Freescale Semiconductor Data Sheet: Advance Information Document Number: MPC5604P Rev. 5, 11/2009 MPC5604P 144 LQFP 20 mm x 20 mm MPC5604P Microcontroller Data Sheet • High performance 64 MHz e200z0h CPU – 32-bit Power Architecture Book E CPU – Variable Length Encoding (VLE) • Available memory – As much as 512 KB on-chip code flash memory with additional 64 KB for EEPROM emulation (data flash), with ECC, with erase/program controller – As much as 40 KB on-chip RAM with ECC • Fail safe protection – Programmable watchdog timer – Junction temperature sensor – Non-maskable interrupt – Fault collection unit • Nexus L2+ interface • Interrupts – 16 priority level controller • 16-channel eDMA controller • General purpose I/Os – Individually programmable as input, output or special function • Two general purpose eTimer units – Six timers each with up/down count capabilities – 16-bit resolution, cascadable counters – Quadrature decode with rotation direction flag – Double buffer input capture and output compare • Communications interfaces – Two LINFlex channels (LIN 2.1) – Four DSPI channels with automatic chip select generation – FlexCAN interface (2.0B Active) with 32 message objects – Safety port based on FlexCAN with 32 message objects and up to 7.5 Mbit/s capability; usable as second CAN when not used as safety port – FlexRay™ module (V2.1) with dual or single channel, 32 message objects and up to 10 Mbit/s 100 LQFP 14 mm_x_14 mm • Two 10-bit A/D converters – Two × 15 input channels, four channels shared among the two A/D converters – Conversion time < 1 µs including sampling time at full precision – Programmable Cross Triggering Unit (CTU) – Four analog watchdogs with interrupt capability • On-chip CAN/UART/FlexRay Bootstrap loader with Boot Assist Module (BAM) • FlexPWM unit – Eight complementary or independent outputs with ADC synchronization signals – Polarity control, reload unit – Integrated configurable dead time unit and inverter fault input pins – 16-bit resolution, up to 2 × fCPU – Lockable configuration – Clock generation – 4–40 MHz main oscillator – 16 MHz internal RC oscillator – Software controlled FMPLL capable of speeds as fast as 64 MHz • Voltage supply – 3.3 V or 5 V supply for I/Os and ADC – On-chip single supply voltage regulator with external ballast transistor – Operating temperature ranges: –40 to 125 °C or –40 to 105 °C This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © Freescale Semiconductor, Inc., 2008, 2009. All rights reserved. Preliminary—Subject to Change Without Notice Table of Contents 1 2 3 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.1 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . .6 2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 2.2 Pin descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 2.2.1 Power supply and reference voltage pins . . . . . .8 2.2.2 System Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.2.3 Pin Muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 3.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . .23 3.2 Recommended operating conditions . . . . . . . . . . . . . .26 3.3 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .29 3.3.1 General notes for specifications at maximum junction temperature . . . . . . . . . . . . . . . . . . . . .30 3.4 Electromagnetic interference (EMI) characteristics. . . .32 3.5 Electrostatic discharge (ESD) characteristics . . . . . . . .32 3.6 Power management electrical characteristics. . . . . . . .33 3.6.1 Voltage regulator electrical characteristics . . . .33 3.6.2 Voltage monitor electrical characteristics. . . . . .35 3.7 Power up/down sequencing . . . . . . . . . . . . . . . . . . . . .36 3.8 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . .39 3.8.1 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . .39 3.8.2 DC electrical characteristics (5 V) . . . . . . . . . . .39 3.8.3 DC Electrical characteristics (3.3 V) . . . . . . . . .41 3.8.4 I/O pad current specification . . . . . . . . . . . . . . 44 Temperature sensor electrical characteristics . . . . . . . 48 Main oscillator electrical characteristics . . . . . . . . . . . 48 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . 49 16 MHz RC oscillator electrical characteristics . . . . . . 50 Analog-to-digital converter (ADC) electrical characteristics 51 3.13.1 Input impedance and ADC accuracy . . . . . . . . 51 3.13.2 ADC conversion characteristics . . . . . . . . . . . . 56 3.14 Flash memory electrical characteristics . . . . . . . . . . . 57 3.15 AC Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.15.1 Pad AC Specifications . . . . . . . . . . . . . . . . . . . 58 3.16 AC Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . 59 3.16.1 RESET Pin Characteristics . . . . . . . . . . . . . . . 59 3.16.2 IEEE 1149.1 interface timing . . . . . . . . . . . . . . 61 3.16.3 Nexus timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.16.4 External interrupt timing (IRQ pin) . . . . . . . . . . 66 3.16.5 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Package characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . 73 4.1.1 144 LQFP mechanical outline drawing. . . . . . . 73 4.1.2 100 LQFP Mechanical Outline Drawing . . . . . . 75 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.9 3.10 3.11 3.12 3.13 4 5 6 MPC5604P Microcontroller Data Sheet, Rev. 5 2 Preliminary—Subject to Change Without Notice Freescale Semiconductor 1 Overview This document provides electrical specifications, pin assignments, and package diagrams for the MPC5604P series of microcontroller units (MCUs). For functional characteristics, refer to the MPC5604P Microcontroller Reference Manual. MPC5604P microcontrollers are members of a new family of next generation microcontrollers built on the Power Architecture™. This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the devices. The MPC5604P family of 32-bit microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding range of automotive-focused products designed to address electrical hydraulic power steering (EHPS), electric power steering (EPS) and airbag applications. The advanced and cost-efficient host processor core of the MPC5604P automotive controller family complies with the Power Architecture embedded category, which is 100 percent user-mode compatible with the original PowerPC user instruction set architecture (UISA). It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations. 1.1 Device comparison Table 1 provides a summary of different members of the MPC5604P family and their features to enable a comparison among the family members and an understanding of the range of functionality offered within this family. Table 1. MPC5604P device comparison Feature MPC5603P MPC5604P Code Flash memory (with ECC) 384 KB 512 KB Data Flash / EE (with ECC) 64 KB 64 KB RAM (with ECC) 36 KB 40 KB Processor core 32-bit e200z0h Instruction set VLE CPU performance 0–64 MHz FMPLL (frequency-modulated phase-locked loop) modules 2 INTC (interrupt controller) channels PIT (periodic interrupt timer) 147 1 (includes four 32-bit timers) Enhanced DMA (direct memory access) channels 16 FlexRay Yes1 FlexCAN (controller area network) 22,3 Safety port Yes (via second FlexCAN module) FCU (fault collection unit) Yes CTU (cross triggering unit) Yes eTimer channels 2×6 FlexPWM (pulse-width modulation) channels Analog-to-digital converters (ADC) 8 Two (10-bit, 16-channel) LINFlex modules 2 DSPI (deserial serial peripheral interface) modules 4 MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 3 Table 1. MPC5604P device comparison (continued) Feature MPC5603P MPC5604P CRC (cyclic redundancy check) unit Yes Junction temperature sensor Yes JTAG interface Yes Nexus port controller (NPC) Supply Yes (Level 2+) 4 Digital power supply 3.3 V or 5 V single supply with external transistor Analog power supply 3.3 V or 5 V Internal RC oscillator 16 MHz External crystal oscillator 4–40 MHz Packages Temperature 100 LQFP 144 LQFP Standard ambient temperature Extended ambient temperature –40 to 125 °C 5 –40 to 145 °C 1 32 message buffers, dual-channel. Each FlexCAN module has 32 message buffers. 3 One FlexCAN module can act as a Safety Port with a bit rate as high as 7.5 Mbit/s. 4 3.3 V range and 5 V range correspond to different orderable parts. 5 Thermally enhanced 100-pin and 144-pin LQFP packages are under analysis to support an extended ambient temperature range of –40 to 145 °C. The packages are not yet available. 2 MPC5604P Microcontroller Data Sheet, Rev. 5 4 Preliminary—Subject to Change Without Notice Freescale Semiconductor 1.2 Block diagram Figure 1 shows a top-level block diagram of the MPC5604P MCU. 1.2 V Regulator Control e200z0 Core 32-bit General Purpose Registers Integer Execution Unit Special Purpose Registers Exception Handler Instruction Unit Variable Length Encoded Instructions Branch Prediction Unit Load/Store Unit XOSC 16 MHz RC Oscillator FMPLL_0 (System) FMPLL_1 (FlexRay, MotCtrl) JTAG Interrupt Controller Nexus Port Controller eDMA2 ¥ 16 channels Master FlexRay Data (32-bit) Instruction (32-bit) Master Master Master Crossbar Switch (XBAR, AMBA 2.0 v6 AHB) SWT SRAM (with ECC) STM Flash memory (with ECC) Slave PIT Slave ECSM Slave Boot Assist Module System Integration Unit-Lite 11 Safety Port FlexCAN 2¥ LINFlex 4¥ DSPI Fault Collection Unit 4 ch. 2¥ eTimer (6 ch) Junc. Temp. Sensor 2¥ ADC 1.2 V Rail Vreg CTU FlexPWM Peripheral Bridge 4 11 CTUCross Triggering Unit DSPIDeserial Serial Peripheral Interface ECSMError Correction Status Module eTimerEnhanced Timer FlexCANFlexible Controller Area Network FlexPWMFlexible Pulse Width Modulation FMPLLFrequency-Modulated Phase-Locked Loop LINFlexSerial Communication Interface (LIN support) PITPeriodic Interrupt Timer SRAMStatic Random-Access Memory STMSystem Timer Module SWTSoftware Watchdog Timer Figure 1. MPC5604P block diagram MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 5 2 Package pinouts and signal descriptions 2.1 Package pinouts NMI IRQ6/dspi1 SCK/A[6] flexray0 CA RX/etimer1 ETC[2]/ctu0 EXT TRG/D[1] nexus0 MDO[3]/F[4] nexus0 MDO[2]/F[5] VDD_HV_IO0 VSS_HV_IO0 nexus0 MDO[1]/F[6] nexus0 MDO 0 IRQ7/dspi1 SOUT/A[7] IRQ22/sscm DEBUG[4]/dspi0 CS0/flexpwm0 X[1]/C[4] IRQ8/dspi1 SIN/A[8] IRQ23/sscm DEBUG[5]/dspi0 SCK/flexpwm0 FAULT[3]/C[5] IRQ5/dspi1 CS0/etimer1 ETC[5]/dspi0 CS7/A[5] sscm DEBUG[7]/dspi0 SIN/flexpwm0 A[1]/C[7] IRQ21/dspi0 CS1/etimer1 ETC[4]/lin1 TXD/C[3] VSS_LV_COR0 VDD_LV_COR0 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 144 LQFP A[4]/etimer1 ETC[0]/dspi2 CS1/etimer0 ETC[4]/FAB/IRQ4 VPP TEST F[12]/etimer1 ETC[3] D[14]/flexpwm0 B[1]/dspi3 CS3/dspi3 SIN G[3]/flexpwm0 A[2] C[14]/etimer1 ETC[2]/ctu0 EXT TGR G[2]/flexpwm0 X[2] C[13]/etimer1 ETC[1]/ctu0 EXT IN/flexpwm0 ext. sync G[4]/flexpwm0 B[2] D[12]/flexpwm0 X[1]/lin1 RXD G[6]/flexpwm0 A[3] VDD_HV_FL VSS_HV_FL D[13]/flexpwm0 A[1]/dspi3 CS2/dspi3 SOUT VSS_LV_COR1 VDD_LV_COR1 A[3]/etimer0 ETC[3]/dspi2 CS0/flexpwm0 B[3]/ABS1/IRQ3 VDD_HV_IO2 VSS_HV_IO2 jtag0 TDO jtag0 TCK jtag0 TMS jtag0 TDI G[5]/flexpwm0 X[3] A[2]/etimer0 ETC[2]/dspi2 SIN/flexpwm0 A[3]/ABS0/IQR2 G[7]/flexpwm0 B[3] C[12]/etimer0 ETC[5]/dspi2 CS3/dspi3 CS1 G[8]/flexpwm0 FAULT[0] C[11]/etimer0 ETC[4]/dspi2 CS2/dspi3 CS0 G[9]/flexpwm0 FAULT[1] D[11]/flexpwm0 B[0]/dspi3 CS1/dspi3 SCK G[10]/flexpwm0 FAULT[2] D[10]/flexpwm0 A[0]/dspi3 CS0 G[11]/flexpwm0 FAULT[3] A[1]/etimer0 ETC[1]/dspi2 SOUT/fcu0 F[1]/IRQ1 A[0]/etimer0 ETC[0]/dspi2 SCK/fcu0 F[0]/IRQ0 VDD_HV_REG adc1 AN[4]/D[15] adc1 AN[6]/E[8] adc1 AN[0]/lin1 RXD/B[13] adc1 AN[7]/E[9] IRQ20/adc1 AN[2]/B[15] adc1 AN[8]/E[10] IRQ19/adc1 AN[1]/etimer0 ETC[4]/B[14] adc1 AN[9]/E[11] adc1 AN[3]/C[0] adc1 AN[10]/E[12] adc1 AN[5]/E[0] BCTRL VDD_LV_REGCOR VSS_LV_REGCOR dspi1 CS3/fcu0 F[1]/dspi3 SIN/dspi0 CS4/D[7] IRQ30/fcu0 F[0]/G[0] adc0 AN[4]/E[1] adc0 AN[6]/E[3] adc0 AN[2]/C[1] adc0 AN[7]/E[4] adc0 AN[0]/lin0 RXD/B[7] adc0 AN[8]/E[5] adc0 AN[3]/C[2] adc0 AN[9]/E[6] adc0 AN[1]/etimer0 ETC[5]/B[8] adc0 AN[10]/E[7] adc0 AN[5]/E[2] VDD_HV_AD0 VSS_HV_AD0 adc0-adc1 AN[11]/B[9] adc0-adc1 AN[12]/B[10] adc0-adc1 AN[13]/B[11] adc0-adc1 AN[14]/B[12] VDD_HV_AD1 VSS_HV_AD1 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 nexus0 MCKO/F[7] nexus0 MSEO1/F[8] VDD_HV_IO1 VSS_HV_IO1 nexus0 MSEO0/F[9] nexus0 EVTO/F[10] nexus0 EVTI/F[11] flexpwm0 X[0]/lin1 TXD/D[9] VDD_HV_OSC VSS_HV_OSC XTAL EXTAL RESET dspi1 CS2/flexpwm0 FAULT[3]/dspi0 CS5/D[8] dspi0 CS3/fcu0 F[0]/dspi3 SOUT/D[5] dspi0 CS2/dspi3 SCK/flexpwm0 FAULT[1]/D[6] VSS_LV_PLL VDD_LV_PLL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 A[15]/safetyport0 RXD/etimer1 ETC[5]/IRQ14 A[14]/safetyport0 TXD/etimer1 ETC[4]/IRQ13 C[6]/dspi0 SOUT/flexpwm0 B[1]/sscm DEBUG[6]/IRQ24 G[1]/fcu0 F[1]/IRQ31 D[2]/flexray0 CB RX/etimer1 ETC[3]/flexpwm0 X[3] F[3]/flexray0 DBG3/dspi3 CS0 B[6]/CLKOUT/dspi2 CS2/IRQ18 F[2]/flexray0 DBG2/dspi3 CS1 A[13]/dspi2 SIN/flexpwm0 B[2]/flexpwm0 FAULT[0]/IRQ12 F[1]/flexray0 DBG1/dspi3 CS2/IRQ29 A[9]/dspi2 CS1/flexpwm0 FAULT[0]/flexpwm0 B[3] F[0]/flexray0 DBG0/dspi3 CS3/IRQ28 VSS_LV_COR2 VDD_LV_COR2 C[8]/dspi1 CS1/flexpwm0 FAULT[2]/dspi0 CS6 D[4]/flexray0 CB TR EN/etimer1 ETC[5]/flexpwm0 B[3] D[3]/flexray0 CB TX/etimer1 ETC[4]/flexpwm0 A[3] VSS_HV_IO3 VDD_HV_IO3 D[0]/flexray0 CA TX/etimer1 ETC[1]/flexpwm0 B[1] C[15]/flexray0 CA TR EN/etimer1 ETC[0]/flexpwm0 A[1]/ctu0 EXT IN/flexpwm0 ext. sync C[9]/dspi2 CS3/flexpwm0 FAULT[2]/flexpwm0 X[3] A[12]/dspi2 SOUT/flexpwm0 A[2]/flexpwm0 B[2]/IRQ11 E[15]/dspi3 SIN/IRQ27 A[11]/dspi2 SCK/flexpwm0 A[0]/flexpwm0 A[2]/IRQ10 E[14]/dspi3 SOUT/IRQ26 A[10]/dspi2 CS0/flexpwm0 B[0]/flexpwm0 X[2]/IRQ9 E[13]/dspi3 SCK/IRQ25 B[3]/lin0 RXD/sscm DEBUG[3] F[14]/lin1 TXD B[2]/lin0 TXD/sscm DEBUG[2]/IRQ17 F[15]/lin1 RXD F[13]/etimer1 ETC[4] C[10]/dspi2 CS2/flexpwm0 FAULT[1]/flexpwm0 A[3] B[1]/can0 RXD/etimer1 ETC[3]/sscm DEBUG[1]/IRQ16 B[0]/can0 TXD/etimer1 ETC[2]/sscm DEBUG[0]/IRQ15 The LQFP pinouts are shown in the following figures. Figure 2. 