE (VCC) V.35 COMMON-MODE IMPEDANCE vs. SUPPLY VOLTAGE (VEE) HI-Z MODE SUPPLY CURRENT vs. TEMPERATURE VCM = -2V 145 140 900 800 155 150 MAX13174E toc09 VCM = +2V SUPPLY CURRENT (FA) 150 IMPEDANCE (I) 155 160 1000 MAX13174E toc08 VCM = +2V 160 165 MAX13174E toc07 165 IMPEDANCE (I) VCM = -2V 145 700 ICC 600 500 400 IEE 300 200 140 100 135 0 135 4.7 4.9 5.1 5.3 5.5 -7 VCC (V) -6 -5 0 -4 10 5 PHASE (DEGREES) 80 60 40 30 15 MAX13174E toc10 100 20 40 50 V.11 OR V.35 DIFFERENTIAL IMPEDANCE PHASE vs. FREQUENCY V.11 OR V.35 DIFFERENTIAL IMPEDANCE MAGNITUDE vs. FREQUENCY 120 10 TEMPERATURE (NC) VEE (V) MAX13174E toc11 4.5 IMPEDANCE (I) MAX13174E +5V Multiprotocol, Pin-Selectable Cable Terminator 0 -5 -10 -15 -20 -25 20 -30 0 -35 0.1 1 10 FREQUENCY (MHz) 4 100 0.1 1 10 FREQUENCY (MHz) _______________________________________________________________________________________ 100 60 70 +5V Multiprotocol, Pin-Selectable Cable Terminator PIN NAME 1 M0 Mode-Select Input (Table 1) FUNCTION 2 VEE Negative Supply Voltage (typically connected to VEE of MAX13170E). Bypass to GND with a 0.1µF capacitor. 3 R1C Load 1, Center Tap 4 R1B Load 1, Node B 5 R1A Load 1, Node A 6 R2A Load 2, Node A 7 R2B Load 2, Node B 8 R2C Load 2, Center Tap 9 R3A Load 3, Node A 10 R3B Load 3, Node B Load 3, Center Tap 11 R3C 12, 13 GND Ground 14 VCC +5V Supply Voltage. Bypass to GND with a 0.1µF capacitor. 15 R4B Load 4, Node B 16 R4A Load 4, Node A 17 R5B Load 5, Node B 18 R5A Load 5, Node A 19 R6A Load 6, Node A 20 R6B Load 6, Node B 21 LATCH 22 DCE/DTE 23 M2 Mode-Select Input (Table 1) 24 M1 Mode-Select Input (Table 1) Latch Signal Input. When LATCH is low, the input latches are transparent. When LATCH is high, the data at the mode-select inputs are latched. DCE/DTE Mode-Select Input (Table 1) Detailed Description The MAX13174E contains six pin-selectable multiprotocol cable termination networks (Figure 3). Each network is capable of terminating V.11 (RS-422, RS-530, RS-530A, RS-449, V.36, and X.21) with a 100Ω differential load, V.35 with a T-network load, or V.28 (RS-232) and V.10 (RS-423) with an open-circuit load for use with transceivers that have on-chip termination. The termination protocol can be selected by the serial interface cable wiring or by pin control. The MAX13174E replaces discrete resistor termination networks and expensive relays required for multiprotocol termination, saving space and cost. The MAX13174E terminator is designed to form a complete +5V cable- or pin-selectable multiprotocol DCE/DTE interface port when used with the MAX13170E and MAX13172E transceivers. The MAX13174E terminator can use the VEE power generated by the MAX13170E charge pump, simplifying system design. The MAX13174E/MAX13170E/MAX13172E are functionally compatible with the MXL1344A/MXL1543/MXL1544/ MAX3175. Termination Modes The termination networks in the MAX13174E can be set to one of three modes: V.11, V.35, or high impedance. As shown in Figure 4, in V.11 mode, switch S1 is closed and switch S2 is open, presenting 104Ω across terminals A and B. In V.35 mode, switches S1 and S2 are both closed, presenting a T-network with 104Ω differential impedance and 153Ω