SPC56AP60x, SPC56AP54x SPC560P60x, SPC560P54x 32-bit Power Architecture® based MCU with 1088 KB Flash memory and 80 KB RAM for automotive chassis and safety applications Datasheet production data Features ■ 64 MHz, dual issue, 32-bit CPU core complex (e200z0h) – Compliant with Power Architecture® embedded category – Variable Length Encoding (VLE) ■ Memory organizazion – Up to 1024 KB on-chip code Flash memory with additional 64 KB for EEPROM emulation (data flash), with ECC, with erase/program controller – Up to 80 KB on-chip SRAM with ECC ■ Fail safe protection – ECC protection on system SRAM and Flash – Safety port – SWT with servicing sequence pseudorandom generator – Power management – Non-maskable interrupt for both cores – Fault collection and control unit (FCCU) – Safe mode of system-on-chip (SoC) – Register protection scheme LQFP100 14 x 14 mm LQFP144 20 x 20 mm ■ Communications interfaces – 2 LINFlex modules (LIN 2.1, 1 × Master/Slave, 1 × Master Only) – 5 DSPI modules with automatic chip select generation – 2 FlexCAN interfaces (2.0B Active) with 32 message buffers – 1 Safety port based on FlexCAN; usable as third CAN when not used as safety port – 1 FlexRay™ module (V2.1) with dual or single channel, 64 message buffers and up to 10 Mbit/s ■ 2 CRC units with three contexts and 3 hardwired polynomials(CRC8,CRC32 and CRC-16-CCITT) ■ 10-bit A/D converter – 27 input channels and pre-sampling feature – Conversion time < 1 µs including sampling time at full precision – Programmable cross triggering unit (CTU) – 4 analog watchdog with interrupt capability ■ Nexus® L2+ interface ■ Single 3.3 V or 5 V supply for I/Os and ADC ■ 2 on-platform peripherals set with 2 INTC ■ ■ 16-channel eDMA controller with multiple transfer request sources On-chip CAN/UART Bootstrap loader with boot assist module (BAM) ■ ■ General purpose I/Os (80 GPIO + 26 GPI on LQFP144; 49 GPIO + 16 GPI on LQFP100) Ambient temperature ranges: –40 to 125 °C or –40 to 105 °C Table 1. ■ 2 general purpose eTimer units – 6 timers, each with up/down count capabilities – 16-bit resolution, cascadable counters – Quadrature decode with rotation direction flag – Double buffer input capture and output compare May 2012 This is information on a product in full production. Device summary Part number Package 768 KB Flash 1 MB Flash LQFP144 SPC560P54L5 SPC56AP54L5 SPC560P60L5 SPC56AP60L5 LQFP100 SPC560P54L3 SPC56AP54L3 SPC560P60L3 SPC56AP60L3 Doc ID 18340 Rev 3 1/104 www.st.com 1 Contents SPC56xP54x, SPC56xP60x Contents 1 2/104 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 Document overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.1 High performance e200z0h core processor . . . . . . . . . . . . . . . . . . . . . . 13 1.5.2 Crossbar switch (XBAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.5.3 Enhanced direct memory access (eDMA) . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.4 On-chip flash memory with ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.5.5 On-chip SRAM with ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.6 Interrupt controller (INTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.5.7 System clocks and clock generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5.8 Frequency modulated phase-locked loop (FMPLL) . . . . . . . . . . . . . . . . 16 1.5.9 Main oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.10 Internal RC oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.11 Periodic interrupt timer (PIT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.12 System timer module (STM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.5.13 Software watchdog timer (SWT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.14 Fault collection and control unit (FCCU) . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.15 System integration unit (SIUL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.16 Boot and censorship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.5.17 Error correction status module (ECSM) . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.18 FlexCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.5.19 Safety port (FlexCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5.20 FlexRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 1.5.21 Serial communication interface module (LINFlex) . . . . . . . . . . . . . . . . . 21 1.5.22 Deserial serial peripheral interface (DSPI) . . . . . . . . . . . . . . . . . . . . . . 22 1.5.23 eTimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 1.5.24 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5.25 Cross triggering unit (CTU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.5.26 Cyclic redundancy check (CRC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.5.27 Nexus development interface (NDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.5.28 IEEE 1149.1 (JTAG) controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x 1.5.29 2 3 Contents On-chip voltage regulator (VREG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . . . . . . . . 27 2.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.1 Power supply and reference voltage pins . . . . . . . . . . . . . . . . . . . . . . . 29 2.2.2 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2.3 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.5.1 General notes for specifications at maximum junction temperature . . . 56 3.6 Electromagnetic interference (EMI) characteristics . . . . . . . . . . . . . . . . . 58 3.7 Electrostatic discharge (ESD) characteristics . . . . . . . . . . . . . . . . . . . . . 58 3.8 Power management electrical characteristics . . . . . . . . . . . . . . . . . . . . . 58 3.8.1 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . 58 3.8.2 Voltage monitor electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 60 3.9 Power Up/Down sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.10 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.10.1 3.11 NVUSRO[PAD3V5V] field description . . . . . . . . . . . . . . . . . . . . . . . . . . 63 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.11.1 DC electrical characteristics (5 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.11.2 DC electrical characteristics (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 3.11.3 I/O pad current specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.12 Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.13 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.14 16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . 74 3.15 Analog-to-Digital converter (ADC) electrical characteristics . . . . . . . . . . 74 3.16 3.15.1 Input impedance and ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.15.2 ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Flash memory electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Doc ID 18340 Rev 3 3/104 Contents SPC56xP54x, SPC56xP60x 3.17 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.17.1 3.18 4 Pad AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 AC timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.18.1 RESET pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.18.2 IEEE 1149.1 interface timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.18.3 Nexus timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 3.18.4 External interrupt timing (IRQ pin) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.18.5 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.1 ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2.1 LQFP144 mechanical outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2.2 LQFP100 mechanical outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SPC56xP54/60 device comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 SPC56xP54/60 device configuration difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 SPC56xP54/60 series block summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Supply pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Pin muxing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Parameter classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Recommended operating conditions (5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Recommended operating conditions (3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Thermal characteristics for 144-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Thermal characteristics for 100-pin LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 EMI testing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 ESD ratings, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Approved NPN ballast components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Voltage regulator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Low voltage monitor electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 PAD3V5V field description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0) . . . . . . . . . . . . . . . . . . . . . . 64 Supply current (5.0 V, NVUSRO[PAD3V5V]=0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1) . . . . . . . . . . . . . . . . . . . . . . 67 Supply current (3.3 V, NVUSRO[PAD3V5V]=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Peripherals supply current (5 V and 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 I/O supply segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 I/O consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Main oscillator electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0) . . . . . . . . . . . . . 72 Main oscillator electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1) . . . . . . . . . . . . . 72 Input clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 PLLMRFM electrical specifications (VDDPLL = 1.08 V to 1.32 V, VSS = VSSPLL = 0 V, TA = TL to TH)‘ . . . . . . . . . . . . . . . . . . . 73 16 MHz RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 ADC conversion characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Program and erase specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Flash memory module life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Flash read access timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Output pin transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 RESET electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 JTAG pin AC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Nexus debug port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 LQFP144 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 LQFP100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Doc ID 18340 Rev 3 5/104 List of figures SPC56xP54x, SPC56xP60x List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. 