144-pin LQFP pinout (top view)1 1. Availability of port pin alternate functions depends on product selection MPC5604P Microcontroller Data Sheet, Rev. 5 6 Preliminary—Subject to Change Without Notice Freescale Semiconductor A[15]/safetyport0 RXD/etimer1 ETC[5]/IRQ14 A[14]/safetyport0 TXD/etimer1 ETC[4]/IRQ13 C[6]/dspi0 SOUT/flexpwm0 B[1]/sscm DEBUG[6]/IRQ24 D[2]/flexray0 CB RX/etimer1 ETC[3]/flexpwm0 X[3] B[6]/CLKOUT/dspi2 CS2/IRQ18 A[13]/dspi2 SIN/flexpwm0 B[2]/flexpwm0 FAULT[0]/IRQ12 A[9]/dspi2 CS1/flexpwm0 FAULT[0]/flexpwm0 B[3] VSS_LV_COR2 VDD_LV_COR2 C[8]/dspi1 CS1/flexpwm0 FAULT[2]/dspi0 CS6 D[4]/flexray0 CB TR EN/etimer1 ETC[5]/flexpwm0 B[3] D[3]/flexray0 CB TX/etimer1 ETC[4]/flexpwm0 A[3] VSS_HV_IO3 VDD_HV_IO3 D[0]/flexray0 CA TX/etimer1 ETC[1]/flexpwm0 B[1] C[15]/flexray0 CA TR EN/etimer1 ETC[0]/flexpwm0 A[1]/ctu0 EXT IN/flexpwm0 ext. sync C[9]/dspi2 CS3/flexpwm0 FAULT[2]/flexpwm0 X[3] A[12]/dspi2 SOUT/flexpwm0 A[2]/flexpwm0 B[2]/IRQ11 A[11]/dspi2 SCK/flexpwm0 A[0]/flexpwm0 A[2]/IRQ10 A[10]/dspi2 CS0/flexpwm0 B[0]/flexpwm0 X[2]/IRQ9 B[3]/lin0 RXD/sscm DEBUG[3] B[2]/lin0 TXD/sscm DEBUG[2]/IRQ17 C[10]/dspi2 CS2/flexpwm0 FAULT[1]/flexpwm0 A[3] B[1]/can0 RXD/etimer1 ETC[3]/sscm DEBUG[1]/IRQ16 B[0]/can0 TXD/etimer1 ETC[2]/sscm DEBUG[0]/IRQ15 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 100 LQFP 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 A[4]/etimer1 ETC[0]/dspi2 CS1/etimer0 ETC[4]/FAB/IRQ4 VPP TEST D[14]/flexpwm0 B[1]/dspi3 CS3/dspi3 SIN C[14]/etimer1 ETC[2]/ctu0 EXT TGR C[13]/etimer1 ETC[1]/ctu0 EXT IN/flexpwm0 ext. sync D[12]/flexpwm0 X[1]/lin1 RXD VDD_HV_FL VSS_HV_FL D[13]/flexpwm0 A[1]/dspi3 CS2/dspi3 SOUT VSS_LV_COR1 VDD_LV_COR1 A[3]/etimer0 ETC[3]/dspi2 CS0/flexpwm0 B[3]/ABS[1]/IRQ3 VDD_HV_IO2 VSS_HV_IO2 jtag0 TDO jtag0 TCK jtag0 TMS jtag0 TDI A[2]/etimer0 ETC[2]/dspi2 SIN/flexpwm0 A[3]/ABS[0]/IRQ2 C[12]/etimer0 ETC[5]/dspi2 CS3/dspi3 CS1 C[11]/etimer0 ETC[4]/dspi2 CS2/dspi3 CS0 D[11]/flexpwm0 B[0]/dspi3 CS1/dspi3 SCK D[10]/flexpwm0 A[0]/dspi3 CS0 A[1]/etimer0 ETC[1]/dspi2 SOUT/fcu0 F[1]/sscm /IRQ1 A[0]/etimer0 ETC[0]/dspi2 SCK/fcu0 F[0]/IRQ0 dspi1 CS3/fcu0 F[1]/dspi3 SIN/dspi0 CS4/D[7] adc0 AN[4]/E[1] adc0 AN[2]/C[1] adc0 AN[0]/lin0 RXD/B[7] adc0 AN[3]/C[2] adc0 AN[1]/etimer0 ETC[5]/B[8] adc0 AN[5]/E[2] VDD_HV_AD0 VSS_HV_AD0 adc0-adc1 AN[11]/B[9] adc0-adc1 AN[12]/B[10] adc0-adc1 AN[13]/B[11] adc0-adc1 AN[14]/B[12] VDD_HV_AD1 VSS_HV_AD1 adc1 AN[4]/D[15] adc1 AN[0]/lin1 RXD/B[13] IRQ20/adc1 AN[2]/B[15] adc1 AN[1]/etimer0 ETC[4]/B[14] adc1 AN[3]/C[0] adc1 AN[5]/E[0] BCTRL VDD_LV_REGCOR VSS_LV_REGCOR VDD_HV_REG 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 NMI IRQ6/dspi1 SCK/A[6] flexray0 CA RX/etimer1 ETC[2]/ctu0 EXT TRG/D[1] IRQ7/dspi1 SOUT/A[7] IRQ22/sscm DEBUG[4]/dspi0 CS0/flexpwm0 X[1]/C[4] IRQ8/dspi1 SIN/A[8] IRQ23/sscm DEBUG[5]/dspi0 SCK/flexpwm0 FAULT[3]/C[5] IRQ5/dspi1 CS0/etimer1 ETC[5]/dspi0 CS7/A[5] sscm DEBUG[7]/dspi0 SIN/flexpwm0 A[1]/C[7] IRQ21/dspi0 CS1/etimer1 ETC[4]/lin1 TXD/C[3] VSS_LV_COR0 VDD_LV_COR0 VDD_HV_IO1 VSS_HV_IO1 flexpwm0 X[0]/lin1 TXD/D[9] VDD_HV_OSC VSS_HV_OSC XTAL EXTAL RESET dspi1 CS2/flexpwm0 FAULT[3]/dspi0 CS5/D[8] dspi0 CS3/fcu0 F[0]/dspi3 SOUT/D[5] dspi0 CS2/dspi3 SCK/flexpwm0 FAULT[1]/D[6] VSS_LV_PLL VDD_LV_PLL Figure 3. 100-pin LQFP pinout (top view)1 1. Availability of port pin alternate functions depends on product selection MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 7 2.2 Pin descriptions The following sections provide signal descriptions and related information about the functionality and configuration of the MPC5604P devices. 2.2.1 Power supply and reference voltage pins Table 2 lists the power supply and reference voltage for the MPC5604P devices. Table 2. Supply pins Supply Symbol Pin Description 100-pin 144-pin VREG control and power supply pins. Pins available on 100-pin and 144-pin package. BCTRL Voltage regulator external NPN Ballast base control pin VDD_HV_REG (3.3 V Voltage regulator supply voltage or 5.0 V) 47 69 50 72 VDD_LV_REGCOR 1.2 V decoupling1 pins for core logic supply and voltage regulator feedback. Decoupling capacitor must be connected between this pins and VSS_LV_REGCOR. 48 70 VSS_LV_REGCOR 1.2 V decoupling1 pins for core logic GND and voltage regulator feedback. Decoupling capacitor must be connected between this pins and VDD_LV_REGCOR. 49 71 ADC0/ADC1 reference and supply voltage. Pins available on 100-pin and 144-pin package. VDD_HV_AD02 ADC0 supply and high reference voltage 33 50 VSS_HV_AD0 ADC0 ground and low reference voltage 34 51 VDD_HV_AD1 ADC1 supply and high reference voltage 39 56 VSS_HV_AD1 ADC1 ground and low reference voltage 40 57 Power supply pins (3.3 V or 5.0 V). All pins available on 144-pin package. Five pairs (VDD; VSS) available on 100-pin package. VDD_HV_IO03 Input/Output supply voltage — 6 Input/Output ground — 7 VDD_HV_IO1 Input/Output supply voltage 13 21 VSS_HV_IO1 Input/Output ground 14 22 VDD_HV_IO2 Input/Output supply voltage 63 91 VSS_HV_IO2 Input/Output ground 62 90 VDD_HV_IO3 Input/Output supply voltage 87 126 VSS_HV_IO3 Input/Output ground 88 127 VDD_HV_FL Code and data flash supply voltage 69 97 VSS_HV_FL Code and data flash supply ground 68 96 VDD_HV_OSC Crystal oscillator amplifier supply voltage 16 27 VSS_HV_OSC Crystal oscillator amplifier ground 17 28 VSS_HV_IO0 3 MPC5604P Microcontroller Data Sheet, Rev. 5 8 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 2. Supply pins (continued) Supply Symbol Pin Description 100-pin 144-pin Power supply pins (1.2 V). All pins available on 100-pin and 144-pin package. VDD_LV_COR0 1.2 V Decoupling pins for core logic supply. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR0 pin. 12 18 VSS_LV_COR0 1.2 V Decoupling pins for core logic GND. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR0 pin. 11 17 VDD_LV_COR1 1.2 V Decoupling pins for core logic supply. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR1 pin. 65 93 VSS_LV_COR1 1.2 V Decoupling pins for core logic GND. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR1 pin. 66 94 VDD_LV_COR2 1.2 V Decoupling pins for core logic supply. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR2 pin. 92 131 VSS_LV_COR2 1.2 V Decoupling pins for core logic GND. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR 2pin. 93 132 VDD_LV_COR3 1.2 V Decoupling pins for core logic supply. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR3 pin. 25 36 VSS_LV_COR3 1.2 V Decoupling pins for core logic GND. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR 3 pin. 24 35 1 See Section 3.6.1, “Voltage regulator electrical characteristics for more details Analog supply/ground and high/low reference lines are internally physically separate, but are shorted via a double-bonding connection on VDD_HV_ADx/VSS_HV_ADx pins. 3 Not available on 100-pin package 2 2.2.2 System Pins Table 3 and Table 4 contain information on pin functions for the MPC5604P devices. The pins listed in Table 3 are single-function pins. The pins shown in Table 4 are multi-function pins, programmable via their respective Pad Configuration Register (PCR) values. MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 9 Table 3. System Pins Pad Speed1 Symbol Description Pin Direction SRC=0 SRC=1 100-pin 144-pin Dedicated pins. All pins available on 144-pin package. MDO 0 not available on 100-pin package. MDO 0 Nexus Message Data Output—line 0 NMI Non Maskable Interrupt XTAL Output Only Fast — 9 Input Only — — 1 1 Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator is used in bypass mode. — — — 18 29 EXTAL Analog output of the oscillator amplifier circuit, when the oscillator is not in bypass mode. Analog input for the clock generator when the oscillator is in bypass mode. — — — 19 30 TMS2 JTAG state machine control Input Only — — 59 87 TCK2 JTAG clock Input Only — — 60 88 JTAG data input Input Only — — 58 86 Output Only Slow Fast 61 89 — 20 31 — 74 107 2 TDI 2 JTAG data output TDO Reset pin, available on 100-pin and 144-pin package. Bidirectional reset with Schmitt trigger characteristics and noise filter RESET Bidirectional Medium Test pin, available on 100-pin and 144-pin package. VPP TEST 1 2 Pin for testing purpose only. To be tied to ground in normal operating mode. — — SRC values refer to the value assigned to the Slew Rate Control bits of the pad configuration register In this pin there is an internal pull, refer to JTAGC chapter on MPC5604P Reference Manual for pull direction. 2.2.3 Pin Muxing Table 4 defines the pin list and muxing for the MPC5604P devices. Each row of Table 4 shows all the possible ways of configuring each pin, via “alternate functions”. The default function assigned to each pin after reset is the ALT0 function. Pins marked as external interrupt capable can also be used to resume from STOP and HALT mode. MPC5604P devices provide four main I/O pad types depending of the associated functions: • • • • Slow pads are the most common, providing a compromise between transition time and low electromagnetic emission. Medium pads provide fast enough transition for serial communication channels with controlled current to reduce electromagnetic emission. Fast pads provide maximum speed. They are used for improved NEXUS debugging capability. Symmetric pads are designed to meet FlexRay requirements. Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance. MPC5604P Microcontroller Data Sheet, Rev. 5 10 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Pin muxing Port pin PCR register Alternate function1,2 Functions Peripheral3 I/O direction4 Pad speed5 SRC = 0 SRC = 1 Pin 100-pin 144-pin Port A (16-bit). Fully available on 100-pin and 144-pin package. A[0] PCR[0] ALT0 ALT1 ALT2 ALT3 — GPIO[0] ETC[0] SCK F[0] EIRQ[0] SIU Lite eTimer0 DSPI2 FCU0 SIU Lite I/O I/O I/O O I Slow Medium 51 73 A[1] PCR[1] ALT0 ALT1 ALT2 ALT3 — GPIO[1] ETC[1] SOUT F[1] EIRQ[1] SIU Lite eTimer0 DSPI2 FCU0 SIU Lite I/O I/O O O I Slow Medium 52 74 A[2]6 PCR[2] ALT0 ALT1 ALT2 ALT3 — — — GPIO[2] ETC[2] — A[3] SIN ABS[0] EIRQ[2] SIU Lite eTimer0 — FlexPWM0 DSPI2 mc_rgm SIU Lite I/O I/O — O I I I Slow Medium 57 84 A[3]6 PCR[3] ALT0 ALT1 ALT2 ALT3 — — GPIO[3] ETC[3] CS0 B[3] ABS[1] EIRQ[3] SIU Lite eTimer0 DSPI2 FlexPWM0 mc_rgm SIU Lite I/O I/O I/O O I I Slow Medium 64 92 A[4]6 PCR[4] ALT0 ALT1 ALT2 ALT3 — — GPIO[4] ETC[0] CS1 ETC[4] FAB EIRQ[4] SIU Lite eTimer1 DSPI2 eTimer0 mc_rgm SIU Lite I/O I/O O I/O I I Slow Medium 75 108 A[5] PCR[5] ALT0 ALT1 ALT2 ALT3 — GPIO[5] CS0 ETC[5] CS7 EIRQ[5] SIU Lite DSPI1 eTimer1 DSPI0 SIU Lite I/O I/O I/O O I Slow Medium 8 14 A[6] PCR[6] ALT0 ALT1 ALT2 ALT3 — GPIO[6] SCK — — EIRQ[6] SIU Lite DSPI1 — — SIU Lite I/O I/O — — I Slow Medium 2 2 A[7] PCR[7] ALT0 ALT1 ALT2 ALT3 — GPIO[7] SOUT — — EIRQ[7] SIU Lite DSPI1 — — SIU Lite I/O O — — I Slow Medium 4 10 MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 11 Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2 Functions A[8] PCR[8] ALT0 ALT1 ALT2 ALT3 — — GPIO[8] — — — SIN EIRQ[8] SIU Lite — — — DSPI1 SIU Lite A[9] PCR[9] ALT0 ALT1 ALT2 ALT3 — GPIO[9] CS1 — B[3] FAULT[0] A[10] PCR[10] ALT0 ALT1 ALT2 ALT3 — A[11] PCR[11] A[12] Peripheral 3 I/O direction4 Pad speed5 Pin SRC = 0 SRC = 1 100-pin 144-pin I/O — — — I I Slow Medium 6 12 SIU Lite DSPI2 — FlexPWM0 FlexPWM0 I/O O — O I Slow Medium 94 134 GPIO[10] CS0 B[0] X[2] EIRQ[9] SIU Lite DSPI2 FlexPWM0 FlexPWM0 SIU Lite I/O I/O O I/O I Slow Medium 81 118 ALT0 ALT1 ALT2 ALT3 — GPIO[11] SCK A[0] A[2] EIRQ[10] SIU Lite DSPI2 FlexPWM0 FlexPWM0 SIU Lite I/O I/O O O I Slow Medium 82 120 PCR[12] ALT0 ALT1 ALT2 ALT3 — GPIO[12] SOUT A[2] B[2] EIRQ[11] SIU Lite DSPI2 FlexPWM0 FlexPWM0 SIU Lite I/O O O O I Slow Medium 83 122 A[13] PCR[13] ALT0 ALT1 ALT2 ALT3 — — — GPIO[13] — B[2] — SIN FAULT[0] EIRQ[12] SIU Lite — FlexPWM0 — DSPI2 FlexPWM0 SIU Lite I/O — O — I I I Slow Medium 95 136 A[14] PCR[14] ALT0 ALT1 ALT2 ALT3 — GPIO[14] TXD ETC[4] — EIRQ[13] SIU Lite Safety Port0 eTimer1 — SIU Lite I/O O I/O — I Slow Medium 99 143 A[15] PCR[15] ALT0 ALT1 ALT2 ALT3 — — GPIO[15] — ETC[5] — RXD EIRQ[14] SIU Lite — eTimer1 — Safety Port0 SIU Lite I/O — I/O — I I Slow Medium 100 144 MPC5604P Microcontroller Data Sheet, Rev. 5 12 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2 Functions Peripheral 3 I/O direction4 Pad speed5 SRC = 0 SRC = 1 Pin 100-pin 