common-mode impedance. In high-impedance mode, switches S1 and S2 are both open, presenting a high impedance across terminals A and B suitable for V.28 and V.10 modes. _______________________________________________________________________________________ 5 MAX13174E Pin Description MAX13174E +5V Multiprotocol, Pin-Selectable Cable Terminator A A I R1 = 52Ω R1 = 52Ω AMMETER S1 ON S1 ON R3 = 127Ω R3 = 127Ω S2 OFF AMMETER VDM = ±2V S2 ON R2 = 52Ω I R2 = 52Ω VCM = ±2V B VCM = ±7V OR ±2V RCM = V RDM = DM I Figure 1. V.11 or V.35 Differential Impedance Measurement 1 24 23 22 21 M0 8 11 12 13 1 2 3 5 4 6 7 9 10 16 15 18 17 19 20 M1 4 5 6 DCE/DTE LATCH VCC VEE 14 2 Figure 2. V.35 Common-Mode Impedance Measurement Older multiprotocol interface termination circuits have been constructed using expensive relays with discrete resistors, custom cables with built-in termination, or complex circuit-board configurations to route signals to the correct termination. The MAX13174E provides a simple solution to this termination problem. All required termination configurations are easily cable- or pinselectable using the four mode-control input pins (M0, M1, M2, and DCE/DTE). Using the MAX13174E in a Multiprotocol Serial Interface Figure 3. Block Diagram The state of the MAX13174E’s mode-select pins—M0, M1, M2, and DCE/DTE—determines the mode of each of the six termination networks. Table 1 shows a cross-reference of termination mode and select pin state for each of the six termination networks within the MAX13174E. No-Cable Mode The MAX13174E enters no-cable mode when the modeselect inputs—M0, M1, and M2—are connected high. In no-cable mode, all six termination networks are placed in V.11 mode, with S1 closed and S2 open (Figure 4). 6 B Applications Information 3 MAX13174E M2 VCM I The MAX13174E terminator is designed to form a complete +5V cable- or pin-selectable multiprotocol DCE/DTE interface port when used with the MAX13170E/MAX13172E differential drivers/receivers. The MAX13174E terminator is designed to use the VEE power generated by the MAX13171E’s charge pump and meets all data sheet specifications when connected as illustrated in Figure 5. The mode-selection tables of all three devices are identical, allowing the M0, M1, M2, and DCE/DTE pins of each device to be connected to a single 4-wire control bus. The MAX13170E and MAX13172E provide internal pullups for the four lines, _______________________________________________________________________________________ +5V Multiprotocol, Pin-Selectable Cable Terminator MAX13174E Table 1. Termination Mode Select Table PROTOCOL DCE/ DTE M2 M1 M0 R1 R2 R3 R4 R5 R6 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Z Z Z Z V.35 Z Z V.11 Z Z Z Z V.35 Z Z V.11 Z Z Z Z V.35 Z Z V.11 Z Z Z Z V.35 Z Z V.11 Z Z Z Z Z Z Z V.11 Z Z Z Z V.35 Z Z V.11 Z V.11 V.11 V.11 V.35 V.11 Z V.11 Z Z Z Z Z Z Z V.11 Z V.11 V.11 V.11 V.35 V.11 Z V.11 Z V.11 V.11 V.11 V.35 V.11 Z V.11 Z V.11 V.11 V.11 V.35 V.11 Z V.11 Z V.11 V.11 V.11 V.35 V.11 Z V.11 V.10/RS-423 RS-530A RS-530 X.21 V.35 RS-449/V.36 V.28/RS-232 No Cable V.10/RS-423 RS-530A RS-530 X.21 V.35 RS-449/V.36 V.28/RS-232 No Cable Note: Z indicates high