6/104 SPC56xP54/60 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 LQFP176 pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 LQFP144 pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 LQFP100 pinout (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Power supplies constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Independent ADC supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Power supplies constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Independent ADC supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Voltage regulator configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Power-up typical sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Power-down typical sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Brown-out typical sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 I/O input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 I/O input DC electrical characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 ADC characteristics and error definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Input equivalent circuit (precise channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Input equivalent circuit (extended channels) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Transient behavior during sampling phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Spectral representation of input signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Start-up reset requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Noise filtering on reset signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 JTAG test clock input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 JTAG test access port timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 JTAG boundary scan timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Nexus output timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Nexus event trigger and test clock timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Nexus TDI, TMS, TDO timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 External interrupt timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 DSPI classic SPI timing — master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 DSPI classic SPI timing — master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 DSPI classic SPI timing — slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 DSPI classic SPI timing — slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 DSPI modified transfer format timing — master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . 94 DSPI modified transfer format timing — master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . 95 DSPI modified transfer format timing — slave, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 95 DSPI modified transfer format timing — slave, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 96 DSPI PCS strobe (PCSS) timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 LQFP144 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 LQFP100 package mechanical drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Introduction 1 Introduction 1.1 Document overview This document provides electrical specifications, pin assignments, and package diagrams for the SPC56xP54/60 series of microcontroller units (MCUs). It also describes the device features and highlights important electrical and physical characteristics. For functional characteristics, refer to the device reference manual. 1.2 Description This 32-bit system-on-chip (SoC) automotive microcontroller family is the latest achievement in integrated automotive application controllers. It belongs to an expanding range of automotive-focused products designed to address chassis applications specifically the airbag application. This family is one of a series of next-generation integrated automotive microcontrollers based on the Power Architecture technology. The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category. It operates up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations. 1.3 Device comparison Table 2 provides a summary of different members of the SPC56xP54/60 family and their features—relative to Full-featured version—to enable a comparison among the family members and an understanding of the range of functionality offered within this family. Table 2. SPC56xP54/60 device comparison Feature Code Flash memory (with ECC) SPC560P54 SPC560P60 SPC56AP54 SPC56AP60 768 KB 1 MB 768 KB 1 MB 64 KB 80 KB Data Flash / EE (with ECC) SRAM (with ECC) Processor core 64 KB 64 KB 80 KB 32-bit e200z0h Instruction set VLE CPU performance 0-64 MHz FMPLL (frequency-modulated phaselocked loop) modules 1 INTC (interrupt controller) channels PIT (periodic interrupt timer) 32-bit Dual e200z0h 148 1 (includes four 32-bit timers) Doc ID 18340 Rev 3 7/104 Introduction Table 2. SPC56xP54x, SPC56xP60x SPC56xP54/60 device comparison (continued) Feature SPC560P54 SPC560P60 Enhanced DMA (direct memory access) channels SPC56AP54 SPC56AP60 16 FlexRay Yes (64 message buffer) 3(1),(2) FlexCAN (controller area network) Safety port Yes (via third FlexCAN module) Yes(3) FCCU (fault collection and control unit) CTU (cross triggering unit) Yes eTimer channels 2×6 FlexPWM (pulse-width modulation) channels No Analog-to-digital converters (ADC) One (10-bit, 27-channel)(4) LINFlex modules 2 (1 × Master/Slave, 1 × Master only) DSPI (deserial serial peripheral interface) modules 5(5) CRC (cyclic redundancy check) units 2(6) JTAG interface Yes Yes (Level 2+)(7) Nexus port controller (NPC) Digital power supply(8) 3.3 V or 5 V single supply with external transistor Analog power supply 3.3 V or 5 V Internal RC oscillator 16 MHz Supply External crystal oscillator 4–40 MHz LQFP100 LQFP144 Packages Temperature Standard ambient temperature LQFP100 LQFP144 LQFP176 (9) –40 to 125 °C 1. Each FlexCAN module has 32 message buffers. 2. One FlexCAN module can act as a Safety Port with a bit rate as high as 7.5 Mbit/s. 3. Enhanced FCCU version 4. Same amount of ADC channels as on SPC560P44/50 not considering the internally connected ones. 26 channels on LQFP144 and 16 channels on LQFP100. 5. Increased number of CS for DSPI_1 6. Upgraded specification with addition of 8-bits polynomial (CRC-8 VDA CAN) support and 3rd context 7. Improved debugging capability with data trace capability and increased Nexus throughput available on emulation package 8. 3.3 V range and 5 V range correspond to different orderable parts. 9. Software development package only. Not available for production. SPC56xP54/60 is present on the market in two different options enabling different features: Full-featured, and Airbag configuration. Table 3 shows the main differences between the two versions. 8/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Table 3. Introduction SPC56xP54/60 device configuration difference Feature Full-featured Airbag Yes No Yes (64 message buffer) No DSPI (deserial serial peripheral interface) modules 5 4 CRC (cyclic redundancy check) unit 2 1 CTU (cross triggering unit) FlexRay 1.4 Block diagram Figure 1 shows a top-level block diagram of the SPC56xP54/60 MCU. Table 4 summarizes the functions of the blocks. Doc ID 18340 Rev 3 9/104 Introduction Figure 1. SPC56xP54x, SPC56xP60x SPC56xP54/60 block diagram e200z0 Core e200z0 Core INTC_0 32-bit general purpose registers Variable length Exception encoded handler instructions 32-bit general purpose registers Variable length Exception encoded handler instructions INTC_1 SWT_0 Special purpose registers Integer Instruction execution unit unit Special purpose registers Integer Instruction execution unit unit SWT_1 PMU STM_0 Branch prediction unit Load/Store unit Branch prediction unit Load/Store unit JTAG STM_1 JTAG ECSM_1 ECSM_0 Nexus port controller Nexus 2+ SEMA4_0 DMAMUX_0 INSTR Nexus 2+ SEMA4_1 DATA INSTR DATA DMA_0 M2 M3 M0 M1 M5 M6 Cross Bar Switch (XBAR, AMBA 2.0 v6 AHB) XBAR_0 Memory protection unit MPU_0 S7 Memory protection unit MPU_1 S2 S0 S1 NASPS_0 P0 NASPS_1 P1 PFLASHC_0 PBRIDGE_0 S6 S3 PBRIDGE_1 SRAMC_0 1024KB code flash with ECC 4x16KB data flash with ECC 32KB SRAM with ECC 26 10/104 Doc ID 18340 Rev 3 FCCU_0 DSPI_4 MC_RGM XOSC FMPLL IRCOSC CMU_1 CMU_0 MC_CGM WakeUp FlexCAN_0 Peripheral Bus (IPS) SafetyPort_0 LINFlex_1 LINFlex_0 DSPI_3 DSPI_2 DSPI_1 DSPI_0 eTimer_1 eTimer_0 CTU_0 ADC_0 FlexRay Peripheral Bus (IPS) CRC_1 48KB SRAM with ECC FlexCAN_1 MC_ME SSCM MC_PCU PIT BAM SIUL CRC_0 SRAMC_1 SPC56xP54x, SPC56xP60x Table 4. Introduction SPC56xP54/60 series block summary Block Function Analog-to-digital converter (ADC) Multi-channel, 10-bit analog-to-digital converter Boot assist module (BAM) Block of read-only memory containing VLE code which is executed according to the boot mode of the device Clock generation module (MC_CGM) Provides logic and control required for the generation of system and peripheral clocks Controller area network (FlexCAN) Supports the standard CAN communications protocol Cross triggering unit (CTU) Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT Crossbar switch (XBAR) Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 32-bit data bus width. Cyclic redundancy checker (CRC) unit Is dedicated to the computation of CRC off-loading the CPU. Each context has a separate CRC computation engine in order to allow the concurrent computation of the CRC of multiple data streams. Deserial serial peripheral interface (DSPI) Provides a synchronous serial interface for communication with external devices Enhanced direct memory access (eDMA) Performs complex data transfers with minimal intervention from a host processor via “n” programmable channels Enhanced timer (eTimer) Provides enhanced programmable up/down modulo counting Error correction status module (ECSM) Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes External oscillator (XOSC) Provides an output clock used as input reference for FMPLL_0 or as reference clock for specific modules depending on system needs Fault collection and control unit (FCCU) Provides functional safety to the device Flash memory Provides non-volatile storage for program code, constants and variables FlexRay (FlexRay communication Provides high-speed distributed control for advanced automotive applications controller) Frequency-modulated phaselocked loop (FMPLL) Generates high-speed system clocks and supports programmable frequency modulation Interrupt controller (INTC) Provides priority-based preemptive scheduling of interrupt requests JTAG controller Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode LINFlex controller Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load Mode entry module (MC_ME) Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications Doc ID 18340 Rev 3 11/104 Introduction Table 4. SPC56xP54x, SPC56xP60x SPC56xP54/60 series block summary (continued) Block Function Peripheral bridge (PBRIDGE) Is the interface between the system bus and on-chip peripherals Periodic interrupt timer (PIT) Produces periodic interrupts and triggers Power control unit (MC_PCU) Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called “power domains” which are controlled by the PCU Reset generation module (MC_RGM) Centralizes reset sources and manages the device reset sequence of the device Semaphore unit (SEMA4) Provides the hardware support needed in multi-core systems for implementing semaphores and provide a simple mechanism to achieve lock/unlock operations via a single write access Static random-access memory (SRAM) Provides storage for program code, constants, and variables Provides control over all the electrical pad controls and up 32 ports with 16 bits System integration unit lite (SIUL) of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration System status and configuration module (SSCM) Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable System timer module (STM) Provides a set of output compare events to support AUTOSAR(1) and operating system tasks System watchdog timer (SWT) Provides protection from runaway code Wakeup unit (WKPU) Supports up to 18 external sources that can generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt requests or wakeup events. 