144-pin Port B (16-bit). Fully available on 100-pin and 144-pin package. B[0] PCR[16] ALT0 ALT1 ALT2 ALT3 — GPIO[16] TXD ETC[2] DEBUG[0] EIRQ[15] SIU Lite CAN0 eTimer1 SSCM SIU Lite I/O O I/O — I Slow Medium 76 109 B[1] PCR[17] ALT0 ALT1 ALT2 ALT3 — — GPIO[17] — ETC[3] DEBUG[1] RXD EIRQ[16] SIU Lite — eTimer1 SSCM CAN0 SIU Lite I/O — I/O — I I Slow Medium 77 110 B[2] PCR[18] ALT0 ALT1 ALT2 ALT3 — GPIO[18] TXD — DEBUG[2] EIRQ[17] SIU Lite LIN0 — SSCM SIU Lite I/O O — — I Slow Medium 79 114 B[3] PCR[19] ALT0 ALT1 ALT2 ALT3 — GPIO[19] — — DEBUG[3] RXD SIU Lite — — SSCM LIN0 I/O — — — I Slow Medium 80 116 B[6] PCR[22] ALT0 ALT1 ALT2 ALT3 — GPIO[22] CLKOUT CS2 — EIRQ[18] SIU Lite Control DSPI2 — SIU Lite I/O O O — I Slow Medium 96 138 B[7] PCR[23] ALT0 ALT1 ALT2 ALT3 — — GPIO[23] — — — AN[0] RXD SIU Lite — — — ADC0 LIN0 Input Only — — 29 43 B[8] PCR[24] ALT0 ALT1 ALT2 ALT3 — — GPIO[24] — — — AN[1] ETC[5] SIU Lite — — — ADC0 eTimer0 Input Only — — 31 47 B[9] PCR[25] ALT0 ALT1 ALT2 ALT3 — GPIO[25] — — — AN[11] SIU Lite Input Only — — — ADC0 – ADC1 — — 35 52 MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 13 Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2 Functions B[10] PCR[26] ALT0 ALT1 ALT2 ALT3 — GPIO[26] — — — AN[12] B[11] PCR[27] ALT0 ALT1 ALT2 ALT3 — B[12] PCR[28] B[13] Peripheral 3 I/O direction4 Pad speed5 Pin SRC = 0 SRC = 1 100-pin 144-pin SIU Lite Input Only — — — ADC0 – ADC1 — — 36 53 GPIO[27] — — — AN[13] SIU Lite Input Only — — — ADC0 – ADC1 — — 37 54 ALT0 ALT1 ALT2 ALT3 — GPIO[28] — — — AN[14] SIU Lite Input Only — — — ADC0 – ADC1 — — 38 55 PCR[29] ALT0 ALT1 ALT2 ALT3 — — GPIO[29] — — — AN[0] RXD SIU Lite — — — ADC1 LIN1 Input Only — — 42 60 B[14] PCR[30] ALT0 ALT1 ALT2 ALT3 — — — GPIO[30] — — — AN[1] ETC[4] EIRQ[19] SIU Lite — — — ADC1 eTimer0 SIU Lite Input Only — — 44 64 B[15] PCR[31] ALT0 ALT1 ALT2 ALT3 — — GPIO[31] — — — AN[2] EIRQ[20] SIU Lite — — — ADC1 SIU Lite Input Only — — 43 62 Port C (16-bit). Fully available on 100-pin and 144-pin package. C[0] PCR[32] ALT0 ALT1 ALT2 ALT3 — GPIO[32] — — — AN[3] SIU Lite — — — ADC1 Input Only — — 45 66 C[1] PCR[33] ALT0 ALT1 ALT2 ALT3 — GPIO[33] — — — AN[2] SIU Lite — — — ADC0 Input Only — — 28 41 MPC5604P Microcontroller Data Sheet, Rev. 5 14 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2 Functions C[2] PCR[34] ALT0 ALT1 ALT2 ALT3 — GPIO[34] — — — AN[3] SIU Lite — — — ADC0 C[3] PCR[35] ALT0 ALT1 ALT2 ALT3 — GPIO[35] CS1 ETC[4] TXD EIRQ[21] C[4] PCR[36] ALT0 ALT1 ALT2 ALT3 — C[5] PCR[37] C[6] Peripheral 3 I/O direction4 Pad speed5 Pin SRC = 0 SRC = 1 100-pin 144-pin Input Only — — 30 45 SIU Lite DSPI0 eTimer1 LIN1 SIU Lite I/O O I/O O I Slow Medium 10 16 GPIO[36] CS0 X[1] DEBUG[4] EIRQ[22] SIU Lite DSPI0 FlexPWM0 SSCM SIU Lite I/O I/O I/O — I Slow Medium 5 11 ALT0 ALT1 ALT2 ALT3 — — GPIO[37] SCK — DEBUG[5] FAULT[3] EIRQ[23] SIU Lite DSPI0 — SSCM FlexPWM0 SIU Lite I/O I/O — — I I Slow Medium 7 13 PCR[38] ALT0 ALT1 ALT2 ALT3 — GPIO[38] SOUT B[1] DEBUG[6] EIRQ[24] SIU Lite DSPI0 FlexPWM0 SSCM SIU Lite I/O O O — I Slow Medium 98 142 C[7] PCR[39] ALT0 ALT1 ALT2 ALT3 — GPIO[39] — A[1] DEBUG[7] SIN SIU Lite — FlexPWM0 SSCM DSPI0 I/O — O — I Slow Medium 9 15 C[8] PCR[40] ALT0 ALT1 ALT2 ALT3 — GPIO[40] CS1 — CS6 FAULT[2] SIU Lite DSPI1 — DSPI0 FlexPWM0 I/O O — O I Slow Medium 91 130 C[9] PCR[41] ALT0 ALT1 ALT2 ALT3 — GPIO[41] CS3 — X[3] FAULT[2] SIU Lite DSPI2 — FlexPWM0 FlexPWM0 I/O O — I/O I Slow Medium 84 123 C[10] PCR[42] ALT0 ALT1 ALT2 ALT3 — GPIO[42] CS2 — A[3] FAULT[1] SIU Lite DSPI2 — FlexPWM0 FlexPWM0 I/O O — O I Slow Medium 78 111 MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 15 Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2 Functions C[11] PCR[43] ALT0 ALT1 ALT2 ALT3 GPIO[43] ETC[4] CS2 CS0 SIU Lite eTimer0 DSPI2 DSPI3 C[12] PCR[44] ALT0 ALT1 ALT2 ALT3 GPIO[44] ETC[5] CS3 CS1 C[13] PCR[45] ALT0 ALT1 ALT2 ALT3 — — C[14] PCR[46] C[15] PCR[47] Peripheral 3 I/O direction4 Pad speed5 Pin SRC = 0 SRC = 1 100-pin 144-pin I/O I/O O I/O Slow Medium 55 80 SIU Lite eTimer0 DSPI2 DSPI3 I/O I/O O O Slow Medium 56 82 GPIO[45] ETC[1] — — EXT IN EXT. SYNC SIU Lite eTimer1 — — ctu0 FlexPWM0 I/O I/O — — I I Slow Medium 71 101 ALT0 ALT1 ALT2 ALT3 GPIO[46] ETC[2] EXT TGR — SIU Lite eTimer1 ctu0 — I/O I/O O — Slow Medium 72 103 ALT0 ALT1 ALT2 ALT3 — — GPIO[47] CA TR EN ETC[0] A[1] EXT IN EXT. SYNC SIU Lite FlexRay0 eTimer1 FlexPWM0 ctu0 FlexPWM0 I/O O I/O O I I Slow Symmetric 85 124 Port D (16-bit). Fully available on 100-pin and 144-pin package. D[0] PCR[48] ALT0 ALT1 ALT2 ALT3 GPIO[48] CA TX ETC[1] B[1] SIU Lite FlexRay0 eTimer1 FlexPWM0 I/O O I/O O Slow Symmetric 86 125 D[1] PCR[49] ALT0 ALT1 ALT2 ALT3 — GPIO[49] — ETC[2] EXT TRG CA RX SIU Lite — eTimer1 ctu0 FlexRay0 I/O — I/O O I Slow Medium 3 3 D[2] PCR[50] ALT0 ALT1 ALT2 ALT3 — GPIO[50] — ETC[3] X[3] CB RX SIU Lite — eTimer1 FlexPWM0 FlexRay0 I/O — I/O I/O I Slow Medium 97 140 D[3] PCR[51] ALT0 ALT1 ALT2 ALT3 GPIO[51] CB TX ETC[4] A[3] SIU Lite FlexRay0 eTimer1 FlexPWM0 I/O O I/O I/O Slow Symmetric 89 128 D[4] PCR[52] ALT0 ALT1 ALT2 ALT3 GPIO[52] CB TR EN ETC[5] B[3] SIU Lite FlexRay0 eTimer1 FlexPWM0 I/O O I/O O Slow Symmetric 90 129 MPC5604P Microcontroller Data Sheet, Rev. 5 16 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2 Functions D[5] PCR[53] ALT0 ALT1 ALT2 ALT3 GPIO[53] CS3 F[0] SOUT SIU Lite DSPI0 FCU0 DSPI3 D[6] PCR[54] ALT0 ALT1 ALT2 ALT3 — GPIO[54] CS2 SCK — FAULT[1] D[7] PCR[55] ALT0 ALT1 ALT2 ALT3 — D[8] PCR[56] D[9] Peripheral 3 I/O direction4 Pad speed5 Pin SRC = 0 SRC = 1 100-pin 144-pin I/O O O O Slow Medium 22 33 SIU Lite DSPI0 DSPI3 — FlexPWM0 I/O O I/O — I Slow Medium 23 34 GPIO[55] CS3 F[1] CS4 SIN SIU Lite DSPI1 FCU0 DSPI0 DSPI3 I/O O O O I Slow Medium 26 37 ALT0 ALT1 ALT2 ALT3 — GPIO[56] CS2 — CS5 FAULT[3] SIU Lite DSPI1 — DSPI0 FlexPWM0 I/O O — O I Slow Medium 21 32 PCR[57] ALT0 ALT1 ALT2 ALT3 GPIO[57] X[0] TXD — SIU Lite FlexPWM0 LIN1 — I/O I/O O — Slow Medium 15 26 D[10] PCR[58] ALT0 ALT1 ALT2 ALT3 GPIO[58] A[0] CS0 — SIU Lite FlexPWM0 DSPI3 — I/O O I/O — Slow Medium 53 76 D[11] PCR[59] ALT0 ALT1 ALT2 ALT3 GPIO[59] B[0] CS1 SCK SIU Lite FlexPWM0 DSPI3 DSPI3 I/O O O I/O Slow Medium 54 78 D[12] PCR[60] ALT0 ALT1 ALT2 ALT3 — GPIO[60] X[1] — — RXD SIU Lite FlexPWM0 — — LIN1 I/O I/O — — I Slow Medium 70 99 D[13] PCR[61] ALT0 ALT1 ALT2 ALT3 GPIO[61] A[1] CS2 SOUT SIU Lite FlexPWM0 DSPI3 DSPI3 I/O O O O Slow Medium 67 95 D[14] PCR[62] ALT0 ALT1 ALT2 ALT3 — GPIO[62] B[1] CS3 — SIN SIU Lite FlexPWM0 DSPI3 — DSPI3 I/O O O — I Slow Medium 73 105 MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 17 Table 4. Pin muxing (continued) Port pin PCR register D[15] PCR[63] Alternate function1,2 Functions ALT0 ALT1 ALT2 ALT3 — GPIO[63] — — — AN[4] Peripheral SIU Lite — — — ADC1 3 I/O direction4 Input Only Pad speed5 SRC = 0 SRC = 1 — — Pin 100-pin 144-pin 41 58 Port E(16-bit). Fully available on 144-pin package. E[0], E[1] and E[2] available on 100-pin package. E[0] PCR[64] ALT0 ALT1 ALT2 ALT3 — GPIO[64] — — — AN[5] SIU Lite — — — ADC1 Input Only — — 46 68 E[1] PCR[65] ALT0 ALT1 ALT2 ALT3 — GPIO[65] — — — AN[4] SIU Lite — — — ADC0 Input Only — — 27 39 E[2] PCR[66] ALT0 ALT1 ALT2 ALT3 — GPIO[66] — — — AN[5] SIU Lite — — — ADC0 Input Only — — 32 49 E[3] PCR[67] ALT0 ALT1 ALT2 ALT3 — GPIO[67] — — — AN[6] SIU Lite — — — ADC0 Input Only — — — 40 E[4] PCR[68] ALT0 ALT1 ALT2 ALT3 — GPIO[68] — — — AN[7] SIU Lite — — — ADC0 Input Only — — — 42 E[5] PCR[69] ALT0 ALT1 ALT2 ALT3 — GPIO[69] — — — AN[8] SIU Lite — — — ADC0 Input Only — — — 44 E[6] PCR[70] ALT0 ALT1 ALT2 ALT3 — GPIO[70] — — — AN[9] SIU Lite — — — ADC0 Input Only — — — 46 E[7] PCR[71] ALT0 ALT1 ALT2 ALT3 — GPIO[71] — — — AN[10] SIU Lite — — — ADC0 Input Only — — — 48 MPC5604P Microcontroller Data Sheet, Rev. 5 18 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2 Functions E[8] PCR[72] ALT0 ALT1 ALT2 ALT3 — GPIO[72] — — — AN[6] SIU Lite — — — ADC1 E[9] PCR[73] ALT0 ALT1 ALT2 ALT3 — GPIO[73] — — — AN[7] E[10] PCR[74] ALT0 ALT1 ALT2 ALT3 — E[11] PCR[75] E[12] Peripheral 3 I/O direction4 Pad speed5 Pin SRC = 0 SRC = 1 100-pin 144-pin Input Only — — — 59 SIU Lite — — — ADC1 Input Only — — — 61 GPIO[74] — — — AN[8] SIU Lite — — — ADC1 Input Only — — — 63 ALT0 ALT1 ALT2 ALT3 — GPIO[75] — — — AN[9] SIU Lite — — — ADC1 Input Only — — — 65 PCR[76] ALT0 ALT1 ALT2 ALT3 — GPIO[76] — — — AN[10] SIU Lite — — — ADC1 Input Only — — — 67 E[13] PCR[77] ALT0 ALT1 ALT2 ALT3 — GPIO[77] SCK — — EIRQ[25] SIU Lite DSPI3 — — SIU Lite I/O I/O — — I Slow Medium — 117 E[14] PCR[78] ALT0 ALT1 ALT2 ALT3 — GPIO[78] SOUT — — EIRQ[26] SIU Lite DSPI3 — — SIU Lite I/O O — — I Slow Medium — 119 E[15] PCR[79] ALT0 ALT1 ALT2 ALT3 — — GPIO[79] — — — SIN EIRQ[27] SIU Lite — — — DSPI3 SIU Lite I/O — — — I I Slow Medium — 121 Medium — 133 Port F (16-bit). Fully available on 144-pin package F[0] PCR[80] ALT0 ALT1 ALT2 ALT3 — GPIO[80] DBG0 CS3 — EIRQ[28] SIU Lite FlexRay0 DSPI3 — SIU Lite I/O O O — I Slow MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 19 Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2 Functions F[1] PCR[81] ALT0 ALT1 ALT2 ALT3 — GPIO[81] DBG1 CS2 — EIRQ[29] SIU Lite FlexRay0 DSPI3 — SIU Lite F[2] PCR[82] ALT0 ALT1 ALT2 ALT3 GPIO[82] DBG2 CS1 — F[3] PCR[83] ALT0 ALT1 ALT2 ALT3 F[4] PCR[84] F[5] Peripheral 3 I/O direction4 Pad speed5 Pin SRC = 0 SRC = 1 100-pin 144-pin I/O O O — I Slow Medium — 135 SIU Lite FlexRay0 DSPI3 — I/O O O — Slow Medium — 137 GPIO[83] DBG3 CS0 — SIU Lite FlexRay0 DSPI3 — I/O O I/O — Slow Medium — 139 ALT0 ALT1 ALT2 ALT3 GPIO[84] MDO[3] — — SIU Lite nexus0 — — I/O O — — Slow Fast — 4 PCR[85] ALT0 ALT1 ALT2 ALT3 GPIO[85] MDO[2] — — SIU Lite nexus0 — — I/O O — — Slow Fast — 5 F[6] PCR[86] ALT0 ALT1 ALT2 ALT3 GPIO[86] MDO[1] — — SIU Lite nexus0 — — I/O O — — Slow Fast — 8 F[7] PCR[87] ALT0 ALT1 ALT2 ALT3 GPIO[87] MCKO — — SIU Lite nexus0 — — I/O O — — Slow Fast — 19 F[8] PCR[88] ALT0 ALT1 ALT2 ALT3 GPIO[88] MSEO1 — — SIU Lite nexus0 — — I/O O — — Slow Fast — 20 F[9] PCR[89] ALT0 ALT1 ALT2 ALT3 GPIO[89] MSEO0 — — SIU Lite nexus0 — — I/O O — — Slow Fast — 23 F[10] PCR[90] ALT0 ALT1 ALT2 ALT3 GPIO[90] EVTO — — SIU Lite nexus0 — — I/O O — — Slow Fast — 24 F[11] PCR[91] ALT0 ALT1 ALT2 ALT3 — GPIO[91] — — — EVTI SIU Lite — — — nexus0 I/O — — — I Slow Medium — 25 MPC5604P Microcontroller Data Sheet, Rev. 5 20 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2 Functions F[12] PCR[92] ALT0 ALT1 ALT2 ALT3 GPIO[92] ETC[3] — — SIU Lite eTimer1 — — F[13] PCR[93] ALT0 ALT1 ALT2 ALT3 — GPIO[93] — — — ETC[4] F[14] PCR[94] ALT0 ALT1 ALT2 ALT3 F[15] PCR[95] ALT0 ALT1 ALT2 ALT3 — Peripheral 3 I/O direction4 Pad speed5 Pin SRC = 0 SRC = 1 100-pin 144-pin I/O I/O — — Slow Medium — 106 SIU Lite — — — eTimer1 I/O — — — I Slow Medium — 112 GPIO[94] TXD — — SIU Lite LIN1 — — I/O O — — Slow Medium — 115 GPIO[95] — — — RXD SIU Lite — — — LIN1 I/O — — — I Slow Medium — 113 Port G (12-bit). Fully available on 144-pin package. G[0] PCR[96] ALT0 ALT1 ALT2 ALT3 — GPIO[96] F[0] — — EIRQ[30] SIU Lite FCU0 — — SIU Lite I/O O — — I Slow Medium — 38 G[1] PCR[97] ALT0 ALT1 ALT2 ALT3 — GPIO[97] F[1] — — EIRQ[31] SIU Lite FCU0 — — SIU Lite I/O O — — I Slow Medium — 141 G[2] PCR[98] ALT0 ALT1 ALT2 ALT3 GPIO[98] X[2] — — SIU Lite FlexPWM0 — — I/O I/O — — Slow Medium — 102 G[3] PCR[99] ALT0 ALT1 ALT2 ALT3 GPIO[99] A[2] — — SIU Lite FlexPWM0 — — I/O O — — Slow Medium — 104 G[4] PCR[100] ALT0 ALT1 ALT2 ALT3 GPIO[100] B[2] — — SIU Lite FlexPWM0 — — I/O O — — Slow Medium — 100 G[5] PCR[101] ALT0 ALT1 ALT2 ALT3 GPIO[101] X[3] — — SIU Lite FlexPWM0 — — I/O I/O — — Slow Medium — 85 MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 21 Table 4. Pin muxing (continued) Port pin PCR register Alternate function1,2 Functions G[6] PCR[102] ALT0 ALT1 ALT2 ALT3 GPIO[102] A[3] — — SIU Lite FlexPWM0 — — G[7] PCR[103] ALT0 ALT1 ALT2 ALT3 GPIO[103] B[3] — — G[8] PCR[104] ALT0 ALT1 ALT2 ALT3 — G[9] PCR[105] Peripheral 3 I/O direction4 Pad speed5 Pin SRC = 0 SRC = 1 I/O O — — Slow Medium — 98 SIU Lite FlexPWM0 — — I/O O — — Slow Medium — 83 GPIO[104] — — — FAULT[0] SIU Lite — — — FlexPWM0 I/O — — — I Slow Medium — 81 ALT0 ALT1 ALT2 ALT3 — GPIO[105] — — — FAULT[1] SIU Lite — — — FlexPWM0 I/O — — — I Slow Medium — 79 G[10] PCR[106] ALT0 ALT1 ALT2 ALT3 — GPIO[106] — — — FAULT[2] SIU Lite — — — FlexPWM0 I/O — — — I Slow Medium — 77 G[11] PCR[107] ALT0 ALT1 ALT2 ALT3 — GPIO[107] — — — FAULT[3] SIU Lite — — — FlexPWM0 I/O — — — I Slow Medium — 75 1 2 3 4 5 6 100-pin 144-pin ALT0 is the primary (default) function for each port after reset. Alternate functions are chosen by setting the values of the PCR[PA] bitfields inside the SIU module. PCR[PA] = 00 → ALT0; PCR[PA] = 01 → ALT1; PCR[PA] = 10 → ALT2; PCR[PA] = 11 → ALT3. This is intended to select the output functions; to use one of the input-only functions, the PCR[IBE] bit must be written to ‘1’, regardless of the values selected in the PCR[PA] bitfields. For this reason, the value corresponding to an input only function is reported as “—”. Module included on the MCU. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMI[PADSELx] bitfields inside the SIUL module. Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register. Weak pull down during reset. MPC5604P Microcontroller Data Sheet, Rev. 5 22 Preliminary—Subject to Change Without Notice Freescale Semiconductor 3 Electrical characteristics This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for the MPC5604P MCU. The “Symbol” column of the electrical parameter and timings tables contains an additional column containing “SR”, “P”, “C”, “T” or “D”. • • “SR” identifies system requirements—conditions that must be provided to ensure normal device operation. An example is the input voltage of a voltage regulator. “P”, “C”, “T” or “D” apply only to controller characteristics—specifications that define normal device operation. They specify how each characteristic is guaranteed. — P: parameter is guaranteed by production testing of each individual device. — C: parameter is guaranteed by design characterization. Measurements are taken from a statistically relevant sample size across process variations. — T: parameter is guaranteed by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values are shown in the typical (“typ”) column are within this category. — D: parameters are derived mainly from simulations. NOTE All values are preliminary and subject to change during characterization. 3.1 Absolute maximum ratings Table 5. Absolute maximum ratings1 Conditions Min Max2 Unit SR Digital ground — 0 0 V VDD_HV_IOx3 SR 3.3 V / 5.0 V input/output supply voltage with respect to ground (VSS_HV) — –0.3 6.0 V VSS_HV_IOx SR Input/output ground voltage with respect to ground (VSS_HV) — –0.1 0.1 V VDD_HV_FL — SR 3.3 V / 5.0 V code and data flash supply voltage with respect to ground Relative to (VSS_HV) VDD_HV_IOx –0.3 6.0 V –0.3 VDD_HV_IOx + 0.3 –0.1 0.1 V –0.3 6.0 V –0.3 VDD_HV_IOx + 0.3 –0.1 0.1 V – 0.3 6.0 V – 0.3 VDD_HV_IOx + 0.3 Symbol VSS_HV VSS_HV_FL VDD_HV_OSC Parameter SR Code and data flash ground with respect to ground (VSS_HV) — — SR 3.3 V / 5.0 V crystal oscillator amplifier supply voltage with respect to ground Relative to (VSS_HV) VDD_HV_IOx VSS_HV_OSC SR 3.3 V / 5.0 V crystal oscillator amplifier reference voltage with respect to ground (VSS_HV) — VDD_HV_REG — SR 3.3 V / 5.0 V voltage regulator supply voltage with respect to ground Relative to (VSS_HV) VDD_HV_IOx MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 23 Table 5. Absolute maximum ratings1 (continued) Symbol VDD_HV_AD04 5 VDD_HV_REG < 2.7 V – 0.3 VDD_HV_REG + 0.3 V VDD_HV_REG > 2.7 V – 0.3 6.0 — –0.1 0.1 V VDD_HV_REG < 2.7 V – 0.3 VDD_HV_REG + 0.3 V VDD_HV_REG > 2.7 V – 0.3 6.0 SR ADC1 ground and low reference voltage with respect to ground (VSS_HV) — –0.1 0.1 V SR Slope characteristics on all VDD during power up5 with respect to ground (VSS_HV) — 0.5 V/µs 3 V/S — SR Voltage on any pin with respect to ground (VSS_HV_IOx) with respect to ground (VSS_HV) — –0.3 6.0 V –0.3 VDD_HV_IOx + 0.3 SR 3.3 V / 5.0 V ADC0 supply and high reference voltage with respect to ground (VSS_HV) SR 3.3 V / 5.0 V ADC0 supply and high reference voltage with respect to ground (VSS_HV) Relative to VDD_HV_IOx IINJPAD SR Injected input current on any pin during overload condition — –10 10 mA IINJSUM SR Absolute sum of all injected input currents during overload condition — –50 50 mA IVDD_LV SR Low voltage static current sink through VDD_LV — — 155 mA SR Storage temperature — –55 150 °C TSTG 4 Unit VDD_HV_AD14 VIN 3 Max2 SR ADC0 ground and low reference voltage with respect to ground (VSS_HV) TVDD 2 Min VSS_HV_AD0 VSS_HV_AD1 1 Conditions Parameter Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined. The difference between each couple of voltage supplies must be less that 300 mV, |VDD_HV_IOy – VDD_HV_IOx | < 300 mV. The difference between ADC voltage supplies must be less that 300 mV, |VDD_HV_ADC1 - VDD_HV_ADC0| < 300 mV. Guaranteed by device validation MPC5604P Microcontroller Data Sheet, Rev. 5 24 Preliminary—Subject to Change Without Notice Freescale Semiconductor Figure 4 shows the constraints of the different power supplies. VDD_HV_xxx 6.0V -0.3V VDD_HV_IOx -0.3V 6.0V Figure 4. Power supplies constraints The MPC5604P supply architecture allows of having ADC supply managed independently from standard VDD_HV supply. Figure 5 shows the constraints of the ADC power supply. VDD_HV_ADCx 6.0V -0.3V VDD_HV_REG -0.3V 2.7V 6.0V Figure 5. Independent ADC supply MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 25 3.2 Recommended operating conditions Table 6. Recommended operating conditions (5.0 V) Symbol Parameter VSS_HV Conditions Min Max1 Unit SR Digital ground — 0 0 V VDD_HV_IOx2 SR 5.0 V input/output supply voltage — 4.5 5.5 V VSS_HV_IOx SR Input/output ground voltage — 0 0 V VDD_HV_FL SR 5.0 V code and data flash supply voltage — 4.5 5.5 V Relative to VDD_HV_IOx VSS_HV_FL VDD_HV_OSC VDD_HV_IO VDD_HV_IO x – 0.1 x + 0.1 SR Code and data flash ground — 0 0 V SR 5.0 V crystal oscillator amplifier supply voltage — 4.5 5.5 V Relative to VDD_HV_IOx VDD_HV_IO VDD_HV_IO x – 0.1 x + 0.1 VSS_HV_OSC SR 5.0 V crystal oscillator amplifier reference voltage — 0 0 V VDD_HV_REG SR 5.0 V voltage regulator supply voltage — 4.5 5.5 V Relative to VDD_HV_IOx VDD_HV_AD03 SR 5.0 V ADC0 supply and high reference voltage — Relative to VDD_HV_REG VDD_HV_IO VDD_HV_IO x – 0.1 x + 0.1 4.5 5.5 VDD_HV_R EG – 0.1 — V VSS_HV_AD0 SR ADC0 ground and low reference voltage — 0 0 V VDD_HV_AD13 SR 5.0 V ADC1 supply and high reference voltage — 4.5 5.5 V VDD_HV_R EG – 0.1 — VSS_HV_AD1 VDD_LV_REGCOR4,5 VSS_LV_REGCOR 4 VDD_LV_CORx4,5 VSS_LV_CORx4 TA TJ Relative to VDD_HV_REG SR ADC1 ground and low reference voltage — 0 0 V SR Internal supply voltage — — — V SR Internal reference voltage — 0 0 V SR Internal supply voltage — — — V SR Internal reference voltage — 0 0 V fCPU = 64 MHz –40 105 °C fCPU = 60 MHz –40 125 –40 150 SR Ambient temperature under bias SR Junction temperature under bias — °C 1 Full functionality cannot be guaranteed when voltage drops below 4.5 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. 2 The difference between each couple of voltage supplies must be less that 300 mV, |VDD_HV_IOy – VDD_HV_IOx | < 100 mV. 3 The power supply voltage must be identical for ADC0 and ADC1 MPC5604P Microcontroller Data Sheet, Rev. 5 26 Preliminary—Subject to Change Without Notice Freescale Semiconductor 4 To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an on-chip voltage regulator—but for the device to function properly the low voltage grounds (VSS_LV_xxx) must be shorted to high voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected to the external ballast emitter. 5 The low voltage supplies (VDD_LV_xxx) are not all independent. VDD_LV_COR1 and VDD_LV_COR2 are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash module. Similarly, VSS_LV_COR1 and VSS_LV_COR2 are internally shorted. VDD_LV_REGCOR and VDD_LV_RECORx are physically shorted internally, as are VSS_LV_REGCOR and VSS_LV_CORx. Table 7. Recommended operating conditions (3.3 V) Conditions Min Max1 Unit SR Digital ground — 0 0 V VDD_HV_IOx2 SR 3.3 V input/output supply voltage — 3.0 3.6 V VSS_HV_IOx SR Input/output ground voltage — 0 0 V VDD_HV_FL SR 3.3 V code and data flash supply voltage — 3.0 3.6 V Symbol Parameter VSS_HV Relative to VDD_HV_IOx VSS_HV_FL VDD_HV_OSC VDD_HV_IO VDD_HV_IO x – 0.1 x + 0.1 SR Code and data flash ground — 0 0 V SR 3.3 V crystal oscillator amplifier supply voltage — 3.0 3.6 V Relative to VDD_HV_IOx VDD_HV_IO VDD_HV_IO x – 0.1 x + 0.1 VSS_HV_OSC SR 3.3 V crystal oscillator amplifier reference voltage — 0 0 V VDD_HV_REG SR 3.3 V voltage regulator supply voltage — 3.0 3.6 V Relative to VDD_HV_IOx VDD_HV_AD03 SR 3.3 V ADC0 supply and high reference voltage VSS_HV_AD0 VDD_HV_AD1 3 VSS_HV_AD1 VDD_LV_REGCOR4,5 VSS_LV_REGCOR 4 VDD_LV_CORx4,5 — Relative to VDD_HV_REG VDD_HV_IO VDD_HV_IO x – 0.1 x + 0.1 3.0 5.5 VDD_HV_R EG – 0.1 5.5 V SR ADC0 ground and low reference voltage — 0 0 V SR 3.3 V ADC1 supply and high reference voltage — 3.0 5.5 V VDD_HV_R EG – 0.1 5.5 Relative to VDD_HV_REG SR ADC1 ground and low reference voltage — 0 0 V SR Internal supply voltage — — — V SR Internal reference voltage — 0 0 V SR Internal supply voltage — — — V MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 27 Table 7. Recommended operating conditions (3.3 V) (continued) Symbol VSS_LV_CORx4 TA TJ 1 2 3 4 5 Parameter SR Internal reference voltage SR Ambient temperature under bias SR Junction temperature under bias Conditions Min Max1 Unit — 0 0 V fCPU = 64 MHz –40 105 °C fCPU = 60 MHz –40 125 –40 150 — °C Full functionality cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. The difference between each couple of voltage supplies must be less that 300 mV, |VDD_HV_IOy – VDD_HV_IOx | < 100 mV. The power supply voltage must be identical for ADC0 and ADC1 To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an on-chip voltage regulator—but for the device to function properly the low voltage grounds (VSS_LV_xxx) must be shorted to high voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected to the external ballast emitter. The low voltage supplies (VDD_LV_xxx) are not all independent. VDD_LV_COR1 and VDD_LV_COR2 are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash module. Similarly, VSS_LV_COR1 and VSS_LV_COR2 are internally shorted. VDD_LV_REGCOR and VDD_LV_RECORx are physically shorted internally, as are VSS_LV_REGCOR and VSS_LV_CORx. Figure 6 shows the constraints of the different power supplies: VDD_HV_xxx 5.5V 3.0V VDD_HV_IOx 3.0V 5.5V Figure 6. Power supplies constraints The MPC5604P supply architecture allows of having ADC supply managed independently from standard VDD_HV supply. Figure 7 shows the constraints of the ADC power supply. MPC5604P Microcontroller Data Sheet, Rev. 5 28 Preliminary—Subject to Change Without Notice Freescale Semiconductor 5.5V 3.0V VDD_HV_REG 3.0V 5.5V Figure 7. Independent ADC supply 3.3 Thermal characteristics Table 8. Thermal characteristics for 144-pin LQFP1 No. Symbol 3 4 5 6 Typical Unit Value RθJA Thermal resistance junction-to-ambient, natural convection2 Single layer board—1s 52 °C/W 2 RθJA Thermal resistance junction-to-ambient, natural convection2 Four layer board—2s2p 43 °C/W 3 RθJMA Thermal resistance junction-to-ambient2 @ 200 ft./min.3, single layer board—1s 43 °C/W 4 RθJMA Thermal resistance junction-to-ambient2 @ 200 ft./min.3, four layer board—2s2p 37 °C/W 5 RθJB — 31 °C/W — 12 °C/W — 2 °C/W 7 2 Conditions 1 6 1 Parameter Thermal resistance junction to board4 RθJCtop Thermal resistance junction to case (top) ΨJT Junction to package top natural 5 convection6 Thermal characteristics are targets based on simulation that are subject to change per device characterization. Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. Flow rate of forced air flow. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 29 Table 9. Thermal characteristics for 100-pin LQFP1 Symbol 1 RθJA Thermal resistance junction-to-ambient natural convection2 Single layer board—1s 56,3 °C/W 2 RθJA Thermal resistance junction-to-ambient natural convection2 Four layer board—2s2p 43,4 °C/W 3 RθJMA Thermal resistance junction-to-ambient2 @ 200 ft./min.3, single layer board—1s 43 °C/W 4 RθJMA Thermal resistance junction-to-ambient2 @ 200 ft./min.3, four layer board—2s2p 35 °C/W 5 RθJB — 27 °C/W — 14 °C/W — 3 °C/W 6 7 1 2 3 4 5 6 3.3.1 Parameter Conditions Typical Unit Value No. Thermal resistance junction to board4 RθJCtop Thermal resistance junction to case (Top)5 ΨJT Junction to package top natural convection6 Thermal characteristics are targets based on simulation that are subject to change per device characterization. Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. Flow rate of forced air flow. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT. General notes for specifications at maximum junction temperature An estimation of the chip junction temperature, TJ, can be obtained from Equation 1: TJ = TA + (RθJA * PD) Eqn. 1 where: TA = ambient temperature for the package (oC) RθJA= junction to ambient thermal resistance (oC/W) PD = power dissipation in the package (W) The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. When a heat sink is used, the thermal resistance is expressed in Equation 2 as the sum of a junction to case thermal resistance and a case to ambient thermal resistance: RθJA = RθJC + RθCA Eqn. 2 MPC5604P Microcontroller Data Sheet, Rev. 5 30 Preliminary—Subject to Change Without Notice Freescale Semiconductor where: RθJA = junction to ambient thermal resistance (°C/W) RθJC= junction to case thermal resistance (°C/W) RθCA= case to ambient thermal resistance (°C/W) RθJC is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, RθCA. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (ΨJT) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using Equation 3: TJ = TT + (ΨJT x PD) Eqn. 3 where: TT = thermocouple temperature on top of the package (°C) ΨJT = thermal characterization parameter (°C/W) PD = power dissipation in the package (W) The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire. References: Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134U.S.A. (408) 943-6900 MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956. JEDEC specifications are available on the WEB at http://www.jedec.org. 1. C.E. Triplett and B. Joiner, An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module, Proceedings of SemiTherm, San Diego, 1998, pp. 47-54. 