impedance, 1 = high, and 0 = low. Z, V.11, and V.35 refer to termination modes (Figure 4). A A A MAX13174E MAX13174E R1 52Ω R1 52Ω S1 CLOSED S1 CLOSED R1 52Ω S1 OPEN C C S2 OPEN S2 CLOSED R3 127Ω S2 OPEN R3 127Ω R3 127Ω R2 52Ω B B (a) V.11 C R2 52Ω R2 52Ω B MAX13174E (b) V.35 (c) Z Figure 4. Termination Modes forcing them to the logic-high state if they are not grounded. This allows interface-mode configuration by simply strapping the appropriate pins to ground in the interconnect cable. V.11 Termination A standard V.11 interface is shown in Figure 6. For highspeed data transmission, the V.11 specification recommends terminating the cable at the receiver with a 100Ω (min) resistor. The resistor, although not required, prevents reflections from corrupting transmitted data. _______________________________________________________________________________________ 7 C7 100pF C6 100pF 3 8 C8 100pF VCC 5V 11 12 13 MAX13174E 14 C3 4.7µF 1 C1 1µF 27 26 CHARGE PUMP 2 4 25 C4 4.7µF DTE_TXD/DCE_RXD 5 DTE_SCTE/DCE_RXC 6 T1 T2 7 R1 9 DTE_RXC/DCE_SCTE R2 10 DTE_RXD/DCE_TXD LATCH 21 C2 1µF 2 C5 4.7µF C12 1µF VEE 5 4 6 7 9 10 16 15 18 17 19 20 22 23 24 1 24 23 22 21 DTE 2 TXD A 14 TXD B 24 SCTE A 11 SCTE B 20 19 15 12 18 17 16 15 17 9 DCE RXD A RXD B RXC A RXC B T3 8 DTE_TXC/DCE_TXC C13 1µF DCE/DTE M2 M1 28 3 VCC M0 MAX13174E +5V Multiprotocol, Pin-Selectable Cable Terminator R3 3 16 7 MAX13170E M0 M1 13 M2 14 DCE/DTE TXC A TXC B TXC A TXC B RXC A SCTE A RXC B SCTE B RXD A TXD A RXD B TXD B SG 11 12 1 SHIELD DB-25 CONNECTOR C9 1µF VCC C10 1µF DTE_RTS/DCE_CTS DTE_DTR/DCE_DSR 1 2 3 4 5 DTE_DCD/DCE_DCD DTE_DSR/DCE_DTR DTE_CTS/DCE_RTS DTE_LL/DCE_LL 6 7 8 10 9 28 VCC VEE VDD GND T1 T2 27 C11 1µF 26 25 24 23 4 RTS A 19 RTS B 20 DTR A 23 DTR B 22 21 20 19 18 17 8 DCD A 10 DCD B 6 DSR A 22 DSR B 5 CTS A 13 CTS B 16 18 DSR A DSR B T3 R1 R2 R3 R4 T4 MAX13172E M0 15 M1 INVERT 13 M2 14 DCE/DTE 11 12 DCE/DTE M2 M1 M0 Figure 5. Multiprotocol DCE/DTE Port 8 CTS A CTS B _______________________________________________________________________________________ LLA DCD A DCD B DTR A DTR B RTS A RTS B LLA +5V Multiprotocol, Pin-Selectable Cable Terminator GENERATOR impedance and a 150Ω ±15Ω common-mode impedance. The V.35 driver generates a current output (±11mA, typ) that develops an output voltage between 440mV and 660mV across the load termination networks. LOAD CABLE RECEIVER TERMINATION In Figure 9, the MAX13174E is used to implement the resistive T-network that is needed to properly terminate the V.35 receiver. Internal to the MAX13174E, S1 and S2 are closed to connect the T-network resistors to the circuit. The V.35 specification allows for ±4V of ground difference between the V.35 generator and V.35 load. The MAX13174E maintains correct termination impedance over these conditions. A′ A 100Ω MIN B B′ C C′ Figure 6. Typical V.11 Interface V.35 EMI reduction In Figure 7, the MAX13174E is used to terminate the V.11 receiver on the MAX13170E. Internal to the MAX13174E, S1 is closed and S2 is open to present a 104Ω typical differential resistance and high-Z common-mode impedance. The MAX13170E's internal V.28 termination is disabled by opening S3. The V.11 