1. AUTOSAR: AUTomotive Open System ARchitecture (see www.autosar.org) 12/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Introduction 1.5 Feature details 1.5.1 High performance e200z0h core processor The e200z0h Power Architecture core provides the following features: 1.5.2 ● High performance e200z0 core processor for managing peripherals and interrupts ● Single issue 4-stage pipeline in-order execution 32-bit Power Architecture CPU ● Harvard architecture ● Variable length encoding (VLE), allowing mixed 16-bit and 32-bit instructions – Results in smaller code size footprint – Minimizes impact on performance ● Branch processing acceleration using lookahead instruction buffer ● Load/store unit – 1-cycle load latency – Misaligned access support – No load-to-use pipeline bubbles ● Thirty-two 32-bit general purpose registers (GPRs) ● Separate instruction bus and load/store bus Harvard architecture ● Hardware vectored interrupt support ● Reservation instructions for implementing read-modify-write constructs ● Long cycle time instructions, except for guarded loads, do not increase interrupt latency ● Extensive system development support through Nexus debug port ● Non maskable Interrupt support Crossbar switch (XBAR) The XBAR multi-port crossbar switch supports simultaneous connections between six master ports and six slave ports. The crossbar supports a 32-bit address bus width and a 32-bit data bus width. The crossbar allows for two concurrent transactions to occur from any master port to any slave port; but one of those transfers must be an instruction fetch from internal flash memory. If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher priority master and grant it ownership of the slave port. All other masters requesting that slave port are stalled until the higher priority master completes its transactions. Requesting masters are treated with equal priority and will be granted access to a slave port in round-robin fashion, based upon the ID of the last master to be granted access. Doc ID 18340 Rev 3 13/104 Introduction SPC56xP54x, SPC56xP60x The crossbar provides the following features: ● ● 1.5.3 6 master ports: – 2 e200z0 core complex Instruction ports – 2 e200z0 core complex Load/Store Data ports – eDMA – FlexRay 6 slave ports: – 2 Flash memory (code flash and data flash) – 2 SRAM (48 KB + 32 KB) – 2 PBRIDGE ● 32-bit internal address, 32-bit internal data paths ● Fixed Priority Arbitration based on Port Master ● Temporary dynamic priority elevation of masters Enhanced direct memory access (eDMA) The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data movements via 16 programmable channels, with minimal intervention from the host processor. The hardware micro architecture includes a DMA engine which performs source and destination address calculations, and the actual data movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels. This implementation is utilized to minimize the overall block size. The eDMA module provides the following features: 1.5.4 ● 16 channels support independent 8, 16 or 32-bit single value or block transfers ● Supports variable sized queues and circular queues ● Source and destination address registers are independently configured to postincrement or remain constant ● Each transfer is initiated by a peripheral, CPU, or eDMA channel request ● Each eDMA channel can optionally send an interrupt request to the CPU on completion of a single value or block transfer ● DMA transfers possible between system memories, DSPIs, ADC, eTimer and CTU ● Programmable DMA Channel Multiplexer for assignment of any DMA source to any available DMA channel with up to 30 potential request sources ● eDMA abort operation through software On-chip flash memory with ECC The SPC56xP54/60 provides up to 1024 KB of programmable, non-volatile, flash memory. The non-volatile memory (NVM) can be used for instruction and/or data storage. The flash memory module interfaces the system bus to a dedicated flash memory array controller. It supports a 32-bit data bus width at the system bus port, and a 128-bit read data interface to flash memory. The module contains a four-entry, 4x128-bit prefetch buffers. Prefetch buffer hits allow no-wait responses. Normal flash memory array accesses are registered and are forwarded to the system bus on the following cycle, incurring 2 wait states. 14/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Introduction The flash memory module provides the following features: ● 1.5.5 Up to 1024 KB flash memory – 14 blocks (2×16 KB + 2×32 KB + 2×16 KB + 2×64 KB + 6×128 KB) code flash – 4 blocks (16 KB + 16 KB + 16 KB + 16 KB) data flash – Full Read While Write (RWW) capability between code and data flash ● Four 128-bit wide prefetch buffers to provide single cycle in-line accesses (prefetch buffers can be configured to prefetch code or data or both) ● Typical flash memory access time: 0 wait states for buffer hits, 2 wait states for page buffer miss at 64 MHz ● Hardware managed flash memory writes handled by 32-bit RISC Krypton engine ● Hardware and software configurable read and write access protections on a per-master basis. ● Configurable access timing allowing use in a wide range of system frequencies. ● Multiple-mapping support and mapping-based block access timing (0–31 additional cycles) allowing use for emulation of other memory types. ● Software programmable block program/erase restriction control. ● Erase of selected block(s) ● Read page size of 128 bits (4 words) ● 64-bit ECC with single-bit correction, double-bit detection for data integrity ● Embedded hardware program and erase algorithm ● Erase suspend, program suspend and erase-suspended program ● Censorship protection scheme to prevent flash memory content visibility ● Hardware support for EEPROM emulation On-chip SRAM with ECC The SPC56xP54/60 SRAM module provides a general-purpose memory of up to 80 KB. The SRAM module provides the following features: ● Supports read/write accesses mapped to the SRAM memory from any master ● Up to 80 KB general purpose RAM – 1.5.6 2 blocks (48 KB + 32 KB) ● Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of memory ● Typical SRAM access time: 0 wait state for reads and 32-bit writes; 1 wait state for 8and 16-bit writes if back to back with a read to same memory block Interrupt controller (INTC) The INTC (interrupt controller) provides priority-based preemptive scheduling of interrupt requests, suitable for statically scheduled hard real-time systems. For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR needs to be executed. It also provides an ample number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To Doc ID 18340 Rev 3 15/104 Introduction SPC56xP54x, SPC56xP60x allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable. When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority ceiling protocol for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the resource can not preempt each other. The INTC provides the following features: ● Unique 9-bit vector for each separate interrupt source ● 8 software triggerable interrupt sources ● 16 priority levels with fixed hardware arbitration within priority levels for each interrupt source ● Ability to modify the ISR or task priority. – ● Modifying the priority can be used to implement the Priority Ceiling Protocol for accessing shared resources. 2 external high priority interrupts directly accessing the main core and IOP critical interrupt mechanism The INTC module is replicated for each processor. 1.5.7 System clocks and clock generation The following list summarizes the system clock and clock generation on the SPC56xP54/60: ● Lock detect circuitry continuously monitors lock status ● Loss of clock (LOC) detection for PLL outputs ● Programmable output clock divider (1, 2, 4, 8) ● Programmable output clock divider (1, 2, 3 to 256) ● eTimer module running at the same frequency as the e200z0h core ● On-chip oscillator with automatic level control ● Internal 16 MHz RC oscillator for rapid start-up and safe mode – 1.5.8 Supports frequency trimming by user application Frequency modulated phase-locked loop (FMPLL) The FMPLL allows the user to generate high speed system clocks from a 4 MHz to 40 MHz input clock. Further, the FMPLL supports programmable frequency modulation of the system clock. The FMPLL multiplication factor, output clock divider ratio are all software configurable. 16/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Introduction The FMPLL has the following major features: ● Input clock frequency from 4 MHz to 40 MHz ● Voltage controlled oscillator (VCO) range from 256 MHz to 512 MHz ● Reduced frequency divider (RFD) for reduced frequency operation without forcing the PLL to relock ● Modulation enabled/disabled through software ● Triangle wave modulation ● Programmable modulation depth (±0.25% to ±4% deviation from center frequency) – ● 1.5.9 Programmable modulation frequency dependent on reference frequency Self-clocked mode (SCM) operation Main oscillator The main oscillator provides these features: 1.5.10 ● Input frequency range 4 MHz to 40 MHz ● Crystal input mode or Oscillator input mode ● PLL reference Internal RC oscillator This device has an RC ladder phase-shift oscillator. The architecture uses constant current charging of a capacitor. The voltage at the capacitor is compared by the stable bandgap reference voltage. The RC Oscillator provides these features: 1.5.11 ● Nominal frequency 16 MHz ● ±6% variation over voltage and temperature after process trim ● Clock output of the RC oscillator serves as system clock source in case loss of lock or loss of clock is detected by the PLL ● RC oscillator is used as the default system clock during startup Periodic interrupt timer (PIT) The PIT module implements these features: 1.5.12 ● Up to four general purpose interrupt timers ● 32-bit counter resolution ● Clocked by system clock frequency ● Each channel can be used as trigger for a DMA request System timer module (STM) The STM module implements these features: ● 32-bit up counter with 8-bit prescaler ● Four 32-bit compare channels ● Independent interrupt source for each channel ● Counter can be stopped in debug mode The STM module is replicated for each processor. Doc ID 18340 Rev 3 17/104 Introduction 1.5.13 SPC56xP54x, SPC56xP60x Software watchdog timer (SWT) The SWT has the following features: ● Fault tolerant output ● Safe internal RC oscillator as reference clock ● Windowed watchdog ● Program flow control monitor with 16-bit pseudorandom key generation The SWT module is replicated for each processor. 