2. G. Kromann, S. Shidore, and S. Addison, Thermal Modeling of a PBGA for Air-Cooled Applications, Electronic Packaging and Production, pp. 53-58, March 1998. 3. B. Joiner and V. Adams, Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling, Proceedings of SemiTherm, San Diego, 1999, pp. 212-220. MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 31 3.4 Electromagnetic interference (EMI) characteristics Table 10. EMI Testing Specifications1 Symbol Radiated emissions, electric field Parameter VRE_TEM Conditions VDD = 5.5 V; TA = +25 °C 150 kHz–30 MHz RBW 9 kHz, Step Size 5 kHz 30 MHz–1 GHz RBW 120 kHz, Step Size 80 kHz 1 3.5 fOSC/fBUS Frequency 16 MHz crystal 150 kHz–50 MHz 40 MHz bus 50–150 MHz No PLL frequency modulation 150–500 MHz 16 MHz crystal 40 MHz bus ±2% PLL frequency modulation Level (Max) Unit 20 dBμV 20 26 500–1000 MHz 26 IEC Level K — SAE Level 3 — 150 kHz–50 MHz 18 dBμV 50–150 MHz 18 15–500 MHz 15 500–1000 MHz 15 IEC Level M — SAE Level 2 — EMI testing and I/O port waveforms per SAE J1752/3 issued 1995-03. Electrostatic discharge (ESD) characteristics Table 11. ESD ratings1,2 Symbol Parameter Conditions Value Unit VESD(HBM) SR Electrostatic discharge (Human Body Model) — 2000 V VESD(CDM) SR Electrostatic discharge (Charged Device Model) — 750 (corners) V 500 (other) 1 All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2 A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification MPC5604P Microcontroller Data Sheet, Rev. 5 32 Preliminary—Subject to Change Without Notice Freescale Semiconductor 3.6 3.6.1 Power management electrical characteristics Voltage regulator electrical characteristics The internal voltage regulator requires an external NPN (BCP56, BCP68, BCX68 or BC817) ballast to be connected as shown in Figure 8 and Figure 9. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH. NOTE The voltage regulator output cannot be used to drive external circuits. Output pins are to be used only for decoupling capacitance. VDD_LV_COR must be generated using internal regulator and external NPN transistor. It is not possible to provide VDD_LV_COR through external regulator. For the MPC5604P microcontroller, 10 µF should be placed between each of the three VDD_LV_CORx/VSS_LV_CORx supply pairs and also between the VDD_LV_REGCOR/VSS_LV_REGCOR pair. Additionally, 40 μF should be placed between the VDD_HV_REG/VSS_HV_REG pins. VDD = 3.0 V to 3.6 V / 4.5 V to 5.5 V, TA = –40 to 125 °C, unless otherwise specified. VDD_HV_REG CDEC3 BCP56, BCP68, BCX68, BC817 BCTRL MPC5604P VDD_LV_COR CDEC2 CDEC1 Figure 8. Configuration without resistor on base MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 33 Table 12. Voltage regulator electrical characteristics Symbol Parameter Conditions VDD_LV_REGCOR P Output voltage under maximum load Post-trimming run supply current configuration CDEC1 SR External decoupling/stability ceramic 4 capacitances capacitor RREG SR Resulting ESR of all four CDEC1 Min 1.145 absolute maximum value between 100 kHz and 10 MHz Typ — Max Unit 1.4 V 40 56 — — — 45 mΩ CDEC2 SR External decoupling/stability ceramic 4 capacitances of capacitor 100 nF each 400 — — CDEC3 SR External decoupling/stability ceramic capacitor on VDD_HV_REG 40 — — — µF nF µF VDD_HV_REG CDEC3 BCP68, BCX68, BC817su BCTRL MPC5604P RB VDD_LV_COR CDEC2 CDEC1 Figure 9. Configuration without resistor on base MPC5604P Microcontroller Data Sheet, Rev. 5 34 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 13. Voltage regulator electrical characteristics Symbol VDD_LV_REGCOR RB CDEC1 Parameter Conditions P Output voltage under maximum load Post-trimming run supply current configuration SR External Resistance on BJT base SR External decoupling/stability ceramic Bipolar BCP68 or capacitor BCX68 or BC817. Three capacitances of 10uF SR Resulting ESR of all four CDEC1 1.145 — Bipolar BC817. One capacitance of 22uF RREG Min 18 Typ — — Max Unit 1.4 V 22 kΩ µF 19.5 30 — 14.3 22 — — — 45 1760 1200 — — — Typ Max Unit 1.4 V 22 kΩ µF absolute maximum value between 100 kHz and 10 MHz mΩ CDEC2 SR External decoupling/stability ceramic 4 capacitances of capacitor 440 nF each CDEC3 SR External decoupling/stability ceramic 2 capacitances of 10 µF 2 × 10 capacitor on VDD_HV_REG each nF µF Table 14. Voltage regulator electrical characteristics Symbol VDD_LV_REGCOR RB CDEC1 Parameter Conditions P Output voltage under maximum load Post-trimming run supply current configuration SR External Resistance on BJT base — SR External decoupling/stability ceramic Bipolar BCP68 or capacitor BCX68 or BC817. Three capacitances of 10uF Bipolar BC817. One capacitance of 22uF RREG 3.6.2 SR Resulting ESR of all four CDEC1 absolute maximum value between 100 kHz and 10 MHz Min 1.145 18 — — µF 19.5 30 — 14.3 22 — — — 45 1760 1200 — — — µF mΩ CDEC2 SR External decoupling/stability ceramic 4 capacitances of capacitor 440 nF each CDEC3 SR External decoupling/stability ceramic 2 capacitances of 10 µF 2 × 10 capacitor on VDD_HV_REG each nF µF Voltage monitor electrical characteristics The device implements a Power On Reset module to ensure correct power-up initialization, as well as three low voltage detectors to monitor the VDD and the VDD_LV voltage while device is supplied: • POR monitors VDD during the power-up phase to ensure device is maintained in a safe reset state MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 35 • • • LVDHV3 monitors VDD to ensure device reset below minimum functional supply LVDHV5 monitors VDD when application uses device in the 5.0V ± 10% range LVDLVCOR monitors low voltage digital power domain Table 15. Low voltage monitor electrical characteristics Symbol 1 3.7 Parameter VPORH T Power-on reset threshold VPORUP P Supply for functional POR module Conditions1 Value Unit Min Max — 1.5 2.7 V TA = 25°C 1.0 — V VREGLVDMOK_H P Regulator low voltage detector high threshold — — 2.95 V VREGLVDMOK_L P Regulator low voltage detector low threshold — 2.6 — V VFLLVDMOK_H P Flash low voltage detector high threshold — — 2.95 V VFLLVDMOK_L P Flash low voltage detector low threshold — 2.6 — V VIOLVDMOK_H P I/O low voltage detector high threshold — — 2.95 V VIOLVDMOK_L P I/O low voltage detector low threshold — 2.6 — V VIOLVDM5OK_H P I/O 5V low voltage detector high threshold — — 4.4 V VIOLVDM5OK_L P I/O 5V low voltage detector low threshold — 3.8 — V VMLVDDOK_H P Digital supply low voltage detector high — — 1.14 V VMLVDDOK_L P Digital supply low voltage detector low — 1.08 — V VDD = 3.3V ± 10% / 5.0V ± 10%, TA = –40 to 125°C, unless otherwise specified Power up/down sequencing The MPC5604P implements a precise sequence to ensure each module is started only when all conditions for switching it ON are available. This prevents overstress event or miss-functionality within and outside the device: • • • a POWER_ON module working on voltage regulator supply is controlling the correct start-up of the regulator. This is a key module ensuring safe configuration for all Voltage regulator functionality when supply is below 1.5V. Associated POWER_ON (or POR) signal is active low. Several Low Voltage Detectors, working on voltage regulator supply are monitoring the voltage of the critical modules (Voltage regulator, I/Os, Flash and Low voltage domain). LVDs are gated low when POWER_ON is active. a POWER_OK signal is generated when all critical supplies monitored by the LVD are available. This signal is active high and released to all modules including I/Os, Flash and RC16 oscillator needed during power-up phase and reset phase. When POWER_OK is low the associated module are set into a safe state. MPC5604P Microcontroller Data Sheet, Rev. 5 36 Preliminary—Subject to Change Without Notice Freescale Semiconductor VPORH VDD_HV_REG VLVDHV3H 3.3V VPOR_UP 0V 3.3V POWER_ON 0V 3.3V LVDM (HV) 0V VMLVDOK_H VDD_LV_REGCOR 1.2V 0V 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator 1.2V 0V ~1us Internal Reset Generation Module FSM P0 P1 1.2V 0V Figure 10. Power-up typical sequence VLVDHV3L VDD_HV_REG VPORH 3.3V 0V 3.3V LVDM (HV) 0V 3.3V POWER_ON 0V 1.2V 0V VDD_LV_REGCOR 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator 1.2V 0V Internal Reset Generation Module FSM IDLE P0 1.2V 0V Figure 11. Power-down typical sequence MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 37 VLVDHV3L VLVDHV3H 3.3V VDD_HV_REG 0V 3.3V LVDM (HV) 0V 3.3V POWER_ON 0V 1.2V 0V VDD_LV_REGCOR 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator 1.2V 0V ~1us Internal Reset Generation Module FSM IDLE P0 P1 1.2V 0V Figure 12. Brown-out typical sequence MPC5604P Microcontroller Data Sheet, Rev. 5 38 Preliminary—Subject to Change Without Notice Freescale Semiconductor 3.8 3.8.1 DC electrical characteristics NVUSRO register Portions of the MPC5604P device configuration (that is, high voltage supply, oscillator margin, and watchdog enable/disable after reset) are controlled via bit values in the NVUSRO register. NVUSRO[PAD3V5V] controls the device configuration as follows: Table 16. NVUSRO[PAD3V5V] field description1 Value2 1 2 Description 0 High Voltage supply is 5.0 V 1 High Voltage supply is 3.3 V See the MPC5604P Reference Manual for more information on the NVUSRO register. Default manufacturing value before flash initialization is '1' (3.3 V). The DC electrical characteristics in the following sections are dependent on the PAD3V5V value as described above. 3.8.2 DC electrical characteristics (5 V) Table 17 gives the DC electrical characteristics at 5 V (4.5 V < VDD_HV_IOx < 5.5 V, NVUSRO[PAD3V5V]=0) as described in Figure 13. VIN VDD VIH VHYS VIL PDIx = ‘1’ (GPDI register of SIUL) PDIx = ‘0’ Figure 13. I/O input DC electrical characteristics definition MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 39 Table 17. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0) Symbol Conditions Min 1 Max Unit VIL D Minimum low level input voltage — –0.1 — V VIL P Maximum level input voltage — — 0.35 VDD_HV_IOx V VIH P Minimum high level input voltage — 0.65 VDD_HV_IOx — V VIH 1 D Maximum high level input voltage — — VDD_HV_IOx + 0.1 VHYS T Schmitt trigger hysteresis — 0.1 VDD_HV_IOx — V VOL_S P Slow, low level output voltage IOL = 3 mA — 0.1 VDD_HV_IOx V VOH_S P Slow, high level output voltage IOH = –3 mA 0.8VDD_HV_IOx — V VOL_M P Medium, low level output voltage IOL = 3 mA — 0.1 VDD_HV_IOx V VOH_M P Medium, high level output voltage IOH = –3 mA 0.8 VDD_HV_IOx — V VOL_F P Fast, low level output voltage IOL = 3 mA — 0.1 VDD_HV_IOx V VOH_F P Fast, high level output voltage IOH = –3 mA 0.8 VDD_HV_IOx — V VOL_SYM P Symmetric, low level output voltage IOL = 3 mA — 0.1 VDD_HV_IOx V VOH_SYM P Symmetric, high level output voltage IOH = –3 mA 0.8 VDD_HV_IOx — V P Equivalent pull-up current VIN = VIL –130 — µA VIN = VIH — –10 VIN = VIL 10 — VIN = VIH — 130 IPU IPD 1 Parameter P Equivalent pull-down current V µA IIL P Input leakage current (all bidirectional ports) TA = –40 to 125 °C –1 1 µA IIL P Input leakage current (all ADC input-only ports) TA = –40 to 125 °C –0.5 0.5 µA IVPP P Input leakage current on VPP leakage pad — –5 5 μA CIN D Input capacitance — — 10 pF “SR” parameter values must not exceed the absolute maximum ratings shown in Table 5. MPC5604P Microcontroller Data Sheet, Rev. 5 40 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 18. Supply current (5.0 V, NVUSRO[PAD3V5V]=0) Value1 Symbol I DD_LV_CORE Parameter T Supply RUN - Maximum Mode2 current RUN - Typical P Conditions V DD_LV_CORE externally forced at 1.3 V Mode3 RUN - Maximum Mode4 V DD_LV_CORE Unit Typ Max 40 MHz 62 77 64 MHz 71 88 40 MHz 45 56 64 MHz 52 65 64 MHz 60 TBD — 1.5 10 mA externally forced at 1.3 V HALT Mode5 V DD_LV_CORE externally forced at 1.3 V IDD_FLASH IDD_ADC T T STOP Mode6 VDD_LV_CORE externally forced at 1.3 V — 1 10 FLASH supply current during read VDD_HV_FL at 5.0 V — 10 12 FLASH supply current during erase operation on 1 flash module VDD_HV_FL at 5.0 V — 15 19 ADC17 3.5 5 ADC0 3 4 ADC17 0.8 1 ADC supply current - Maximum Mode2 VDD_HV_AD0 at 5.0 V VDD_HV_AD1 at 5.0 V ADC Freq = 16MHz ADC supply current - Typical Mode3 ADC0 I DD_OSC 1 2 3 4 5 6 7 T OSC supply current VDD_OSC at 5.0 V 8 MHz 0.005 0.006 2.6 3.2 All values to be confirmed after characterization/data collection. Maximum mode: FlexPWM, ADCs, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, 1st and 2nd PLL enabled, 125 °C ambient. I/O supply current excluded. Typical mode configurations: DSPI, LINFlex, FlexCAN, 15 output pins, 1st PLL only, 105 °C ambient. I/O supply current excluded. Code fetched from Ram, PLL0: 64 MHz system clock (x4 multiplier with 16MHz XTAL), PLL1 is ON @ PHI_div2 = 120 Mhz and PHI_div3 = 80 Mhz, auxiliary clock sources set that all peripherals receive maximum frequency, all peripheral enabled. Halt mode configurations: Code fetched from RAM, C & D FLASH in low power mode, OSC/PLL0/PLL1 are OFF, Core clock frozen, all peripherals are disabled. STOP "P" mode DUT configuration: Code fetched from RAM, C & D FLASH off, OSC/PLL0/PLL1 are OFF, Core clock frozen, all peripherals are disabled. Includes Temperature Sensor current consumption. 