specification allows for signals with commonmode variations of ±7V and differential signal amplitudes from 2V to 6V. The MAX13174E maintains termination impedance between 100Ω and 110Ω over these conditions. For applications where EMI reduction is especially important, the MAX13174E termination networks provide a pin for shunting common-mode driver currents to GND. Mismatches between the driver A and B output propagation delays can create a common-mode disturbance on the cable. This common-mode energy can be shunted to GND by placing a 100pF capacitor to GND from the center tap of the T-network termination (R1C, R2C, and R3C as shown in Figure 5). V.28 Termination Most industry-standard V.28 receivers (including the MAX13170E and MAX13172E) do not require external termination because the receiver includes an internal 5kΩ termination resistor. When the MAX13174E is V.35 Termination Figure 8 shows a standard V.35 interface. The generator and the load must both present a 100Ω ±10Ω differential A′ A MAX13170E R5 55kΩ R1 52Ω R8 5kΩ MAX13174E RECEIVER S3 S1 S2 R6 11kΩ R3 124Ω + 1.4V R7 11kΩ R2 52Ω B′ R4 55kΩ B S1 S2 C′ GND Figure 7. V.11 Termination and Internal Resistance Networks _______________________________________________________________________________________ 9 MAX13174E BALANCED INTERCONNECTING CABLE MAX13174E +5V Multiprotocol, Pin-Selectable Cable Terminator BALANCED INTERCONNECTING CABLE GENERATOR LOAD 50Ω CABLE TERMINATION A′ A 125Ω 125Ω 50Ω RECEIVER 50Ω 50Ω B B′ C C′ Figure 8. Typical V.35 Interface A′ A MAX13170E R5 55kΩ R1 52Ω R8 5kΩ MAX13174E RECEIVER S3 S1 S2 R6 11kΩ R3 124Ω + 1.4V R7 11kΩ R2 52Ω B′ R4 55kΩ B S1 S2 C′ GND Figure 9. V.35 Termination and Internal Resistance Networks placed in V.28 mode, all six of the termination networks are placed in a high-Z mode. In high-Z mode, the MAX13174E termination networks do not interfere with the MAX13170E's internal 5kΩ termination. In Figure 10, the MAX13174E and MAX13170E are placed in V.28 mode. Switches S1 and S2 are opened on the MAX13174E to place the network in high-Z mode. Switch S3 is closed on the MAX13170E to enable the 5kΩ terminating resistor. 10 A Complete X.21 Interface A complete DTE-to-DCE interface operating in X.21 mode is shown in Figure 11. The MAX13174E terminates the V.11 clock and data signals. The MAX13170E carries the clock and data signals, and the MAX13172E carries the control signals. The control signals generally do not require external termination. ESD Protection ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The differential resistors ______________________________________________________________________________________ +5V Multiprotocol, Pin-Selectable Cable Terminator MAX13174E A′ A MAX13170E R5 55kΩ R1 52Ω R8 5kΩ MAX13174E S1 S2 R6 11kΩ RECEIVER S3 R3 124Ω + 1.4V R7 11kΩ R2 52Ω B′ R4 55kΩ B S1 S2 C′ GND Figure 10. V.28 Termination and Internal Resistance Networks have extra protection against static electricity. Maxim’s engineers have developed state-of-the-art structures to protect these pins against an ESD of ±15kV (Human Body Model) without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, the MAX13174E keeps working