1.5.14 Fault collection and control unit (FCCU) The FCCU provides an independent fault reporting mechanism even if the CPU is exhibiting unstable behaviors. The FCCU module has the following features: 1.5.15 ● Redundant collection of hardware checker results ● Redundant collection of error information and latch of faults from critical modules on the device ● Collection of self-test results ● Configurable and graded fault control – Internal reactions (no internal reaction, IRQ) – External reaction (failure is reported to the external/surrounding system via configurable output pins) System integration unit (SIUL) The SPC56xP54/60 SIUL controls MCU pad configuration, external interrupts, general purpose I/O (GPIO) pin configuration, and internal peripheral multiplexing. The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block provides uniform and discrete input/output control of the I/O pins of the MCU. The SIUL provides the following features: ● Centralized general purpose input output (GPIO) control of input/output pins and analog input-only pads (package dependent) ● All GPIO pins can be independently configured to support pull-up, pull down, or no pull ● Reading and writing to GPIO supported both as individual pins and 16-bit wide ports ● All peripheral pins (except ADC channels) can be alternatively configured as both general purpose input or output pins ● ADC channels support alternative configuration as general purpose inputs ● Direct readback of the pin value is supported on all pins through the SIU ● Configurable digital input filter that can be applied to some general purpose input pins for noise elimination – 1.5.16 Up to 4 internal functions can be multiplexed onto one pin Boot and censorship Different booting modes are available in the SPC56xP54/60: 18/104 ● From internal flash memory ● Via a serial link Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Introduction The default booting scheme is the one which uses the internal flash memory (an internal pull-down is used to select this mode). The alternate option allows the user to boot via FlexCAN or LINFlex (using the boot assist module software). A censorship scheme is provided to protect the contents of the flash memory and offer increased security for the entire device. A password mechanism is designed to grant the legitimate user access to the non-volatile memory. Boot assist module (BAM) The BAM is a block of read-only one-time programmed memory and is identical for all SPC56xP54/60 devices that are based on the e200z0h core. The BAM program is executed every time the device is powered on if the alternate boot mode has been selected by the user. The BAM provides the following features: 1.5.17 ● Serial bootloading via FlexCAN or LINFlex. ● BAM can accept a password via the used serial communication channel to grant the legitimate user access to the non-volatile memory. Error correction status module (ECSM) The ECSM on this device features the following: ● Platform configuration and revision ● ECC error reporting for flash memory and SRAM ● ECC error injection for SRAM The ECSM module is replicated for each processor. 1.5.18 FlexCAN The FlexCAN module is a communication controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: realtime processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. FlexCAN module contains 32 message buffers. Doc ID 18340 Rev 3 19/104 Introduction SPC56xP54x, SPC56xP60x The FlexCAN module provides the following features: ● – Standard data and remote frames – Extended data and remote frames – 0 to 8 bytes data length – Programmable bit rate as fast as 1 Mbit/s ● 32 message buffers of 0 to 8 bytes data length ● Each message buffer configurable as Rx or Tx, all supporting standard and extended messages ● Programmable loop-back mode supporting self-test operation ● 3 programmable mask registers ● Programmable transmit-first scheme: lowest ID or lowest buffer number ● Time stamp based on 16-bit free-running timer ● Global network time, synchronized by a specific message ● Maskable interrupts ● Independent of the transmission medium (an external transceiver is assumed) ● High immunity to EMI ● Short latency time due to an arbitration scheme for high-priority messages ● Transmit features ● ● 1.5.19 Full implementation of the CAN protocol specification, Version 2.0B – Supports configuration of multiple mailboxes to form message queues of scalable depth – Arbitration scheme according to message ID or message buffer number – Internal arbitration to guarantee no inner or outer priority inversion – Transmit abort procedure and notification Receive features – Individual programmable filters for each mailbox – 8 mailboxes configurable as a six-entry receive FIFO – 8 programmable acceptance filters for receive FIFO Programmable clock source – System clock – Direct oscillator clock to avoid PLL jitter Safety port (FlexCAN) The SPC56xP54/60 MCU has a second CAN controller synthesized to run at high bit rates to be used as a safety port. The CAN module of the safety port provides the following features: 20/104 ● Identical to the FlexCAN module ● Bit rate as fast as 7.5 Mb at 60 MHz CPU clock using direct connection between CAN modules (no physical transceiver required) ● 32 Message buffers of 0 to 8 bytes data length ● Can be used as a third independent CAN module Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x 1.5.20 Introduction FlexRay The FlexRay module provides the following features: 1.5.21 ● Full implementation of FlexRay Protocol Specification 2.1 ● 64 configurable message buffers can be handled ● Dual channel or single channel mode of operation, each as fast as 10 Mbit/s data rate ● Message buffers configurable as Tx, Rx or RxFIFO ● Message buffer size configurable ● Message filtering for all message buffers based on FrameID, cycle count and message ID ● Programmable acceptance filters for RxFIFO message buffers Serial communication interface module (LINFlex) The LINFlex on the SPC56xP54/60 features the following: ● Supports LIN Master mode (on both modules), LIN Slave mode (on one module) and UART mode ● LIN state machine compliant to LIN1.3, 2.0, and 2.1 Specifications ● Handles LIN frame transmission and reception without CPU intervention ● LIN features ● ● – Autonomous LIN frame handling – Message buffer to store Identifier and up to 8 data bytes – Supports message length as long as 64 bytes – Detection and flagging of LIN errors: Sync field; Delimiter; ID parity; Bit; Framing; Checksum and Time-out errors – Classic or extended checksum calculation – Configurable Break duration as long as 36-bit times – Programmable Baud rate prescalers (13-bit mantissa, 4-bit fractional) – Diagnostic features: Loop back; Self Test; LIN bus stuck dominant detection – Interrupt-driven operation with 16 interrupt sources LIN slave mode features – Autonomous LIN header handling – Autonomous LIN response handling UART mode – Full-duplex operation – Standard non return-to-zero (NRZ) mark/space format – Data buffers with 4-byte receive, 4-byte transmit – Configurable word length (8-bit or 9-bit words) – Error detection and flagging – Parity, Noise and Framing errors – Interrupt-driven operation with four interrupt sources – Separate transmitter and receiver CPU interrupt sources – 16-bit programmable baud-rate modulus counter and 16-bit fractional – 2 receiver wake-up methods Doc ID 18340 Rev 3 21/104 Introduction 1.5.22 SPC56xP54x, SPC56xP60x Deserial serial peripheral interface (DSPI) The deserial serial peripheral interface (DSPI) module provides a synchronous serial interface for communication between the SPC56xP54/60 MCU and external devices. The DSPI modules provide these features: 1.5.23 ● Full duplex, synchronous transfers ● Master or slave operation ● Programmable master bit rates ● Programmable clock polarity and phase ● End-of-transmission interrupt flag ● Programmable transfer baud rate ● Programmable data frames from 4 to 16 bits ● Up to 28 chip select lines available – 8 each on DSPI_0 and DSPI_1 – 4 each on DSPI_2, DSPI_3, and DSPI_4 ● 8 clock and transfer attributes registers ● Chip select strobe available as alternate function on one of the chip select pins for deglitching ● FIFOs for buffering up to 5 transfers on the transmit and receive side ● Queueing operation possible through use of the eDMA ● General purpose I/O functionality on pins when not used for SPI eTimer Two eTimer modules are provided, each with six 16-bit general purpose up/down timer/counter per module. The following features are implemented: ● ● 22/104 Individual channel capability – Input capture trigger – Output compare – Double buffer (to capture rising edge and falling edge) – Separate prescaler for each counter – Selectable clock source – 0% to 100% pulse measurement – Rotation direction flag (Quad decoder mode) Maximum count rate – Equals peripheral clock/2 — for external event counting – Equals peripheral clock — for internal clock counting ● Cascadeable counters ● Programmable count modulo ● Quadrature decode capabilities ● Counters can share available input pins ● Count once or repeatedly ● Preloadable counters ● Pins available as GPIO when timer functionality not in use Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x 1.5.24 Introduction Analog-to-digital converter (ADC) The ADC module provides the following features: Analog part: ● 1 on-chip analog-to-digital converter ● 10-bit AD resolution ● 1 sample and hold unit per ADC ● Conversion time, including sampling time, less than 1 s (at full precision) ● Typical sampling time is 150 ns min. (at full precision) ● Differential non-linearity error (DNL) ±1 LSB ● Integral non-linearity error (INL) ±1.5 LSB ● Total unadjusted error (TUE) <3 LSB ● Single-ended input signal range from 0 to 3.3 V / 5.0 V ● ADC and its reference can be supplied with a voltage independent from VDDIO ● ADC supply can be equal or higher than VDDIO ● ADC supply and the ADC reference are not independent from each other (they are internally bonded to the same pad) ● Sample times of 2 (default), 8, 64, or 128 ADC clock cycles Digital part: ● 27 input channels (26 + 1 internally connected) ● 4 analog watchdogs to compare ADC results against predefined levels (low, high, range) before results are stored ● 2 operating modes: Normal mode and CTU control mode ● Normal mode features ● 1.5.25 – Register-based interface with the CPU: control register, status register, 1 result register per channel – ADC state machine managing 3 request flows: regular command, hardware injected command, and software injected command – Selectable priority between software and hardware injected commands – DMA compatible interface CTU control mode features – Triggered mode only – 4 independent result queues (2 × 16 entries, 2 × 4 entries) – Result alignment circuitry (left justified; right justified) – 32-bit read mode allows to have channel ID on one of the 16-bit part – DMA compatible interfaces Cross triggering unit (CTU) The Cross Triggering Unit (CTU) allows automatic generation of ADC conversion requests on user selected conditions with minimized CPU load for dynamic configuration. Doc