3.8.3 DC Electrical characteristics (3.3 V) Table 19 gives the DC electrical characteristics at 3.3 V (3.0 V < VDD_HV_IOx < 3.6 V, NVUSRO[PAD3V5V]=1) as described in Figure 14. MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 41 VIN VDD VIH VHYS VIL PDIx = ‘1’ (GPDI register of SIUL) PDIx = ‘0’ Figure 14. I/O input DC electrical characteristics definition Table 19. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1)1 Symbol Parameter Conditions Min Max Unit — V VIL D Minimum low level input voltage — –0.12 VIL P Maximum low level input voltage — — 0.35 VDD_HV_IOx V VIH P Minimum high level input voltage — 0.65 VDD_HV_IOx — V D Maximum high level input voltage — VHYS T — VOL_S P Slow, low level output voltage IOL = 1.5 mA VOH_S P Slow, high level output voltage IOH = –1.5 mA VOL_M P Medium, low level output voltage IOL = 2 mA VOH_M P Medium, high level output voltage VOL_F VOH_F VIH VDD_HV_IOx + V 0.1 VDD_HV_IOx — V — 0.5 V VDD_HV_IOx – 0.8 — V — 0.5 V IOH = –2 mA VDD_HV_IOx – 0.8 — V P Fast, high level output voltage IOL = 1.5 mA — 0.5 V P Fast, high level output voltage IOH = –1.5 mA VDD_HV_IOx – 0.8 — V VOL_SYM P Symmetric, high level output voltage IOL = 1.5 mA — 0.5 V VOH_SYM P Symmetric, high level output voltage IOH = –1.5 mA VDD_HV_IOx – 0.8 — V P Equivalent pull-up current VIN = VIL –130 — µA VIN = VIH — –10 IPU Schmitt trigger hysteresis — 0.12 MPC5604P Microcontroller Data Sheet, Rev. 5 42 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 19. DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1)1 (continued) Symbol 2 Conditions P Equivalent pull-down current IPD 1 Parameter Min Max Unit VIN = VIL 10 — µA VIN = VIH — 130 IIL P Input leakage current (all bidirectional ports) TA = –40 to 125 °C — 1 µA IIL P Input leakage current (all ADC input-only ports) TA = –40 to 125 °C — 0.5 µA IVPP P Input leakage current on VPP leakage pad — –5 5 μA CIN D Input capacitance — — — pF These specifications are design targets and subject to change per device characterization. “SR” parameter values must not exceed the absolute maximum ratings shown in Table 5. Table 20. Supply current (3.3 V, NVUSRO[PAD3V5V]=1) Value1 Symbol I DD_LV_CORE Parameter T Unit Typ Max 40 MHz 62 77 64 MHz 71 89 40 MHz 45 56 64 MHz 53 66 64 MHz 60 TBD — 1.5 10 — 1 10 FLASH supply current during read on VDD_HV_FL at 3.3 V single mode — 8 10 FLASH supply current during erase operation on single mode — 10 12 ADC17 2.5 4 ADC0 2 4 0.8 1 Supply RUN - Maximum Mode2 current RUN - Typical Mode P Conditions RUN - Maximum V DD_LV_CORE externally forced at 1.3 V 3 Mode4 V DD_LV_CORE mA externally forced at 1.3 V HALT Mode5 V DD_LV_CORE externally forced at 1.3 V STOP Mode6 IDD_FLASH IDD_ADC T T VDD_LV_CORE externally forced at 1.3 V VDD_HV_FL at 3.3 V ADC supply current - Maximum Mode2 VDD_HV_AD0 at 3.3 V VDD_HV_AD1 at 3.3 V ADC Freq = 16MHz ADC supply current - Typical Mode3 ADC1 7 ADC0 I DD_OSC 1 2 T OSC supply current VDD_OSC at 3.3 V 8 MHz 0.005 0.006 2.4 3 All values to be confirmed after characterization/data collection. Maximum mode: FlexPWM, ADCs, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, 1st and 2nd PLL enabled, 125 °C ambient. I/O supply current excluded. MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 43 3 Typical mode: DSPI, LINFlex, FlexCAN, 15 output pins, 1st PLL only, 105 °C ambient. I/O supply current excluded. Code fetched from Ram, PLL0: 64 MHz system clock (x4 multiplier with 16MHz XTAL), PLL1 is ON @ PHI_div2 = 120 Mhz and PHI_div3 = 80 Mhz, auxiliary clock sources set that all peripherals receive maximum frequency, all peripheral enabled. 5 Halt mode configurations: Code fetched from RAM, C & D FLASH in low power mode, OSC/PLL0/PLL1 are OFF, Core clock frozen, all peripherals are disabled. 6 STOP "P" mode DUT configuration: Code fetched from RAM, C & D FLASH off, OSC/PLL0/PLL1 are OFF, Core clock frozen, all peripherals are disabled. 7 Includes Temperature Sensor current consumption. 4 3.8.4 I/O pad current specification The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD/VSS supply pair as described in Table 21. Table 21. I/O supply segment Supply segment Package 1 2 3 4 5 6 144 LQFP pin8 – pin20 100 LQFP pin15 – pin26 pin27 – pin38 pin41 – pin46 pin51 – pin61 pin64 – pin86 pin89 – pin10 7 pin23 – pin38 pin39 – pin55 pin58 – pin68 pin73 – pin89 pin92 – pin125 pin128 – pin5 — Table 22 provides the weight of concurrent switching I/Os. In order to ensure device functionality, the sum of the weight of concurrent switching I/Os on a single segment should remain below the 100%. Table 22. I/O weight 144 LQFP 100 LQFP PAD Weight 5V Weight 3.3V Weight 5V Weight 3.3V NMI 1% 1% 1% 1% PAD[6] 6% 5% 14% 13% PAD[49] 5% 4% 14% 12% PAD[84] 14% 10% — — PAD[85] 9% 7% — — PAD[86] 9% 6% — — MODO0 12% 8% — — PAD[7] 4% 4% 11% 10% PAD[36] 5% 4% 11% 9% PAD[8] 5% 4% 10% 9% PAD[37] 5% 4% 10% 9% PAD[5] 5% 4% 9% 8% PAD[39] 5% 4% 9% 8% PAD[35] 5% 4% 8% 7% PAD[87] 12% 9% — — MPC5604P Microcontroller Data Sheet, Rev. 5 44 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 22. I/O weight 144 LQFP 100 LQFP PAD Weight 5V Weight 3.3V Weight 5V Weight 3.3V PAD[88] 9% 6% — — PAD[89] 10% 7% — — PAD[90] 15% 11% — — PAD[91] 6% 5% — — PAD[57] 8% 7% 8% 7% PAD[56] 13% 11% 13% 11% PAD[53] 14% 12% 14% 12% PAD[54] 15% 13% 15% 13% PAD[55] 25% 22% 25% 22% PAD[96] 27% 24% — — PAD[65] 1% 1% 1% 1% PAD[67] 1% 1% — — PAD[33] 1% 1% 1% 1% PAD[68] 1% 1% — — PAD[23] 1% 1% 1% 1% PAD[69] 1% 1% — — PAD[34] 1% 1% 1% 1% PAD[70] 1% 1% — — PAD[24] 1% 1% 1% 1% PAD[71] 1% 1% — — PAD[66] 1% 1% 1% 1% PAD[25] 1% 1% 1% 1% PAD[26] 1% 1% 1% 1% PAD[27] 1% 1% 1% 1% PAD[28] 1% 1% 1% 1% PAD[63] 1% 1% 1% 1% PAD[72] 1% 1% — — PAD[29] 1% 1% 1% 1% PAD[73] 1% 1% — — PAD[31] 1% 1% 1% 1% PAD[74] 1% 1% — — PAD[30] 1% 1% 1% 1% PAD[75] 1% 1% — — MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 45 Table 22. I/O weight 144 LQFP 100 LQFP PAD Weight 5V Weight 3.3V Weight 5V Weight 3.3V PAD[32] 1% 1% 1% 1% PAD[76] 1% 1% — — PAD[64] 1% 1% 1% 1% PAD[0] 23% 20% 23% 20% PAD[1] 21% 18% 21% 18% PAD[107] 20% 17% — — PAD[58] 19% 16% 19% 16% PAD[106] 18% 16% — — PAD[59] 17% 15% 17% 15% PAD[105] 16% 14% — — PAD[43] 15% 13% 15% 13% PAD[104] 14% 13% — — PAD[44] 13% 12% 13% 12% PAD[103] 12% 11% — — PAD[2] 11% 10% 11% 10% PAD[101] 11% 9% — — PAD[21] 10% 8% 10% 8% TMS 1% 1% 1% 1% TCK 1% 1% 1% 1% PAD[20] 16% 11% 16% 11% PAD[3] 4% 3% 4% 3% PAD[61] 9% 8% 9% 8% PAD[102] 11% 10% — — PAD[60] 11% 10% 11% 10% PAD[100] 12% 10% — — PAD[45] 12% 10% 12% 10% PAD[98] 12% 11% — — PAD[46] 12% 11% 12% 11% PAD[99] 13% 11% — — PAD[62] 13% 11% 13% 11% PAD[92] 13% 12% — — VPP_TEST 1% 1% 1% 1% PAD[4] 14% 12% 14% 12% MPC5604P Microcontroller Data Sheet, Rev. 5 46 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 22. I/O weight 144 LQFP 100 LQFP PAD Weight 5V Weight 3.3V Weight 5V Weight 3.3V PAD[16] 13% 12% 13% 12% PAD[17] 13% 11% 13% 11% PAD[42] 13% 11% 13% 11% PAD[93] 12% 11% — — PAD[95] 12% 11% — — PAD[18] 12% 10% 12% 10% PAD[94] 11% 10% — — PAD[19] 11% 10% 11% 10% PAD[77] 10% 9% — — PAD[10] 10% 9% 10% 9% PAD[78] 9% 8% — — PAD[11] 9% 8% 9% 8% PAD[79] 8% 7% — — PAD[12] 7% 7% 7% 7% PAD[41] 7% 6% 7% 6% PAD[47] 5% 4% 5% 4% PAD[48] 4% 4% 4% 4% PAD[51] 4% 4% 4% 4% PAD[52] 5% 4% 5% 4% PAD[40] 5% 5% 6% 5% PAD[80] 9% 8% — — PAD[9] 10% 9% 11% 10% PAD[81] 10% 9% — — PAD[13] 10% 9% 12% 11% PAD[82] 10% 9% — — PAD[22] 10% 9% 13% 12% PAD[83] 10% 9% — — PAD[50] 10% 9% 14% 12% PAD[97] 10% 9% — — PAD[38] 10% 9% 14% 13% PAD[14] 9% 8% 14% 13% PAD[15] 9% 8% 15% 13% MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 47 3.9 Temperature sensor electrical characteristics Table 23. Temperature sensor electrical characteristics Symbol — Conditions P Accuracy Min Max Unit TJ = –40 °C to TA = 25 °C TBD TBD °C TJ = TA to 125 °C TBD TBD °C 1.5 — µs D Minimum sampling period TS 3.10 Parameter Main oscillator electrical characteristics The MPC5604P provides an oscillator/resonator driver. Table 24. Main oscillator electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0) Symbol Parameter Min Max Unit fOSC SR Oscillator frequency 4 40 MHz gm P Transconductance 6.5 25 mA/V 1 — V 8 — ms T Oscillation amplitude on EXTAL pin VOSC T Start-up tOSCSU time1,2 1 The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time. 2 Value captured when amplitude reaches 90% of EXTAL Table 25. Main oscillator electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1) Symbol Parameter Min Max Unit fOSC SR Oscillator frequency 4 40 MHz gm P Transconductance 4 20 mA/V T Oscillation amplitude on EXTAL pin 1 — V 8 — ms VOSC T Start-up tOSCSU time1,2 1 The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time. 2 Value captured when amplitude reaches 90% of EXTAL Table 26. Input clock characteristics Symbol Parameter Min Typ Max Unit fOSC SR Oscillator frequency 4 — 40 MHz fCLK SR Frequency in bypass — — 64 MHz trCLK SR Rise/fall time in bypass — — 1 ns 47.5 50 52.5 % tDC SR Duty cycle MPC5604P Microcontroller Data Sheet, Rev. 5 48 Preliminary—Subject to Change Without Notice Freescale Semiconductor 3.11 FMPLL electrical characteristics Table 27. PLLMRFM electrical specifications1 (VDDPLL = 3.0 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH) Value Symbol Parameter Conditions Unit min max Crystal reference 4 40 MHz fref_crystal fref_ext D PLL reference frequency range2 fpll_in D Phase detector input frequency range (after pre-divider) — 4 16 MHz fFMPLLO D Clock frequency range in normal mode — 4 120 MHz fFREE P Free running frequency Measured using clock division — typically /16 20 150 MHz fsys D On-chip PLL frequency2 — 16 120 MHz tCYC D System clock period — — 1 / fsys ns fLORL fLORH D Loss of reference frequency window3 Lower limit 1.6 3.7 MHz Upper limit 24 56 fSCM D Self-clocked mode frequency4,5 20 150 MHz CJITTER T CLKOUT period jitter6,7,8,9 UT — Short-term jitter10 fSYS maximum -4 4 % fCLKOUT Long-term jitter (avg. over 2 ms interval) fPLLIN = 16 MHz (resonator), fPLLCLK @ 64 MHz, 4000 cycles — 10 ns tlpll D PLL lock time 11, 12 — — 200 μs tdc D Duty cycle of reference — 40 60 % fLCK D Frequency LOCK range — -6 6 % fsys fUL D Frequency un-LOCK range — -18 18 % fsys fCS fDS D Modulation Depth Center spread ±0.25 ±4.013 %fsys Down Spread -0.5 -8.0 fMOD D — 70 Modulation frequency14 — kHz 1 All values given are initial design targets and subject to change. Considering operation with PLL not bypassed. 3 “Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self clocked mode. 4 Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the fLOR window. 2 MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 49 5 fVCO self clock range is 20-150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in enhanced mode. 6 This value is determined by the crystal manufacturer and board design. 7 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency increase the CJITTER percentage for a given interval. 8 Proper PC board layout procedures must be followed to achieve specifications. 9 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and either fCS or fDS (depending on whether center spread or down spread modulation is enabled). 10 Short term jitter is measured on the clock rising edge at cycle n and cycle n+4. 11 This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this PLL, load capacitors should not exceed these limits. 12 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). 13 This value is true when operating at frequencies above 60 MHz, otherwise fCS is 2% (above 64 MHz). 14 Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50kHz. 3.12 16 MHz RC oscillator electrical characteristics Table 28. 