without latchup or damage. ESD protection can be tested in various ways. The Electrical Characteristics table shows the limits, and each device is characterized for protection to the following methods: • Human Body Model • Contact Method specified in IEC 61000-4-2 • Air Gap Discharge Method specified in IEC 61000-4-2 ESD Test Conditions ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results. IEC 61000-4-2 The IEC 61000-4-2 standard covers ESD testing and the performance of finished equipment. However, it does not specifically refer to integrated circuits. The MAX13174E helps equipment designs to meet IEC 61000-4-2 without the need for additional ESD-protection components. The major difference between tests done using the Human Body Model and IEC 61000-4-2 is higher peak current in IEC 61000-4-2 because series resistance is lower in the IEC 61000-4-2 model. Figure 12c shows the IEC 61000-4-2 model, and Figure 12d shows the current waveform for the IEC 61000-4-2 ESD Contact Discharge test. Compliance Testing A European Standard EN 45001 test report for the MAX13170E, MAX13172E, and MAX13174E chipset will be available from Maxim upon completion of testing. Contact Maxim Quality Assurance for a copy of the report. Human Body Model Figure 12a shows the Human Body Model, and Figure 12b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a 1.5kΩ resistor. ______________________________________________________________________________________ 11 MAX13174E +5V Multiprotocol, Pin-Selectable Cable Terminator DTE SERIAL CONTROLLER MAX13170E DCE MAX13174E MAX13174E TXD D1 TXD SCTE D2 SCTE D3 TXC R1 RXC R2 RXD R3 104Ω 104Ω MAX13170E SERIAL CONTROLLER R3 TXD R2 SCTE R1 104Ω 104Ω 104Ω TXC D3 TXC RXC D2 RXC RXD D1 RXD MAX13172E MAX13172E RTS D1 RTS R3 RTS DTR D2 DTR R2 DTR D3 R1 DCD R1 DCD D3 DCD DSR R2 DSR D2 DSR CTS R3 CTS D1 CTS LL D4 R4 LL R4 LL D4 Figure 11. DTE-to-DCE X.21 Interface 12 ______________________________________________________________________________________ +5V Multiprotocol, Pin-Selectable Cable Terminator RD 1500Ω IP 100% 90% DISCHARGE RESISTANCE CHARGE-CURRENT LIMIT RESISTOR IR PEAK-TO-PEAK RINGING (NOT DRAWN TO SCALE) AMPS HIGHVOLTAGE DC SOURCE Cs 100pF DEVICE UNDER TEST STORAGE CAPACITOR 36.8% 10% 0 0 RD 330Ω HIGHVOLTAGE DC SOURCE I 100% 90% Cs 150pF IPEAK DISCHARGE RESISTANCE CHARGE-CURRENT LIMIT RESISTOR tDL CURRENT WAVEFORM Figure 12b. Human Body Current Waveform Figure 12a. Human Body ESD Test Model RC 50MΩ TO 100MΩ TIME tRL DEVICE UNDER TEST STORAGE CAPACITOR 10% tR = 0.7ns TO 1ns t 30ns 60ns Figure 12c. IEC 61000-4-2 ESD Test Model Figure 12d. IEC 61000-4-2 ESD Generator Current Waveform Chip Information Pin Configuration PROCESS: BiCMOS TOP VIEW M0 1 + 24 M1 VEE 2 23 M2 R1C 3 22 DCE/DTE R1B 4 R1A 5 21 LATCH MAX13174E 20 R6B R2A 6 19 R6A R2B 7 18 R5A R2C 8 17 R5B R3A 9 16 R4A R3B 10 15 R4B R3C 11 14 VCC GND 12 13 GND Package Information For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 24 SSOP A24+3 21-0056 SSOP Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13 © 2009 Maxim Integrated Products SPRINGER Maxim is a registered trademark of Maxim Integrated Products, Inc. MAX13174E RC 1MΩ