ID 18340 Rev 3 23/104 Introduction SPC56xP54x, SPC56xP60x It implements the following features: 1.5.26 1.5.27 ● Double buffered trigger generation unit with up to eight independent triggers generated from external triggers ● Trigger generation unit configurable in sequential mode or in triggered mode ● Each Trigger can be appropriately delayed to compensate the delay of external low pass filter ● Double buffered global trigger unit allowing eTimer synchronization and/or ADC command generation ● Double buffered ADC command list pointers to minimize ADC-trigger unit update ● Double buffered ADC conversion command list with up to 24 ADC commands ● Each trigger has the capability to generate consecutive commands ● ADC conversion command allows to control ADC channel from each ADC, single or synchronous sampling, independent result queue selection Cyclic redundancy check (CRC) ● 3 contexts for the concurrent CRC computation ● Separate CRC engine for each context ● Zero-wait states during the CRC computation (pipeline scheme) ● 3 hard-wired polynomials (CRC-8 VDA CAN, CRC-32 ethernet and CRC-16-CCITT) ● Support for byte/half-word/word width of the input data stream ● Support for expected and actual CRC comparison Nexus development interface (NDI) The NDI block provides real-time development support capabilities for the SPC56xP54/60 Power Architecture based MCU in compliance with the IEEE-ISTO 5001-2003 standard. This development support is supplied for MCUs without requiring external address and data pins for internal visibility. The NDI block is an integration of several individual Nexus blocks that are selected to provide the development support interface for this device. The NDI block interfaces to the host processor and internal buses to provide development support as per the IEEE-ISTO 5001-2003 Class 2+ standard. The development support provided includes access to the MCU’s internal memory map and access to the processor’s internal registers during run time. 24/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Introduction The Nexus Interface provides the following features: ● Configured via the IEEE 1149.1 ● All Nexus port pins operate at VDDIO (no dedicated power supply) ● Nexus 2+ features supported ● ● – Static debug – Watchpoint messaging – Ownership trace messaging – Program trace messaging – Real time read/write of any internally memory mapped resources through JTAG pins – Overrun control, which selects whether to stall before Nexus overruns or keep executing and allow overwrite of information – Watchpoint triggering, watchpoint triggers program tracing – DDR Auxiliary Output Port – 4 MDO (Message Data Out) pins – MCKO (Message Clock Out) pin – 2 MSEO (Message Start/End Out) pins – EVTO (Event Out) pin Auxiliary Input Port – 1.5.28 EVTI (Event In) pin IEEE 1149.1 (JTAG) controller The JTAG controller (JTAGC) block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant with the IEEE standard. The JTAG controller provides the following features: ● IEEE Test Access Port (TAP) interface with four pins (TDI, TMS, TCK, TDO) ● Selectable modes of operation include JTAGC/debug or normal system operation. ● A 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions: – ● BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PRELOAD A 5-bit instruction register that supports the additional following public instructions: – ACCESS_AUX_TAP_NPC, ACCESS_AUX_TAP_CORE0, ACCESS_AUX_TAP_CORE1, ACCESS_AUX_TAP_NASPS_0, ACCESS_AUX_TAP_NASPS_1 ● Three test data registers: a bypass register, a boundary scan register, and a device identification register. ● A TAP controller state machine that controls the operation of the data registers, instruction register and associated circuitry. Doc ID 18340 Rev 3 25/104 Introduction 1.5.29 SPC56xP54x, SPC56xP60x On-chip voltage regulator (VREG) The on-chip voltage regulator module provides the following features: 26/104 ● Uses external NPN transistor ● Regulates external 3.3 V to 5.0 V down to 1.2 V for the core logic ● Low voltage detection on the internal 1.2 V and I/O voltage 3.3 V Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Package pinouts and signal descriptions 2 Package pinouts and signal descriptions 2.1 Package pinouts The LQFP pinouts are shown in the following figures. LQFP176 pinout (top view)(a) 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 PA[15] PA[14] PC[6] PG[1] RDY MDO11 VSS_HV_IO4 VDD_HV_IO4 PD[2] PF[3] MDO10 NC NC NC PB[6] PF[2] PA[13] PF[1] PA[9] PF[0] VSS_LV_COR2 VDD_LV_COR2 PC[8] PD[4] PD[3] VSS_HV_IO3 VDD_HV_IO3 PD[0] PC[15] PC[9] PA[12] PE[15] PA[11] PE[14] PA[10] PE[13] PB[3] PF[14] PB[2] PF[15] PF[13] PC[10] PB[1] PB[0] Figure 2. NMI PA[6] PD[1] PF[4] 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 LQFP176 PA[4] VPP_TEST PF[12] PD[14] PG[3] PC[14] PG[2] PC[13] PG[4] PD[12] PG[6] VDD_HV_FL VSS_HV_FL PD[13] VSS_LV_COR1 VDD_LV_COR1 PA[3] VDD_HV_IO2 VSS_HV_IO2 NC MDO9 MDO8 MDO7 VSS_HV_IO6 VDD_HV_IO6 TDO TCK TMS TDI PG[5] PA[2] PG[7] PC[12] NC NC PG[8] PC[11] PG[9] PD[11] PG[10] PD[10] PG[11] PA[1] PA[0] VDD_LV_REGCOR NC NC VSS_LV_REGCOR VDD_HV_REG NC NC PD[7] PG[0] PE[1] PE[3] PC[1] PE[4] PB[7] PE[5] PC[2] PE[6] PB[8] PE[7] PE[2] NC VREG_BYPASS PB[9] PB[10] PB[11] PB[12] VDD_HV_AD VSS_HV_AD PD[15] PE[8] PB[13] PE[9] PB[15] NC NC NC NC PE[10] PB[14] PE[11] PC[0] PE[12] PE[0] BCTRL 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 VDD_HV_IO5 VSS_HV_IO5 MDO4 MDO5 MDO6 NC NC NC PF[5] VDD_HV_IO0 VSS_HV_IO0 PF[6] MDO0 PA[7] PC[4] PA[8] PC[5] PA[5] PC[7] PC[3] VSS_LV_COR0 VDD_LV_COR0 PF[7] PF[8] VDD_HV_IO1 VSS_HV_IO1 PF[9] PF[10] PF[11] PD[9] VDD_HV_OSC VSS_HV_OSC XTAL EXTAL RESET PD[8] PD[5] PD[6] VSS_LV_COR3 VDD_LV_COR3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 a. Software development package only. Not available for production. Doc ID 18340 Rev 3 27/104 Package pinouts and signal descriptions LQFP144 pinout (top view)(b) NMI PA[6] PD[1] PF[4] PF[5] VDD_HV_IO0 VSS_HV_IO0 PF[6] MDO PA[7] PC[4] PA[8] PC[5] PA[5] PC[7] PC[3] VSS_LV_COR0 VDD_LV_COR0 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 LQFP144 b. Availability of port pin alternate functions depends on product selection 28/104 Doc ID 18340 Rev 3 VDD_LV_REGCOR VSS_LV_REGCOR VDD_HV_REG PD[15] PE[8] PB[13] PE[9] PB[15] PE[10] PB[14] PE[11] PC[0] PE[12] PE[0] BCTRL VREG_BYPASS PB[9] PB[10] PB[11] PB[12] VDD_HV_AD VSS_HV_AD PD[7] PG[0] PE[1] PE[3] PC[1] PE[4] PB[7] PE[5] PC[2] PE[6] PB[8] PE[7] PE[2] NC 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 PF[7] PF[8] VDD_HV_IO1 VSS_HV_IO1 PF[9] PF[10] PF[11] PD[9] VDD_HV_OSC VSS_HV_OSC XTAL EXTAL RESET PD[8] PD[5] PD[6] VSS_LV_COR3 VDD_LV_COR3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 PA[15] PA[14] PC[6] PG[1] PD[2] PF[3] PB[6] PF[2] PA[13] PF[1] PA[9] PF[0] VSS_LV_COR2 VDD_LV_COR2 PC[8] PD[4] PD[3] VSS_HV_IO3 VDD_HV_IO3 PD[0] PC[15] PC[9] PA[12] PE[15] PA[11] PE[14] PA[10] PE[13] PB[3] PF[14] PB[2] PF[15] PF[13] PC[10] PB[1] PB[0] Figure 3. SPC56xP54x, SPC56xP60x PA[4] VPP_TEST PF[12] PD[14] PG[3] PC[14] PG[2] PC[13] PG[4] PD[12] PG[6] VDD_HV_FL VSS_HV_FL PD[13] VSS_LV_COR1 VDD_LV_COR1 PA[3] VDD_HV_IO2 VSS_HV_IO2 TDO TCK TMS TDI PG[5] PA[2] PG[7] PC[12] PG[8] PC[11] PG[9] PD[11] PG[10] PD[10] PG[11] PA[1] PA[0] SPC56xP54x, SPC56xP60x Package pinouts and signal descriptions LQFP100 pinout (top view)(c) 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 PA[15] PA[14] PC[6] PD[2] PB[6] PA[13] PA[9] VSS_LV_COR2 VDD_LV_COR2 PC[8] PD[4] PD[3] VSS_HV_IO3 VDD_HV_IO3 PD[0] PC[15] PC[9] PA[12] PA[11] PA[10] PB[3] PB[2] PC[10] PB[1] PB[0] Figure 4. NMI PA[6] PD[1] PA[7] PC[4] PA[8] PC[5] PA[5] PC[7] PC[3] LQFP100 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 PA[4] VPP TEST PD[14] PC[14] PC[13] PD[12] VDD_HV_FL VSS_HV_FL PD[13] VSS_LV_COR1 VDD_LV_COR1 PA[3] VDD_HV_IO2 VSS_HV_IO2 TDO TCK TMS TDI PA[2] PC[12] PC[11] PD[11] PD[10] PA[1] PA[0] 2.2 VDD_LV_REGCOR VSS_LV_REGCOR VDD_HV_REG VREG_BYPASS PB[9] PB[10] PB[11] PB[12] VDD_HV_AD VSS_HV_AD PD[15] PB[13] PB[15] PB[14] PC[0] PE[0] BCTRL PD[7] PE[1] PC[1] PB[7] PC[2] PB[8] PE[2] NC 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VSS_LV_COR0 VDD_LV_COR0 VDD_HV_IO1 VSS_HV_IO1 PD[9] VDD_HV_OSC VSS_HV_OSC XTAL EXTAL RESET PD[8] PD[5] PD[6] VSS_LV_COR3 VDD_LV_COR3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Pin descriptions The following sections provide signal descriptions and related information about the functionality and configuration of the SPC56xP54/60 devices. 2.2.1 Power supply and reference voltage pins Table 5 lists the power supply and reference voltage for the SPC56xP54/60 devices. Table 5. Supply pins Supply Symbol Pin Description LQFP 100 LQFP 144 LQFP 176(1) 47 69 81 50 72 86 VREG control and power supply pins BCTRL Voltage regulator external NPN Ballast base control pin VDD_HV_REG (3.3 V or Voltage regulator supply voltage 5.0 V) c. Availability of port pin alternate functions depends on product selection Doc ID 18340 Rev 3 29/104 Package pinouts and signal descriptions Table 5. SPC56xP54x, SPC56xP60x Supply pins (continued) Supply Pin LQFP 100 LQFP 144 LQFP 176(1) VDD_LV_REGCOR 1.2 V decoupling(2) pins for core logic supply and voltage regulator feedback. Decoupling capacitor must be connected between this pins and VSS_LV_REGCOR. 48 70 82 VSS_LV_REGCOR 1.2 V decoupling(2) pins for core logic GND and voltage regulator feedback. Decoupling capacitor must be connected between this pins and VDD_LV_REGCOR. 49 71 85 Symbol Description ADC0 reference and supply voltage VDD_HV_AD ADC supply and high reference voltage 39 56 64 VSS_HV_AD ADC ground and low reference voltage 40 57 65 Power supply pins (3.3 V or 5.0 V) VDD_HV_IO0 Input/Output supply voltage — 6 14 VSS_HV_IO0 Input/Output ground — 7 15 VDD_HV_IO1 Input/Output supply voltage 13 21 29 VSS_HV_IO1 Input/Output ground 14 22 30 VDD_HV_IO2 Input/Output supply voltage 63 91 115 VSS_HV_IO2 Input/Output ground 62 90 114 VDD_HV_IO3 Input/Output supply voltage 87 126 150 VSS_HV_IO3 Input/Output ground 88 127 151 VDD_HV_IO4 Input/Output supply voltage — — 169 VSS_HV_IO4 Input/Output ground — — 170 VDD_HV_IO5 Input/Output supply voltage — — 5 VSS_HV_IO5 Input/Output ground — — 6 VDD_HV_IO6 Input/Output supply voltage — — 108 VSS_HV_IO6 Input/Output ground — — 109 VDD_HV_FL Code and data flash supply voltage 69 97 121 VSS_HV_FL Code and data flash supply ground 68 96 120 VDD_HV_OSC Crystal oscillator amplifier supply voltage 16 27 35 VSS_HV_OSC Crystal oscillator amplifier ground 17 28 36 Power supply pins (1.2 V) VDD_LV_COR0 1.2 V Decoupling pins for core logic supply. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR0 pin. 12 18 26 VSS_LV_COR0 1.2 V Decoupling pins for core logic GND. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR0 pin. 11 17 25 30/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Table 5. Package pinouts and signal descriptions Supply pins (continued) Supply Pin Symbol Description LQFP 100 LQFP 144 LQFP 176(1) VDD_LV_COR1 1.2 V Decoupling pins for core logic supply. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR1 pin. 65 93 117 VSS_LV_COR1 1.2 V Decoupling pins for core logic GND. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR1 pin. 66 94 118 VDD_LV_COR2 1.2 V Decoupling pins for core logic supply. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR2 pin. 92 131 155 VSS_LV_COR2 1.2 V Decoupling pins for core logic GND. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR 2 pin. 93 132 156 VDD_LV_COR3 1.2 V Decoupling pins for core logic supply. Decoupling capacitor must be connected between these pins and the nearest VSS_LV_COR3 pin. 25 36 44 VSS_LV_COR3 1.2 V Decoupling pins for core logic GND. Decoupling capacitor must be connected between these pins and the nearest VDD_LV_COR 3 pin. 24 35 43 1. LQFP176 available only as development package. 2. See datasheet Voltage Regulator Electrical Characteristics section for more details. 2.2.2 System pins Table 6 and Table 7 contain information on pin functions for the SPC56xP54/60 devices. The pins listed in Table 6 are single-function pins. The pins shown in Table 7 are multi-function pins, programmable via their respective Pad Configuration Register (PCR) values. Table 6. Symbol System pins Description Pad Speed(1) Pin SRC=0 SRC=1 LQFP LQFP LQFP 100 144 176(2) Direction Dedicated pins MDO0 Nexus Message Data Output—line 0 Output Only Fast — 9 17 MDO4 Nexus Message Data Output—line 4 Output Only Fast — — 7 MDO5 Nexus Message Data Output—line 5 Output Only Fast — — 8 MDO6 Nexus Message Data Output—line 6 Output Only Fast — — 9 Doc ID 18340 Rev 3 31/104 Package pinouts and signal descriptions Table 6. SPC56xP54x, SPC56xP60x System pins (continued) Symbol Description Pad Speed(1) Pin SRC=0 SRC=1 LQFP LQFP LQFP 100 144 176(2) Direction MDO7 Nexus Message Data Output—line 7 Output Only Fast — — 110 MDO8 Nexus Message Data Output—line 8 Output Only Fast — — 111 MDO9 Nexus Message Data Output—line 9 Output Only Fast — — 112 MDO10 Nexus Message Data Output—line 10 Output Only Fast — — 166 MDO11 Nexus Message Data Output—line 11 Output Only Fast — — 171 RDY Nexus ready output Output Only — — — — 172 NMI Non-Maskable Interrupt Input Only — — 1 1 1 XTAL Analog output of the oscillator amplifier circuit. Needs to be grounded if oscillator is used in bypass mode. — — — 18 29 37 EXTAL Analog input of the oscillator amplifier circuit, when the oscillator is not in bypass mode. Analog input for the clock generator when the oscillator is in bypass mode. — — — 19 30 38 TMS(3) JTAG state machine control Input Only — — 59 87 105 TCK JTAG clock Input Only — — 60 88 106 TDI(3) JTAG data input Input Only — — 58 86 104 TDO(3) JTAG data output Output Only — — 61 89 107 Bidirectional Medium — 20 31 39 (3) Reset pin RESET(4) Bidirectional reset with Schmitt trigger characteristics and noise filter Test pin VPP TEST Pin for testing purpose only. To be tied to ground in normal operating mode. — — — 74 107 131 VREG_BYPASS Pin for testing purpose only. To be tied to ground in normal operating mode. — — — 34 51 59 1. SRC values refer to the value assigned to the Slew Rate Control bits of the pad configuration register. 2. LQFP176 available only as development package. 3. In this pin there is an internal pull, refer to JTAGC chapter in the device reference manual for pull direction. 4. Its configuration can be set up by the PCR[108] register inside the SIU module. See SIUL chapter in the device reference manual. 32/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x 2.2.3 Package pinouts and signal descriptions Pin muxing Table 7 defines the pin list and muxing for the SPC56xP54/60 devices relative to Fullfeatured version. Each row of Table 7 shows all the possible ways of configuring each pin, via “alternate functions”. The default function assigned to each pin after reset is the ALT0 function. Pins marked as external interrupt capable can also be used to resume from STOP and HALT mode. SPC56xP54/60 devices provide four main I/O pad types depending on the associated functions: ● Slow pads are the most common, providing a compromise between transition time and low electromagnetic emission. ● Medium pads provide fast enough transition for serial communication channels with controlled current to reduce electromagnetic emission. ● Fast pads provide maximum speed. They are used for improved NEXUS debugging capability. ● Symmetric pads are designed to meet FlexRay requirements. Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance. Table 7. Port pin Pin muxing(1) PCR register Alternate function (2),(3) Functions Peripheral (4) I/O direction (5) Pad speed(6) Pin SRC = 0 SRC = 1 LQFP LQFP LQFP 100 144 176(7) Port A A[0] A[1] A[2](8) PCR[0] ALT0 ALT1 ALT2 ALT3 — GPIO[0] ETC[0] SCK_2 F[0] EIRQ[0] SIUL eTimer_0 DSPI_2 FCCU SIUL I/O I/O I/O O I Slow Medium 51 73 89 PCR[1] ALT0 ALT1 ALT2 ALT3 — GPIO[1] ETC[1] SOUT_2 F[1] EIRQ[1] SIUL eTimer_0 DSPI_2 FCCU SIUL I/O I/O O O I Slow Medium 52 74 90 PCR[2] ALT0 ALT1 ALT2 ALT3 — — — GPIO[2] ETC[2] CS3 — SIN_2 ABS[0] EIRQ[2] SIUL eTimer_0 DSPI_4 — DSPI_2 MC_RGM SIUL I/O I/O O — I I I Slow Medium 57 84 102 Doc ID 18340 Rev 3 33/104 Package pinouts and signal descriptions Table 7. Port pin A[3](8) A[4](8) A[5] A[6] A[7] A[8] A[9] 34/104 SPC56xP54x, SPC56xP60x Pin muxing(1) (continued) PCR register Alternate function (2),(3) Functions (4) I/O direction Peripheral (5) Pad speed(6) Pin SRC = 0 SRC = 1 LQFP LQFP LQFP 100 144 176(7) PCR[3] ALT0 ALT1 ALT2 ALT3 — — GPIO[3] ETC[3] CS0_2 — ABS[1] EIRQ[3] SIUL eTimer_0 DSPI_2 — MC_RGM SIUL I/O I/O I/O — I I Slow Medium 64 92 116 PCR[4] ALT0 ALT1 ALT2 ALT3 — — GPIO[4] ETC[0] CS1_2 ETC[4] FAB EIRQ[4] SIUL eTimer_1 DSPI_2 eTimer_0 MC_RGM SIUL I/O I/O O I/O I I Slow Medium 75 108 132 PCR[5] ALT0 ALT1 ALT2 ALT3 — GPIO[5] CS0_1 ETC[5] CS7_0 EIRQ[5] SIUL DSPI_1 eTimer_1 DSPI_0 SIUL I/O I/O I/O O I Slow Medium 8 14 22 PCR[6] ALT0 ALT1 ALT2 ALT3 — GPIO[6] SCK_1 CS2_4 — EIRQ[6] SIUL DSPI_1 DSPI_4 — SIUL I/O I/O I/O — I Slow Medium 2 2 2 PCR[7] ALT0 ALT1 ALT2 ALT3 — GPIO[7] SOUT_1 CS1_4 — EIRQ[7] SIUL DSPI_1 DSPI_4 — SIUL I/O O I/O — I Slow Medium 4 10 18 PCR[8] ALT0 ALT1 ALT2 ALT3 — — GPIO[8] — CS0_4 — SIN_1 EIRQ[8] SIUL — DSPI_4 — DSPI_1 SIUL I/O — I/O — I I Slow Medium 6 12 20 PCR[9] ALT0 ALT1 ALT2 ALT3 — GPIO[9] CS1_2 — — SIN_4 SIUL DSPI_2 — — DSPI_4 I/O O — — I Slow Medium 94 134 158 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Table 7. Port pin A[10] A[11] A[12] A[13] A[14] A[15] Package pinouts and signal descriptions Pin muxing(1) (continued) PCR register Alternate function (2),(3) Functions (4) I/O direction Peripheral (5) Pad speed(6) Pin SRC = 0 SRC = 1 LQFP LQFP LQFP 100 144 176(7) PCR[10] ALT0 ALT1 ALT2 ALT3 — GPIO[10] CS0_2 — — EIRQ[9] SIUL DSPI_2 — — SIUL I/O I/O — — I Slow Medium 81 118 142 PCR[11] ALT0 ALT1 ALT2 ALT3 — GPIO[11] SCK_2 — — EIRQ[10] SIUL DSPI_2 — — SIUL I/O I/O — — I Slow Medium 82 120 144 PCR[12] ALT0 ALT1 ALT2 ALT3 — GPIO[12] SOUT_2 — — EIRQ[11] SIUL DSPI_2 — — SIUL I/O O — — I Slow Medium 83 122 146 PCR[13] ALT0 ALT1 ALT2 ALT3 — — GPIO[13] CS4_1 — — SIN_2 EIRQ[12] SIUL DSPI_1 — — DSPI_2 SIUL I/O — — — I I Slow Medium 95 136 160 PCR[14] ALT0 ALT1 ALT2 ALT3 — GPIO[14] TXD ETC[4] CS5_1 EIRQ[13] SIUL Safety Port eTimer_1 DSPI_1 SIUL I/O O I/O O I Slow Medium 99 143 175 PCR[15] ALT0 ALT1 ALT2 ALT3 — — GPIO[15] CS6_1 ETC[5] — RXD EIRQ[14] SIUL DSPI_1 eTimer_1 — Safety Port SIUL I/O O I/O — I I Slow Medium 100 144 176 I/O O I/O — I Slow Medium 76 109 133 Port B B[0] PCR[16] ALT0 ALT1 ALT2 ALT3 — GPIO[16] TXD ETC[2] DEBUG[0] EIRQ[15] SIUL FlexCAN_0 eTimer_1 SSCM SIUL Doc ID 18340 Rev 3 35/104 Package pinouts and signal descriptions Table 7. Port pin B[1] B[2] B[3] B[6] Pin muxing(1) (continued) PCR register Alternate function (2),(3) B[8] B[9] 36/104 Functions (4) I/O direction Peripheral (5) Pad speed(6) Pin SRC = 0 SRC = 1 LQFP LQFP LQFP 100 144 176(7) PCR[17] ALT0 ALT1 ALT2 ALT3 — — GPIO[17] CS7_1 ETC[3] DEBUG[1] RXD EIRQ[16] SIUL DSPI_1 eTimer_1 SSCM FlexCAN_0 SIUL I/O O I/O — I I Slow Medium 77 110 134 PCR[18] ALT0 ALT1 ALT2 ALT3 — GPIO[18] TXD SOUT_4 DEBUG[2] EIRQ[17] SIUL LINFlex_0 DSPI_4 SSCM SIUL I/O O I/O — I Slow Medium 79 114 138 PCR[19] ALT0 ALT1 ALT2 ALT3 — GPIO[19] — SCK_4 DEBUG[3] RXD SIUL — DSPI_4 SSCM LINFlex_0 I/O — I/O — I Slow Medium 80 116 140 SIUL MC_CGL DSPI_2 MC_CGL I/O O O O Slow Medium 96 138 162 SIUL I PCR[22] ALT0 ALT1 ALT2 ALT3 — B[7] SPC56xP54x, SPC56xP60x GPIO[22] clk_out CS2_2 clk_out_div256 EIRQ[18] PCR[23] ALT0 ALT1 ALT2 ALT3 — — GPIO[23] — — — AN[0] RXD SIUL — — Input Only — ADC_0 LINFlex_0 — — 29 43 51 PCR[24] ALT0 ALT1 ALT2 ALT3 — — GPIO[24] — — — AN[1] ETC[5] SIUL — — — ADC_0 eTimer_0 Input Only — — 31 47 55 PCR[25] ALT0 ALT1 ALT2 ALT3 — GPIO[25] — — — AN[11] SIUL — — — ADC_0 Input Only — — 35 52 60 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Table 7. Port pin B[10] B[11] B[12] B[13] B[14] B[15] Package pinouts and signal descriptions Pin muxing(1) (continued) PCR register Alternate function (2),(3) Functions I/O direction Peripheral (4) (5) Pad speed(6) Pin SRC = 0 SRC = 1 LQFP LQFP LQFP 100 144 176(7) PCR[26] ALT0 ALT1 ALT2 ALT3 — GPIO[26] — — — AN[12] SIUL — — — ADC_0 Input Only — — 36 53 61 PCR[27] ALT0 ALT1 ALT2 ALT3 — GPIO[27] — — — AN[13] SIUL — — — ADC_0 Input Only — — 37 54 62 PCR[28] ALT0 ALT1 ALT2 ALT3 — GPIO[28] — — — AN[14] SIUL — — — ADC_0 Input Only — — 38 55 63 PCR[29] ALT0 ALT1 ALT2 ALT3 — — GPIO[29] — — — AN[16] RXD SIUL — — Input Only — ADC_0 LINFlex_1 — — 42 60 68 PCR[30] ALT0 ALT1 ALT2 ALT3 — — — GPIO[30] — — — AN[17] ETC[4] EIRQ[19] SIUL — — — ADC_0 eTimer_0 SIUL Input Only — — 44 64 76 PCR[31] ALT0 ALT1 ALT2 ALT3 — — GPIO[31] — — — AN[18] EIRQ[20] SIUL — — — ADC_0 SIUL Input Only — — 43 62 70 — — 45 66 78 Port C C[0] PCR[32] ALT0 ALT1 ALT2 ALT3 — GPIO[32] — — — AN[19] SIUL — — — ADC_0 Input Only Doc ID 18340 Rev 3 37/104 Package pinouts and signal descriptions Table 7. Port pin C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] 38/104 SPC56xP54x, SPC56xP60x Pin muxing(1) (continued) PCR register Alternate function (2),(3) Functions Peripheral (4) I/O direction (5) Pad speed(6) Pin SRC = 0 SRC = 1 LQFP LQFP LQFP 100 144 176(7) PCR[33] ALT0 ALT1 ALT2 ALT3 — GPIO[33] — — — AN[2] SIUL — — — ADC_0 Input Only — — 28 41 49 PCR[34] ALT0 ALT1 ALT2 ALT3 — GPIO[34] — — — AN[3] SIUL — — — ADC_0 Input Only — — 30 45 53 PCR[35] ALT0 ALT1 ALT2 ALT3 — GPIO[35] CS1_0 ETC[4] TXD EIRQ[21] SIUL DSPI_0 eTimer_1 LINFlex_1 SIUL I/O O I/O O I Slow Medium 10 16 24 PCR[36] ALT0 ALT1 ALT2 ALT3 — GPIO[36] CS0_0 — DEBUG[4] EIRQ[22] SIUL DSPI_0 — SSCM SIUL I/O I/O — — I Slow Medium 5 11 19 PCR[37] ALT0 ALT1 ALT2 ALT3 — GPIO[37] SCK_0 SCK_4 DEBUG[5] EIRQ[23] SIUL DSPI_0 DSPI_4 SSCM SIUL I/O I/O I/O — I Slow Medium 7 13 21 PCR[38] ALT0 ALT1 ALT2 ALT3 — GPIO[38] SOUT_0 — DEBUG[6] EIRQ[24] SIUL DSPI_0 — SSCM SIUL I/O O — — I Slow Medium 98 142 174 PCR[39] ALT0 ALT1 ALT2 ALT3 — — GPIO[39] — — DEBUG[7] SIN_0 SIN_4 SIUL — — SSCM DSPI_0 DSPI_4 I/O — — — I I Slow Medium 9 15 23 PCR[40] ALT0 ALT1 ALT2 ALT3 GPIO[40] CS1_1 CS1_4 CS6_0 SIUL DSPI_1 DSPI_4 DSPI_0 I/O O O O Slow Medium 91 130 154 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Table 7. Port pin C[9] C[10] C[11] C[12] C[13] C[14] C[15] Package pinouts and signal descriptions Pin muxing(1) (continued) PCR register Alternate function (2),(3) Functions (4) I/O direction Peripheral (5) Pad speed(6) Pin SRC = 0 SRC = 1 LQFP LQFP LQFP 100 144 176(7) PCR[41] ALT0 ALT1 ALT2 ALT3 GPIO[41] CS3_2 CS0_4 — SIUL DSPI_2 DSPI_4 — I/O O I/O — Slow Medium 84 123 147 PCR[42] ALT0 ALT1 ALT2 ALT3 GPIO[42] CS2_2 CS2_4 — SIUL DSPI_2 DSPI_4 — I/O O O — Slow Medium 78 111 135 PCR[43] ALT0 ALT1 ALT2 ALT3 GPIO[43] ETC[4] CS2_2 CS0_3 SIUL eTimer_0 DSPI_2 DSPI_3 I/O I/O O I/O Slow Medium 55 80 96 PCR[44] ALT0 ALT1 ALT2 ALT3 GPIO[44] ETC[5] CS3_2 CS1_3 SIUL eTimer_0 DSPI_2 DSPI_3 I/O I/O O O Slow Medium 56 82 100 PCR[45] ALT0 ALT1 ALT2 ALT3 — — GPIO[45] ETC[1] — — EXT_IN RXD SIUL eTimer_1 — — CTU_0 FlexCAN_1 I/O I/O — — I I Slow Medium 71 101 125 PCR[46] ALT0 ALT1 ALT2 ALT3 GPIO[46] ETC[2] EXT_TGR TXD SIUL eTimer_1 CTU_0 FlexCAN_1 I/O I/O O O Slow Medium 72 103 127 PCR[47] ALT0 ALT1 ALT2 ALT3 — GPIO[47] CA_TR_EN ETC[0] — EXT_IN SIUL FlexRay_0 eTimer_1 — CTU_0 I/O O I/O — I Slow Symmetric 85 124 148 I/O O I/O — Slow Symmetric 86 125 149 Port D D[0] PCR[48] ALT0 ALT1 ALT2 ALT3 GPIO[48] CA_TX ETC[1] — SIUL FlexRay_0 eTimer_1 — Doc ID 18340 Rev 3 39/104 Package pinouts and signal descriptions Table 7. Port pin D[1] D[2] D[3] D[4] D[5] D[6] D[7] D[8] D[9] 40/104 SPC56xP54x, SPC56xP60x Pin muxing(1) (continued) PCR register Alternate function (2),(3) Functions (4) I/O direction Peripheral (5) Pad speed(6) Pin SRC = 0 SRC = 1 LQFP LQFP LQFP 100 144 176(7) PCR[49] ALT0 ALT1 ALT2 ALT3 — GPIO[49] CS4_1 ETC[2] EXT_TRG CA_RX SIUL DSPI_1 eTimer_1 CTU_0 FlexRay_0 I/O O I/O O I Slow Medium 3 3 3 PCR[50] ALT0 ALT1 ALT2 ALT3 — GPIO[50] CS5_1 ETC[3] — CB_RX SIUL DSPI_1 eTimer_1 — FlexRay_0 I/O O I/O — I Slow Medium 97 140 168 PCR[51] ALT0 ALT1 ALT2 ALT3 GPIO[51] CB_TX ETC[4] — SIUL FlexRay_0 eTimer_1 — I/O O I/O — Slow Symmetric 89 128 152 PCR[52] ALT0 ALT1 ALT2 ALT3 GPIO[52] CB_TR_EN ETC[5] — SIUL FlexRay_0 eTimer_1 — I/O O I/O — Slow Symmetric 90 129 153 PCR[53] ALT0 ALT1 ALT2 ALT3 GPIO[53] CS3_0 — SOUT_3 SIUL DSPI_0 — DSPI_3 I/O O — O Slow Medium 22 33 41 PCR[54] ALT0 ALT1 ALT2 ALT3 GPIO[54] CS2_0 SCK_3 SOUT_4 SIUL DSPI_0 DSPI_3 DSPI_4 I/O O I/O O Slow Medium 23 34 42 PCR[55] ALT0 ALT1 ALT2 ALT3 — GPIO[55] CS3_1 — CS4_0 SIN_3 SIUL DSPI_1 — DSPI_0 DSPI_3 I/O O — O I Slow Medium 26 37 45 PCR[56] ALT0 ALT1 ALT2 ALT3 GPIO[56] CS2_1 RDY CS5_0 SIUL DSPI_1 nexus_0 DSPI_0 I/O O O O Slow Medium 21 32 40 PCR[57] ALT0 ALT1 ALT2 ALT3 GPIO[57] — TXD CS6_1 SIUL — LINFlex_1 DSPI_1 I/O — O O Slow Medium 15 26 34 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Table 7. Port pin D[10] D[11] D[12] D[13] D[14] D[15] Package pinouts and signal descriptions Pin muxing(1) (continued) PCR register Alternate function (2),(3) Functions (4) I/O direction Peripheral (5) Pad speed(6) Pin SRC = 0 SRC = 1 LQFP LQFP LQFP 100 144 176(7) PCR[58] ALT0 ALT1 ALT2 ALT3 GPIO[58] — CS0_3 — SIUL — DSPI_3 — I/O — I/O — Slow Medium 53 76 92 PCR[59] ALT0 ALT1 ALT2 ALT3 GPIO[59] — CS1_3 SCK_3 SIUL — DSPI_3 DSPI_3 I/O — O I/O Slow Medium 54 78 94 PCR[60] ALT0 ALT1 ALT2 ALT3 — GPIO[60] — — DS7_1 RXD SIUL — — DSPI_1 LINFlex_1 I/O — — O I Slow Medium 70 99 123 PCR[61] ALT0 ALT1 ALT2 ALT3 GPIO[61] — CS2_3 SOUT_3 SIUL — DSPI_3 DSPI_3 I/O — O O Slow Medium 67 95 119 PCR[62] ALT0 ALT1 ALT2 ALT3 — GPIO[62] — CS3_3 — SIN_3 SIUL — DSPI_3 — DSPI_3 I/O — O — I Slow Medium 73 105 129 PCR[63] ALT0 ALT1 ALT2 ALT3 — GPIO[63] — — — AN[20] SIUL — — — ADC_0 Input Only — — 41 58 66 Port E E[0] E[1] PCR[64] ALT0 ALT1 ALT2 ALT3 — GPIO[64] — — — AN[21] SIUL — — — ADC_0 Input Only — — 46 68 80 PCR[65] ALT0 ALT1 ALT2 ALT3 — GPIO[65] — — — AN[4] SIUL — — — ADC_0 Input Only — — 27 39 47 Doc ID 18340 Rev 3 41/104 Package pinouts and signal descriptions Table 7. Port pin E[2] E[3] E[4] E[5] E[6] E[7] E[8] E[9] 42/104 SPC56xP54x, SPC56xP60x Pin muxing(1) (continued) PCR register Alternate function (2),(3) Functions Peripheral (4) I/O direction (5) Pad speed(6) Pin SRC = 0 SRC = 1 LQFP LQFP LQFP 100 144 176(7) PCR[66] ALT0 ALT1 ALT2 ALT3 — GPIO[66] — — — AN[5] SIUL — — — ADC_0 Input Only — — 32 49 57 PCR[67] ALT0 ALT1 ALT2 ALT3 — GPIO[67] — — — AN[6] SIUL — — — ADC_0 Input Only — — — 40 48 PCR[68] ALT0 ALT1 ALT2 ALT3 — GPIO[68] — — — AN[7] SIUL — — — ADC_0 Input Only — — — 42 50 PCR[69] ALT0 ALT1 ALT2 ALT3 — GPIO[69] — — — AN[8] SIUL — — — ADC_0 Input Only — — — 44 52 PCR[70] ALT0 ALT1 ALT2 ALT3 — GPIO[70] — — — AN[9] SIUL — — — ADC_0 Input Only — — — 46 54 PCR[71] ALT0 ALT1 ALT2 ALT3 — GPIO[71] — — — AN[10] SIUL — — — ADC_0 Input Only — — — 48 56 PCR[72] ALT0 ALT1 ALT2 ALT3 — GPIO[72] — — — AN[22] SIUL — — — ADC_0 Input Only — — — 59 67 PCR[73] ALT0 ALT1 ALT2 ALT3 — GPIO[73] — — — AN[23] SIUL — — — ADC_0 Input Only — — — 61 69 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Table 7. Port pin E[10] E[11] E[12] E[13] E[14] E[15] Package pinouts and signal descriptions Pin muxing(1) (continued) PCR register Alternate function (2),(3) Functions I/O direction Peripheral (4) (5) Pad speed(6) Pin SRC = 0 SRC = 1 LQFP LQFP LQFP 100 144 176(7) PCR[74] ALT0 ALT1 ALT2 ALT3 — GPIO[74] — — — AN[24] SIUL — — — ADC_0 Input Only — — — 63 75 PCR[75] ALT0 ALT1 ALT2 ALT3 — GPIO[75] — — — AN[25] SIUL — — — ADC_0 Input Only — — — 65 77 PCR[76] ALT0 ALT1 ALT2 ALT3 — GPIO[76] — — — AN[26] SIUL — — — ADC_0 Input Only — — — 67 79 PCR[77] ALT0 ALT1 ALT2 ALT3 — GPIO[77] SCK_3 — — EIRQ[25] SIUL DSPI_3 — — SIUL I/O I/O — — I Slow Medium — 117 141 PCR[78] ALT0 ALT1 ALT2 ALT3 — GPIO[78] SOUT_3 — — EIRQ[26] SIUL DSPI_3 — — SIUL I/O O — — I Slow Medium — 119 143 PCR[79] ALT0 ALT1 ALT2 ALT3 — — GPIO[79] — — — SIN_3 EIRQ[27] SIUL — — — DSPI_3 SIUL I/O — — — I I Slow Medium — 121 145 I/O O O — I Slow Medium — 133 157 Port F F[0] PCR[80] ALT0 ALT1 ALT2 ALT3 — GPIO[80] DBG_0 CS3_3 — EIRQ[28] SIUL FlexRay_0 DSPI_3 — SIUL Doc ID 18340 Rev 3 43/104 Package pinouts and signal descriptions Table 7. Port pin F[1] F[2] F[3] F[4] F[5] F[6] F[7] F[8] F[9] 44/104 SPC56xP54x, SPC56xP60x Pin muxing(1) (continued) PCR register Alternate function (2),(3) Functions (4) I/O direction Peripheral (5) Pad speed(6) Pin SRC = 0 SRC = 1 LQFP LQFP LQFP 100 144 176(7) PCR[81] ALT0 ALT1 ALT2 ALT3 — GPIO[81] DBG_1 CS2_3 — EIRQ[29] SIUL FlexRay_0 DSPI_3 — SIUL I/O O O — I Slow Medium — 135 159 PCR[82] ALT0 ALT1 ALT2 ALT3 GPIO[82] DBG_2 CS1_3 — SIUL FlexRay_0 DSPI_3 — I/O O O — Slow Medium — 137 161 PCR[83] ALT0 ALT1 ALT2 ALT3 GPIO[83] DBG_3 CS0_3 — SIUL FlexRay_0 DSPI_3 — I/O O I/O — Slow Medium — 139 167 PCR[84] ALT0 ALT1 ALT2 ALT3 — — MDO[3] — — — nexus_0 — — — O — Slow Fast — 4 4 PCR[85] ALT0 ALT1 ALT2 ALT3 — — MDO[2] — — — nexus_0 — — — O — Slow Fast — 5 13 PCR[86] ALT0 ALT1 ALT2 ALT3 GPIO[86] — MDO[1] — SIUL — nexus_0 — I/O — O — Slow Fast — 8 16 PCR[87] ALT0 ALT1 ALT2 ALT3 GPIO[87] — MCKO — SIUL — nexus_0 — I/O — O — Slow Fast — 19 27 PCR[88] ALT0 ALT1 ALT2 ALT3 GPIO[88] — MSEO1 — SIUL — nexus_0 — I/O — O — Slow Fast — 20 28 PCR[89] ALT0 ALT1 ALT2 ALT3 GPIO[89] — MSEO0 — SIUL — nexus_0 — I/O — O — Slow Fast — 23 31 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Table 7. Port pin F[10] F[11] F[12] F[13] F[14] F[15] Package pinouts and signal descriptions Pin muxing(1) (continued) PCR register Alternate function (2),(3) Functions (4) I/O direction Peripheral (5) Pad speed(6) Pin SRC = 0 SRC = 1 LQFP LQFP LQFP 100 144 176(7) PCR[90] ALT0 ALT1 ALT2 ALT3 GPIO[90] — EVTO — SIUL — nexus_0 — I/O — O — Slow Fast — 24 32 PCR[91] ALT0 ALT1 ALT2 ALT3 GPIO[91] EVTI — — SIUL nexus_0 — — I/O I — — Slow Medium — 25 33 PCR[92] ALT0 ALT1 ALT2 ALT3 GPIO[92] ETC[3] — — SIUL eTimer_1 — — I/O I/O — — Slow Medium — 106 130 PCR[93] ALT0 ALT1 ALT2 ALT3 GPIO[93] ETC[4] — — SIUL eTimer_1 — — I/O I/O — — Slow Medium — 112 136 PCR[94] ALT0 ALT1 ALT2 ALT3 GPIO[94] TXD — — SIUL LINFlex_1 — — I/O O — — Slow Medium — 115 139 PCR[95] ALT0 ALT1 ALT2 ALT3 — GPIO[95] — — — RXD SIUL — — — LINFlex_1 I/O — — — I Slow Medium — 113 137 Port G G[0] G[1] PCR[96] ALT0 ALT1 ALT2 ALT3 — GPIO[96] F[0] — — EIRQ[30] SIUL FCCU — — SIUL I/O O — — I Slow Medium — 38 46 PCR[97] ALT0 ALT1 ALT2 ALT3 — GPIO[97] F[1] — — EIRQ[31] SIUL FCCU — — SIUL I/O O — — I Slow Medium — 141 173 Doc ID 18340 Rev 3 45/104 Package pinouts and signal descriptions Table 7. Port pin G[2] G[3] G[4] G[5] G[6] G[7] G[8] G[9] 46/104 SPC56xP54x, SPC56xP60x Pin muxing(1) (continued) PCR register Alternate function (2),(3) Functions (4) I/O direction Peripheral (5) Pad speed(6) Pin SRC = 0 SRC = 1 LQFP LQFP LQFP 100 144 176(7) PCR[98] ALT0 ALT1 ALT2 ALT3 — GPIO[98] — — — SIN_4 SIUL — — — DSPI_4 I/O — — — I Slow Medium — 102 126 PCR[99] ALT0 ALT1 ALT2 ALT3 GPIO[99] — SOUT_4 — SIUL — DSPI_4 — I/O — O — Slow Medium — 104 128 PCR[100] ALT0 ALT1 ALT2 ALT3 GPIO[100] — SCK_4 — SIUL — DSPI_4 — I/O — I/O — Slow Medium — 100 124 PCR[101] ALT0 ALT1 ALT2 ALT3 GPIO[101] — CS0_4 — SIUL — DSPI_4 — I/O — I/O — Slow Medium — 85 103 PCR[102] ALT0 ALT1 ALT2 ALT3 GPIO[102] — CS1_4 — SIUL — DSPI_4 — I/O — O — Slow Medium — 98 122 PCR[103] ALT0 ALT1 ALT2 ALT3 GPIO[103] — CS2_4 — SIUL — DSPI_4 — I/O — O — Slow Medium — 83 101 PCR[104] ALT0 ALT1 ALT2 ALT3 — GPIO[104] — CS3_4 — SIUL — DSPI_4 — I/O — O — Slow Medium — 81 97 PCR[105] ALT0 ALT1 ALT2 ALT3 — GPIO[105] — — — RXD SIUL — — — FlexCAN_1 I/O — — — I Slow Medium — 79 95 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Table 7. Port pin Package pinouts and signal descriptions Pin muxing(1) (continued) PCR register Alternate function (2),(3) Functions (4) I/O direction Peripheral (5) Pad speed(6) Pin SRC = 0 SRC = 1 LQFP LQFP LQFP 100 144 176(7) G[10] PCR[106] ALT0 ALT1 ALT2 ALT3 GPIO[106] — TXD — SIUL — FlexCAN_1 — I/O — O — Slow Medium — 77 93 G[11] PCR[107] ALT0 ALT1 ALT2 ALT3 GPIO[107] — — — SIUL — — — I/O — — — Slow Medium — 75 91 1. This table concerns Full-featured version. Please refer to “SPC56xP54/60 device configuration difference” table for difference between Full-featured, and Airbag configuration. 2. ALT0 is the primary (default) function for each port after reset. 3. Alternate functions are chosen by setting the values of the PCR[PA] bitfields inside the SIU module. PCR[PA] = 00 ALT0; PCR[PA] = 01 ALT1; PCR[PA] = 10 ALT2; PCR[PA] = 11 ALT3. This is intended to select the output functions; to use one of the input-only functions, the PCR[IBE] bit must be written to ‘1’, regardless of the values selected in the PCR[PA] bitfields. For this reason, the value corresponding to an input only function is reported as “—”. 4. Module included on the MCU. 5. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMI[PADSELx] bitfields inside the SIUL module. 6. Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register. 7. LQFP176 available only as development package. 8. Weak pull down during reset. Doc ID 18340 Rev 3 47/104 Electrical characteristics SPC56xP54x, SPC56xP60x 3 Electrical characteristics 3.1 Introduction This section contains electrical characteristics of the device as well as temperature and power considerations. This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages. To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD or VSS). This can be done by the internal pull-up or pull-down, which is provided by the product for most general purpose pins. The parameters listed in the following tables represent the characteristics of the device and its demands on the system. In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller Characteristics is included in the Symbol column. In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol “SR” for System Requirement is included in the Symbol column. Caution: All of the following parameter values can vary depending on the application and must be confirmed during silicon validation, silicon characterization or silicon reliability trial. 