16 MHz RC oscillator electrical characteristics Symbol fRC ΔRCMVAR ΔRCMTRIM ΔRCMSTEP 1 Parameter Conditions Min Typ Max Unit TA = 25 °C — 16 — MHz P Fast internal RC oscillator variation over temperature and supply with respect to fRC at TA = 25 °C in high-frequency configuration — -5 — 5 % P Post Trim Accuracy: The variation of the PTF1 from the 16 MHz TA = 25 °C -1 — 1 % P Fast internal RC oscillator trimming step TA = 25 °C — 1.6 — % P RC oscillator frequency PTF = Post Trimming Frequency: The frequency of the output clock after trimming at typical supply voltage and temperature MPC5604P Microcontroller Data Sheet, Rev. 5 50 Preliminary—Subject to Change Without Notice Freescale Semiconductor 3.13 Analog-to-digital converter (ADC) electrical characteristics The device provides a 10-bit Successive Approximation Register (SAR) Analog-to-Digital Converter. Offset Error OSE Gain Error GE 1023 1022 1021 1020 1019 1 LSB ideal = VDD_ADC / 1024 1018 (2) code out 7 (1) 6 (1) Example of an actual transfer curve 5 (5) (2) The ideal transfer curve (3) Differential non-linearity error (DNL) 4 (4) Integral non-linearity error (INL) (4) (5) Center of a step of the actual transfer curve 3 (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023 Vin(A) (LSBideal) Offset Error OSE Figure 15. ADC characteristics and error definitions 3.13.1 Input impedance and ADC accuracy To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; further, it sources charge during the sampling phase, when the analog signal source is a high-impedance source. A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 51 be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself. In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: CS being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with CS equal to 3 pF, a resistance of 330 kΩ is obtained (REQ = 1 / (fc×CS), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS) and the sum of RS + RF + RL + RSW + RAD, the external circuit must be designed to respect the Equation 4: Eqn. 4 R S + R F + R L + R SW + R AD V A • --------------------------------------------------------------------------- < 1 --- LSB R EQ 2 Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (RSW and RAD) can be neglected with respect to external resistances. EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source RS VA Filter RF Current Limiter RL CF Channel Selection Sampling RSW1 RAD CP1 CP2 RS Source Impedance RF Filter Resistance CF Filter Capacitance Current Limiter Resistance RL RSW1 Channel Selection Switch Impedance RAD Sampling Switch Impedance CP Pin Capacitance (two contributions, CP1 and CP2) CS Sampling Capacitance Figure 16. Input equivalent circuit A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 16): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close). MPC5604P Microcontroller Data Sheet, Rev. 5 52 Preliminary—Subject to Change Without Notice Freescale Semiconductor Voltage Transient on CS VCS VA VA2 ΔV < 0.5 LSB 1 2 τ1 < (RSW + RAD) CS << TS τ2 = RL (CS + CP1 + CP2) VA1 TS t Figure 17. Transient Behavior during Sampling Phase In particular two different transient periods can be distinguished: • A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and CS are in series, and the time constant is CP • CS τ 1 = ( R SW + R AD ) • --------------------CP + CS Eqn. 5 Equation 5 can again be simplified considering only CS as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time TS is always much longer than the internal time constant: Eqn. 6 τ 1 < ( R SW + R AD ) • C S « T S The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1 on the capacitance according to Equation 7: Eqn. 7 V A1 • ( C S + C P1 + C P2 ) = V A • ( C P1 + C P2 ) • A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance RL: again considering the worst case in which CP2 and CS were in parallel to CP1 (since the time constant in reality would be faster), the time constant is: Eqn. 8 τ 2 < R L • ( C S + C P1 + C P2 ) MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 53 In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time TS, a constraints on RL sizing is obtained: Eqn. 9 10 • τ 2 = 10 • R L • ( C S + C P1 + C P2 ) < TS Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (source impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the charge transfer transient) will be much higher than VA1. Equation 10 must be respected (charge balance assuming now CS already charged at VA1): Eqn. 10 VA2 • ( C S + C P1 + C P2 + C F ) = V A • C F + V A1 • ( C P1 + C P2 + C S ) The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to provide the extra charge to compensate the voltage drop on CS with respect to the ideal source VA; the time constant RFCF of the filter is very high with respect to the sampling time (TS). The filter is typically designed to act as anti-aliasing. Analog Source Bandwidth (VA) TC ≤ 2 RFCF (Conversion Rate vs. Filter Pole) fF = f0 (Anti-aliasing Filtering Condition) Noise 2 f0 ≤ fC (Nyquist) f0 f Anti-Aliasing Filter (fF = RC Filter pole) fF f Sampled Signal Spectrum (fC = conversion Rate) f0 fC f Figure 18. Spectral representation of input signal Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, fF), according to the Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (TC). Again the conversion period TC is longer than the sampling time TS, which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the sampling time TS, so the charge level on CS cannot be modified by the analog signal source during the time in which the sampling switch is closed. The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on CS; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on CS: MPC5604P Microcontroller Data Sheet, Rev. 5 54 Preliminary—Subject to Change Without Notice Freescale Semiconductor Eqn. 11 VA C P1 + C P2 + C F ------------ = -------------------------------------------------------V A2 C P1 + C P2 + C F + C S From this formula, in the worst case (when VA is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on CF value: Eqn. 12 C F > 2048 • C S MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 55 3.13.2 ADC conversion characteristics Table 29. ADC conversion characteristics Symbol fCK fs tADC_S Parameter Value Conditions1 Unit Min Typ Max SR ADC Clock frequency (depends on ADC configuration) (The duty cycle depends on AD_clk2 frequency) — 33 — 60 MHz SR Sampling frequency — — — 1.53 MHz D Sample time4 fADC = 20 MHz, INPSAMP = 3 125 ns fADC = 9 MHz, INPSAMP = 255 tADC_C P Conversion time5 fADC = 20 MHz6, INPCMP = 1 28.2 µs 0.650 — — µs CS7 D ADC input sampling capacitance — — — 2.5 pF CP17 D ADC input pin capacitance 1 — — — 3 pF 7 D ADC input pin capacitance 2 — — — 1 pF D Internal resistance of analog source VDD_HV_ADC = 5 V+/-10% — — 0.6 kΩ VDD_HV_ADC = 3.3 V+/-10% — — 3 kΩ — — — 2 kΩ -5 — 5 mA CP2 RSW1 7 RAD7 D Internal resistance of analog source IINJ T Input current injection Current injection on one ADC input, different from the converted one. Remains within TUE spec. INL P Integral Non Linearity No overload –1.5 — 1.5 LSB DNL P Differential Non Linearity No overload –1.0 — 1.0 LSB OFS T Offset error — — ±1 — LSB GNE T Gain error — — ±1 — LSB TUE P Total unadjusted error without current injection — -2.5 — 2.5 LSB TUE T Total unadjusted error with current injection — -3 — 3 LSB 1 VDD = 3.3 V to 3.6 V / 4.5 V to 5.5 V, TA = –40 to +125 °C, unless otherwise specified and analog input voltage from VSS_HV_ADCx to VDD_HV_ADCx. 2 AD_clk clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC. 3 When configured to allow 60 MHz ADC, the minimum ADC clock speed is 9 MHz, below which precision is lost. 4 During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tADC_S. After the end of the sample time tADC_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tADC_S depend on programming. MPC5604P Microcontroller Data Sheet, Rev. 5 56 Preliminary—Subject to Change Without Notice Freescale Semiconductor 5 This parameter includes the sample time tADC_S. 20 MHz ADC clock. Specific prescaler is programmed on MC_PLL_CLK to provide 20 MHz clock to the ADC. 7 See Figure 16. 6 3.14 Flash memory electrical characteristics Table 30. Program and erase specifications Min Value Typical Value1 Initial Max2 Max3 Unit P Double Word (64 bits) Program Time4 — 22 50 500 μs P Bank Program (512KB)4, 5 — 1.45 1.65 33 s P Bank Program (64KB) — 0.18 0.21 4.10 s T16kpperase P 16 KB Block Pre-program and Erase Time — 300 500 5000 ms T32kpperase P 32 KB Block Pre-program and Erase Time — 400 600 5000 ms T128kpperase P 128 KB Block Pre-program and Erase Time — 800 1300 7500 ms Symbol Tdwprogram TBKPRG Parameter 4, 5 1 2 3 4 5 Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. The maximum program & erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. Actual hardware programming times. This does not include software overhead. Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will require more than one pulse, adding a small overhead to total bank programming time (see Initial Max column). Table 31. Flash module life1 Value Symbol Conditions Unit Min Typ — P/E C Number of program/erase cycles per block for 16 Kbyte blocks over the operating temperature range (TJ) — 100,000 P/E C Number of program/erase cycles per block for 32 Kbyte blocks over the operating temperature range (TJ) — 10,000 100,000 cycles (TBC) P/E C Number of program/erase cycles per block for 128 Kbyte blocks over the operating temperature range (TJ) — 1,000 100,000 cycles (TBC) Blocks with 0 – 1,000 P/E cycles 20 — years Blocks with 10,000 P/E cycles 10 — years Blocks with 100,000 P/E cycles 5 — years Retention 1 Parameter C Minimum data retention at 85 °C average ambient temperature2 cycles TBD: To be defined MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 57 2 Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range. Table 32. Flash read access timing Symbol Fmax 1 3.15 C Parameter C Maximum working frequency at given number of WS in worst conditions Conditions1 Max Unit 2 wait states 66 MHz 0 wait states 18 VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = -40 to 125 °C, unless otherwise specified AC Specifications 3.15.1 Pad AC Specifications Table 33. Output pin transition times Symbol C Ttr CC D Output transition time output pin3 SLOW configuration T Typ Max — — 50 — — 100 — — 125 — — 40 — — 50 — — 75 — — 10 — — 20 — — 40 — — 12 — — 25 — — 40 — — 4 — — 6 — — 12 — — 4 — — 7 CL = 100 pF — — 12 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 4 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 5 CL = 25 pF CL = 50 pF CL = 100 pF D CL = 25 pF T CL = 50 pF VDD = 5.0 V ± 10%, PAD3V5V = 0 VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF D pin3 CL = 25 pF CL = 50 pF D CL = 100 pF D CL = 25 pF T CL = 50 pF VDD = 5.0 V ± 10%, PAD3V5V = 0 SIUL.PCRx.SRC = 1 VDD = 3.3 V ± 10%, PAD3V5V = 1 SIUL.PCRx.SRC = 1 CL = 100 pF D Ttr CC D Output transition time output FAST configuration pin3 CL = 25 pF CL = 50 pF VDD = 5.0 V ± 10%, PAD3V5V = 0 SIUL.PCRx.SRC = 1 CL = 100 pF CL = 25 pF CL = 50 pF Tsim CC T Symmetric, same drive strength between N and P transistor 1 Unit Min D Ttr CC D Output transition time output MEDIUM configuration T Value2 Conditions1 Parameter VDD = 3.3 V ± 10%, PAD3V5V = 1 SIUL.PCRx.SRC = 1 ns ns ns ns VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified MPC5604P Microcontroller Data Sheet, Rev. 5 58 Preliminary—Subject to Change Without Notice Freescale Semiconductor 2 3 All values need to be confirmed during device validation. CL includes device and package capacitances (CPKG < 5 pF). 3.16 3.16.1 AC Timing Characteristics RESET Pin Characteristics The MPC5604P implements a dedicated bidirectional RESET pin. VDD VDDMIN VRESET VIH VIL device reset forced by VRESET device start-up phase TPOR Figure 19. Start-up reset requirements MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 59 VRESET hw_rst VDD ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter WFRST filtered by lowpass filter unknown reset state device under hardware reset WFRST WNFRST Figure 20. Noise filtering on reset signal Table 34. RESET electrical characteristics Symbol C Parameter Value2 Conditions1 Unit Min Typ Max VIH SR P Input High Level CMOS (Schmitt Trigger) — 0.65VDD — VDD+0.4 V VIL SR P Input low Level CMOS (Schmitt Trigger) — −0.4 — 0.35VDD V VHYS CC C Input hysteresis CMOS (Schmitt Trigger) — 0.1VDD — — V VOL CC P Output low level Push Pull, IOL = 2mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD V Push Pull, IOL = 1mA, VDD = 5.0 V ± 10%, PAD3V5V = 13 — — 0.1VDD Push Pull, IOL = 1mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 MPC5604P Microcontroller Data Sheet, Rev. 5 60 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 34. RESET electrical characteristics (continued) Symbol C Value2 1 Parameter Conditions Unit Min Typ Max CL = 25pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 10 CL = 50pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 CL = 100pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 40 CL = 25pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 12 CL = 50pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 25 CL = 100pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 40 WFRST SR P RESET input filtered pulse — — — 40 ns WNFRST SR P RESET input not filtered pulse — 500 — — ns — — 1 ms VDD = 3.3 V ± 10%, PAD3V5V = 1 10 — 150 µA VDD = 5.0 V ± 10%, PAD3V5V = 0 10 — 150 10 — 250 Ttr CC D Output transition time output pin4 MEDIUM configuration TPOR CC D maximum delay before monotonic VDD_HV supply ramp internal reset is released after all VDD_HV reach nominal supply |IWPU| CC P Weak pull-up current absolute value VDD = 5.0 V ± 10%, PAD3V5V = 15 ns VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = −40 to 125 °C, unless otherwise specified All values need to be confirmed during device validation. 3 This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of device reference manual). 4 C includes device and package capacitance (C L PKG < 5 pF). 5 The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. 1 2 3.16.2 IEEE 1149.1 interface timing Table 35. JTAG pin AC electrical characteristics No. Symbol C Parameter Conditions Min Max Unit 1 tJCYC CC D TCK cycle time — 100 — ns 2 tJDC CC D TCK clock pulse width (measured at VDD_HV_IOx/2) — 40 60 ns 3 tTCKRISE CC D TCK rise and fall times (40% - 70%) — — 3 ns D TMS, TDI data setup time — 5 — ns 4 tTMSS, tTDIS CC MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 61 Table 35. JTAG pin AC electrical characteristics (continued) No. Symbol C 5 tTMSH, tTDIH CC Parameter Conditions Min Max Unit D TMS, TDI data hold time — 25 — ns 6 tTDOV CC D TCK low to TDO data valid — — 40 ns 7 tTDOI CC D TCK low to TDO data invalid — 0 — ns 8 tTDOHZ CC D TCK low to TDO high impedance — 40 — ns 11 tBSDV CC D TCK falling edge to output valid — — 50 ns 12 tBSDVZ CC D TCK falling edge to output valid out of high impedance — — 50 ns 13 tBSDHZ CC D TCK falling edge to output high impedance — — 50 ns 14 tBSDST CC D Boundary scan input valid to TCK rising edge — 50 — ns 15 tBSDHT CC D TCK rising edge to boundary scan input invalid — 50 — ns TCK 2 3 2 1 3 Figure 21. JTAG test clock input timing MPC5604P Microcontroller Data Sheet, Rev. 5 62 Preliminary—Subject to Change Without Notice Freescale Semiconductor TCK 4 5 TMS, TDI 6 7 8 TDO Figure 22. JTAG test access port timing MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 63 TCK 11 13 Output Signals 12 Output Signals 14 15 Input Signals Figure 23. JTAG boundary scan timing 3.16.3 Nexus timing Table 36. Nexus debug port timing1 Value No. 1 Symbol tMCYC C Parameter CC D MCKO cycle time valid2 Unit Min Typ Max 32 — — ns — — 6 ns 2 tMDOV CC D MCKO low to MDO data 3 tMSEOV CC D MCKO low to MSEO data valid2 — — 6 ns 4 tEVTOV CC D MCKO low to EVTO data valid2 — — 6 ns CC D TCK cycle time 643 — — ns 5 tTCYC MPC5604P Microcontroller Data Sheet, Rev. 5 64 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 36. Nexus debug port timing1 (continued) Value No. 6 7 Symbol C Parameter Unit Min Typ Max tNTDIS CC D TDI data setup time 6 — — ns tNTMSS CC D TMS data setup time 6 — — ns tNTDIH CC D TDI data hold time 10 — — ns tNTMSH CC D TMS data hold time 10 — — ns 8 tTDOV CC D TCK low to TDO data valid — — 35 ns 9 tTDOI CC D TCK low to TDO data invalid 6 — — ns 1 All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. MDO, MSEO, and EVTO data is held valid until next MCKO low cycle. 3 Lower frequency is required to be fully compliant to standard. 2 1 MCKO 2 3 4 MDO MSEO EVTO Output Data Valid Figure 24. Nexus output timing TCK EVTI EVTO 5 Figure 25. Nexus event trigger and test clock timings MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 65 TCK 6 7 TMS, TDI 9 8 TDO Figure 26. Nexus TDI, TMS, TDO timing 3.16.4 External interrupt timing (IRQ pin) Table 37. External interrupt timing1 No. Symbol C Parameter Conditions Min 1 tIPWL CC D IRQ pulse width low — 4 2 tIPWH CC D IRQ pulse width high — 4 3 tICYC CC D IRQ edge to edge time2 — 4+N Max Unit 3 — tCYC — tCYC — tCYC 1 IRQ timing specified at fSYS = 64 MHz and VDD_HV_IOx = 3.0 V to 5.5 V, TA = TL to TH, and CL = 200pF with SRC = 0b00. Applies when IRQ pins are configured for rising edge or falling edge events, but not both. 3 N= ISR time to clear the flag 2 MPC5604P Microcontroller Data Sheet, Rev. 5 66 Preliminary—Subject to Change Without Notice Freescale Semiconductor IRQ 1 2 3 Figure 27. External interrupt timing 3.16.5 DSPI timing Table 38. DSPI timing No. Symbol CC 1 C D Parameter DSPI cycle time tSCK Conditions Min Max Master (MTFE = 0) 60 — Slave (MTFE = 0) 60 — Unit ns 2 tCSC CC D CS to SCK delay — 16 — ns 3 tASC CC D After SCK delay — 26 — ns 4 tSDC CC D SCK duty cycle — 5 tA CC D Slave access time SS active to SOUT valid — TBD ns 6 tDIS CC D Slave SOUT disable time SS inactive to SOUT High-Z or invalid — 16 ns 7 tPCSC CC D PCSx to PCSS time — 13 — ns 8 tPASC CC D PCSS to PCSx time — 13 — ns Master (MTFE = 0) 35 — Slave 4 — Master (MTFE = 1, CPHA = 0) 35 — Master (MTFE = 1, CPHA = 1) 35 — Master (MTFE = 0) -5 — Slave 4 — Master (MTFE = 1, CPHA = 0) 11 — Master (MTFE = 1, CPHA = 1) -5 — CC 9 Data setup time for inputs D tSUI CC 10 tHI 0.4 * tSCK 0.6 * tSCK ns ns Data hold time for inputs D ns MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 67 Table 38. DSPI timing (continued) No. Symbol C Parameter Conditions Data valid (after SCK edge) 11 tSUO CC tHO CC Max Master (MTFE = 0) — 12 Slave — 36 Master (MTFE = 1, CPHA = 0) — 12 Master (MTFE = 1, CPHA = 1) — 12 Master (MTFE = 0) -2 — Slave 6 — Master (MTFE = 1, CPHA = 0) 6 — Master (MTFE = 1, CPHA = 1) -2 — D Unit ns Data hold time for outputs 12 Min D ns 2 3 PCSx 1 4 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 9 SIN 10 First Data Data 12 SOUT First Data Last Data 11 Data Last Data Figure 28. DSPI classic SPI timing - master, CPHA = 0 MPC5604P Microcontroller Data Sheet, Rev. 5 68 Preliminary—Subject to Change Without Notice Freescale Semiconductor PCSx SCK Output (CPOL=0) 10 SCK Output (CPOL=1) 9 Data First Data SIN Last Data 12 SOUT 11 Data First Data Last Data Figure 29. DSPI classic SPI timing - master, CPHA = 1 3 2 SS 1 4 SCK Input (CPOL=0) 4 SCK Input (CPOL=1) 5 SOUT First Data 9 SIN 12 11 Data Last Data Data Last Data 6 10 First Data Figure 30. DSPI classic SPI timing - slave, CPHA = 0 MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 69 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 6 12 SOUT First Data 9 SIN Data Last Data Data Last Data 10 First Data Figure 31. DSPI classic SPI timing - slave, CPHA = 1 3 PCSx 4 1 2 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 9 SIN First Data 10 12 SOUT First Data Last Data Data 11 Data Last Data Figure 32. DSPI modified transfer format timing - master, CPHA = 0 MPC5604P Microcontroller Data Sheet, Rev. 5 70 Preliminary—Subject to Change Without Notice Freescale Semiconductor PCSx SCK Output (CPOL=0) SCK Output (CPOL=1) 10 9 SIN First Data Last Data Data 12 First Data SOUT 11 Last Data Data Figure 33. DSPI modified transfer format timing - master, CPHA = 1 3 2 SS 1 SCK Input (CPOL=0) 4 4 SCK Input (CPOL=1) SOUT First Data Data First Data 6 Last Data 10 9 SIN 12 11 5 Data Last Data Figure 34. DSPI modified transfer format timing - slave, CPHA = 0 MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 71 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 6 12 First Data SOUT 9 Last Data Data Last Data 10 First Data SIN Data Figure 35. DSPI modified transfer format timing - slave, CPHA = 1 7 8 PCSS PCSx Figure 36. DSPI PCS strobe (PCSS) timing MPC5604P Microcontroller Data Sheet, Rev. 5 72 Preliminary—Subject to Change Without Notice Freescale Semiconductor 4 Package characteristics 4.1 Package mechanical data 4.1.1 144 LQFP mechanical outline drawing L Figure 37. 144 LQFP package mechanical drawing (part 1) MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 73 Figure 38. 144 LQFP package mechanical drawing (part 2) MPC5604P Microcontroller Data Sheet, Rev. 5 74 Preliminary—Subject to Change Without Notice Freescale Semiconductor 4.1.2 100 LQFP Mechanical Outline Drawing Figure 39. 100 LQFP package mechanical drawing (part 1) MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 75 Figure 40. 100 LQFP package mechanical drawing (part 2) MPC5604P Microcontroller Data Sheet, Rev. 5 76 Preliminary—Subject to Change Without Notice Freescale Semiconductor Figure 41. 100 LQFP package mechanical drawing (part 3) MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 77 5 Ordering Information Table 39 shows the orderable part numbers for the MPC5604P series. Table 39. Orderable Part Number Summary Part Number Code Flash / Data Flash (EE) (KB) SRAM (KB) Package Characteristics MPC5604PEFMLQ 512 / 64 40 144 LQFP FlexRay MPC5604PEFMLL 512 / 64 40 100 LQFP FlexRay MPC5603PEFMLQ 384 / 64 36 144 LQFP FlexRay MPC5603PEFMLL 384 / 64 36 100 LQFP FlexRay Commercial product code structure Example code: M PC 56 0 4 P G F0 M LQ 7 R Qualification Status PowerPC Core Automotive Platform Core Version Flash Size (core dependent) Product Optional Fields Fab & Mask Revision Temperature spec. Package Code Frequency R = Tape & Reel (blank if Tray) Qualification Status Flash Size (z0 core) Temperature spec. M = MC status S = Automotive qualified P = PC status 3 = 384 KB 4 = 512 KB V = –40°C to 105°C M = –40°C to 125°C Product Package Code Automotive Platform P = Pictus LL = 100 LQFP LQ = 144 LQFP 56 = PPC in 90nm Optional fields Core Version E = Data Flash (blank if none) 0 = e200z0 F = FlexRay Frequency 7= 64 MHz MPC5604P Microcontroller Data Sheet, Rev. 5 78 Preliminary—Subject to Change Without Notice Freescale Semiconductor 6 Document revision history Table 40 summarizes revisions to this document. Table 40. Revision history Revision Date Substantive changes Rev. 1 8/2008 Initial release Rev. 2 11/2008 Table 4: TDO and TDI pins (Port pins B[4:5] are single function pins. Table 8, Table 9: Thermal characteristics added. Table 11, Table 12: EMI testing specifications split into separate tables for Normal mode and Airbag mode; data to be added in a later revision. Table 16, Table 17, Table 19, Table 20: Supply current specifications split into separate tables for Normal mode and Airbag mode; data to be added in a later revision. Table 19: • • • • Values for IOL and IOH (in Conditions column) changed. Max values for VOH_S, VOH_M, VOH_F and VOH_SYM deleted. VILR max value changed. IPUR min and max values changed. Table 23: Sensitivity value changed. Table 30: Most values in table changed. Rev. 3 2/2009 • • • • • • Description of system requirements, controller characteristics and how controller characteristics are guaranteed updated. Electrical parameters updated. EMI characteristics are now in one table; values have been updated. ESD characteristics are now in one table. Electrical parameters are identified as either system requirements or controller characteristics. Method used to guarantee each controller characteristic is noted in table. AC Timings: 1149.1 (JTAG) Timing, Nexus Timing, External Interrupt Timing, and DSPI Timing sections deleted MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 79 Table 40. Revision history (continued) Revision Date Substantive changes Rev. 4 24/6/2009 Through all document: – Replaced all “RESET_B” occurrences with “RESET” through all document. – AC Timings: 1149.1 (JTAG) Timing, Nexus Timing, External Interrupt Timing, and DSPI Timing sections inserted again. – Electrical parameters updated. Section 1, “Overview: – Minor editorial clean-up. – Specified LIN 2.1 in communications interfaces feature. Table 2 – Added row for Data Flash. Table 2 – Added a footnote regarding the decoupling capacitors. Table 4 – Removed the “other function“ column. – Rearranged the contents. Table 12 – Updated definition of Condition column. Table 18 – merged in an unique Table the power consumption data related to "Maximum mode" and "Airbag mode". Table 20 – merged in an unique Table the power consumption data related to "Maximum mode" and "Airbag mode". Table 28 – Updated the parameter definition of ΔRCMVAR. – Removed the condition definition of ΔRCMVAR. Table 28 – Added tADC_C and TUE rows. Table 29 – Added tADC_C and TUE rows. – Removed Rsw2. Table 32 – Added. Table 29 – Updated and added footnotes. Section 3.16.1, “RESET Pin Characteristics – Replaces whole section. Table 38 – Renamed the “Flash (KB)“ heading column in “Code Flash / Data Flash (EE) (KB)“ – Replaced the value of RAM from 32 to 36KB in the last four rows. MPC5604P Microcontroller Data Sheet, Rev. 5 80 Preliminary—Subject to Change Without Notice Freescale Semiconductor Table 40. Revision history (continued) Revision Date Substantive changes Rev. 5 06/10/2009 - Removed B[4] and B[5] rows from “Pin muxing” table and inserted them on “System pins” table. - Updated package pinout. - Rewrote entirely section “Power Up/dpwn Sequencing“ section. - Renamend “VDD_LV_PLL“ and “VSS_LV_PLL“ supply pins with respectively “VDD_LV_COR3“ and “VSS_LV_COR3”. - Added explicative figures on “Electrical characteristics” section. - Updated “Thermal characteristics“ for 100-pin. - Proposed two different configuration of “voltage regulator. - Inserted Power Up/Down sequence. - Added explicative figures on “DC Electrical characteristics”. - Added “I/O pad current specification” section. - Renamed the “Airbag mode” with “Typical mode“and updated the values on “supply current” tables. MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 81 MPC5604P Microcontroller Data Sheet, Rev. 5 82 Preliminary—Subject to Change Without Notice Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The ARM POWERED logo is a registered trademark of ARM Limited. ARM7TDMI-S is a trademark of ARM Limited. Java and all other Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. The Bluetooth trademarks are owned by their proprietor and used by Freescale Semiconductor, Inc. under license. Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] © Freescale Semiconductor, Inc. 2008, 2009. All rights reserved. For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 [email protected] Document Number: MPC5604P Rev. 5 November 2009 MPC5604P Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor Preliminary—Subject to Change Without Notice 83 MPC5604P Microcontroller Data Sheet, Rev. 5 84 Preliminary—Subject to Change Without Notice Freescale Semiconductor