3.2 Parameter classification The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 8 are used and the parameters are tagged accordingly in the tables where appropriate. Table 8. Parameter classifications Classification tag Note: 48/104 Tag description P Those parameters are guaranteed during production testing on each individual device. C Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations. T Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category. D Those parameters are derived mainly from simulations. The classification is shown in the column labeled “C” in the parameter tables where appropriate. Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Electrical characteristics 3.3 Absolute maximum ratings Table 9. Absolute maximum ratings(1) Conditions Min Max(2) Unit SR Digital ground — 0 0 V 3.3 V / 5.0 V input/output supply SR voltage with respect to ground (VSS_HV) — –0.3 6.0 V Input/output ground voltage with respect to ground (VSS_HV) — –0.1 0.1 V — –0.3 6.0 VDD_HV_IOx + 0.3 V –0.3 — –0.1 0.1 V — –0.3 6.0 VDD_HV_IOx + 0.3 V –0.3 –0.1 0.1 V – 0.3 6.0 – 0.3 VDD_HV_IOx + 0.3 VDD_HV_REG < 2.7 V – 0.3 VDD_HV_REG + 0.3 VDD_HV_REG > 2.7 V – 0.3 6.0 ADC ground and low reference SR voltage with respect to ground (VSS_HV) — –0.1 0.1 V Slope characteristics on all VDD SR during power up(5) with respect to ground (VSS_HV) — 0.25 250 V/ms — –0.3 6.0 –0.3 VDD_HV_IOx + 0.3 VDD_HV_REG < 2.7 V VSS_HV_AD 0.3 VDD_HV_AD + 0.3 V VDD_HV_REG > 2.7 V VSS_HV_AD VDD_HV_AD V — –10 10 mA Symbol VSS_HV VDD_HV_IOx(3) Parameter VSS_HV_IOx SR VDD_HV_FL 3.3 V / 5.0 V code and data flash SR memory supply voltage with respect to ground (VSS_HV) VSS_HV_FL SR Relative to VDD_HV_IOx Code and data flash memory ground with respect to ground (VSS_HV) VDD_HV_OSC 3.3 V / 5.0 V crystal oscillator SR amplifier supply voltage with respect to ground (VSS_HV) VSS_HV_OSC 3.3 V / 5.0 V crystal oscillator SR amplifier reference voltage with respect to ground (VSS_HV) VDD_HV_REG — 3.3 V / 5.0 V voltage regulator supply SR voltage with respect to ground Relative to (VSS_HV) VDD_HV_IOx VDD_HV_AD VSS_HV_AD TVDD(4) VIN VINAN IINJPAD 3.3 V / 5.0 V ADC supply and high SR reference voltage with respect to ground (VSS_HV) Voltage on any pin with respect to SR ground (VSS_HV_IOx) with respect to ground (VSS_HV) Relative to VDD_HV_IOx — V V Relative to VDD_HV_IOx V SR Analog input voltage SR Injected input current on any pin during overload condition Doc ID 18340 Rev 3 49/104 Electrical characteristics Table 9. SPC56xP54x, SPC56xP60x Absolute maximum ratings(1) (continued) Symbol Parameter Conditions Min Max(2) Unit IINJSUM SR Absolute sum of all injected input currents during overload condition — –50 50 mA IVDD_LV SR Low voltage static current sink through VDD_LV — — 155 mA SR Storage temperature — –55 150 °C SR Junction temperature under bias — –40 150 °C TSTG TJ 1. Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. 2. Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined. 3. The difference between each couple of voltage supplies must be less than 300 mV, |VDD_HV_IOy – VDD_HV_IOx | < 300 mV. 4. Ensure a monotonic supply ramp starting at ground level 5. Guaranteed by device validation Figure 5 shows the constraints of the different power supplies. Figure 5. Power supplies constraints VDD_HV_xxx 6.0V -0.3V VDD_HV_IOx -0.3V 6.0V The SPC56xP54/60 supply architecture provides an ADC supply that is managed independently of standard VDD_HV supply. Figure 6 shows the constraints of the ADC power supply. 50/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Figure 6. Electrical characteristics Independent ADC supply(d) VDD_HV_AD 6.0V -0.3V VDD_HV_REG 2.7V -0.3V 6.0V 3.4 Recommended operating conditions Table 10. Recommended operating conditions (5.0 V) Symbol VSS_HV VDD_HV_IOx(2) Parameter SR Digital ground SR 5.0 V input/output supply voltage VSS_HV_IOx SR Input/output ground voltage VDD_HV_FL 5.0 V code and data flash SR memory supply voltage VSS_HV_FL SR Code and data flash memory ground VDD_HV_OSC 5.0 V crystal oscillator SR amplifier supply voltage VSS_HV_OSC SR 5.0 V crystal oscillator amplifier reference voltage Conditions Min Max(1) Unit — 0 0 V — 4.5 5.5 V — 0 0 V — 4.5 5.5 Relative to VDD_HV_IOx V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 — 0 0 — 4.5 5.5 Relative to VDD_HV_IOx — V V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 0 0 V d. Device design targets the removal of this conditions. To be confirmed by design during device validation. Doc ID 18340 Rev 3 51/104 Electrical characteristics Table 10. SPC56xP54x, SPC56xP60x Recommended operating conditions (5.0 V) (continued) Symbol VDD_HV_REG Parameter 5.0 V voltage regulator SR supply voltage VDD_HV_AD SR VSS_HV_AD SR VDD_LV_CORx (3),(4) VSS_LV_CORx(3) TA Min Max(1) — 4.5 5.5 Relative to VDD_HV_IOx ADC ground and low reference voltage Unit V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 — 4.5 5.0 V ADC supply and high Relative to reference voltage V – 0.1 VDD_HV_REG DD_HV_REG 5.5 V — — 0 0 V — — — V SR Internal reference voltage — 0 0 V SR Internal supply voltage — — — V SR Internal reference voltage — 0 0 V — –40 125 °C VDD_LV_REGCOR(3),(4) SR Internal supply voltage VSS_LV_REGCOR(3) Conditions SR Ambient temperature under bias 1. Parametric figures can be out of specification when voltage drops below 4.5 V, however, guaranteeing the full functionality. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. 2. The difference between each couple of voltage supplies must be less than 100 mV, |VDD_HV_IOy – VDD_HV_IOx | < 100 mV. 3. To be connected to emitter of external NPN. Low voltage supplies are not under user control—these are produced by an on-chip voltage regulator—but for the device to function properly the low voltage grounds (VSS_LV_xxx) must be shorted to high voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected to the external ballast emitter. 4. The low voltage supplies (VDD_LV_xxx) are not all independent. VDD_LV_COR1 and VDD_LV_COR2 are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash memory module. Similarly, VSS_LV_COR1 and VSS_LV_COR2 are internally shorted. VDD_LV_REGCOR and VDD_LV_REGCORx are physically shorted internally, as are VSS_LV_REGCOR and VSS_LV_CORx. Table 11. Recommended operating conditions (3.3 V) Symbol VSS_HV VDD_HV_IOx(2) Parameter SR Digital ground SR 3.3 V input/output supply voltage VSS_HV_IOx SR Input/output ground voltage VDD_HV_FL SR VSS_HV_FL SR Code and data flash memory ground VDD_HV_OSC SR 3.3 V crystal oscillator amplifier supply voltage VSS_HV_OSC SR 52/104 3.3 V code and data flash memory supply voltage 3.3 V crystal oscillator amplifier reference voltage Conditions Min Max(1) Unit — 0 0 V — 3.0 3.6 V — 0 0 V — 3.0 3.6 Relative to VDD_HV_IOx V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 — 0 0 — 3.0 3.6 Relative to VDD_HV_IOx — Doc ID 18340 Rev 3 V V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 0 0 V SPC56xP54x, SPC56xP60x Table 11. Electrical characteristics Recommended operating conditions (3.3 V) (continued) Symbol Parameter 3.3 V voltage regulator SR supply voltage VDD_HV_REG Conditions Min Max(1) — 3.0 3.6 Relative to VDD_HV_IOx — VDD_HV_AD SR VSS_HV_AD SR 3.3 V ADC supply and high reference voltage ADC ground and low reference voltage VSS_LV_REGCOR VDD_LV_CORx(3),(4) VSS_LV_CORx(3) TA V VDD_HV_IOx – 0.1 VDD_HV_IOx + 0.1 3.0 Relative to V – 0.1 VDD_HV_REG DD_HV_REG 5.5 V 5.5 — 0 0 V — — — V SR Internal reference voltage — 0 0 V SR Internal supply voltage — — — V SR Internal reference voltage — 0 0 V — –40 125 °C VDD_LV_REGCOR(3),(4) SR Internal supply voltage (3) Unit SR Ambient temperature under bias 1. Parametric figures can be out of specification when voltage drops below 4.5 V, however, guaranteeing the full functionality. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. 2. The difference between each couple of voltage supplies must be less than 100 mV, |VDD_HV_IOy – VDD_HV_IOx | < 100 mV. 3. To be connected to emitter of external NPN. Low voltage supplies are not under user control—these are produced by an on-chip voltage regulator—but for the device to function properly the low voltage grounds (VSS_LV_xxx) must be shorted to high voltage grounds (VSS_HV_xxx) and the low voltage supply pins (VDD_LV_xxx) must be connected to the external ballast emitter. 4. The low voltage supplies (VDD_LV_xxx) are not all independent. VDD_LV_COR1 and VDD_LV_COR2 are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash memory module. Similarly, VSS_LV_COR1 and VSS_LV_COR2 are internally shorted. VDD_LV_REGCOR and VDD_LV_REGCORx are physically shorted internally, as are VSS_LV_REGCOR and VSS_LV_CORx. Figure 7 shows the constraints of the different power supplies. Doc ID 18340 Rev 3 53/104 Electrical characteristics Figure 7. SPC56xP54x, SPC56xP60x Power supplies constraints(e) VDD_HV_xxx 5.5V 3.3V 3.2V VDD_HV_IOx 3.2V 3.3V 5.5V The SPC56xP54/60 supply architecture provides an ADC supply that is managed independently of standard VDD_HV supply. Figure 8 shows the constraints of the ADC power supply. e. IO AC and DC characteristics are guaranteed only in the range 3.0V–3.6V when PAD3V5V is low, and in the range 4.5V–5.5V when PAD3V5V is high. 54/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Figure 8. Electrical characteristics Independent ADC supply VDD_HV_AD 5.5V 3.0V VDD_HV_REG 3.0V 3.5 Thermal characteristics Table 12. Thermal characteristics for 144-pin LQFP Symbol Parameter D RJA RJB Conditions D Thermal resistance junction-to-ambient, natural convection(1) D junction-to-board(2) Thermal resistance RJCtop D Thermal resistance junction-to-case (top) JB D Junction-to-board, natural convection(4) JC 5.5V D Junction-to-case, natural convection(5) (3) Typical value Unit Single layer board—1s 53.4 °C/W Four layer board—2s2p 43.9 °C/W Four layer board—2s2p 29.6 °C/W Single layer board—1s 9.3 °C/W Operating conditions 29.8 °C/W Operating conditions 1.3 °C/W 1. Junction-to-ambient thermal resistance determined per JEDEC JESD51-7. Thermal test board meets JEDEC specification for this package. 2. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 3. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 4. Thermal characterization parameter indicating the temperature difference between the board and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB. 5. Thermal characterization parameter indicating the temperature difference between the case and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JC. Doc ID 18340 Rev 3 55/104 Electrical characteristics Table 13. Thermal characteristics for 100-pin LQFP Symbol Parameter D RJA SPC56xP54x, SPC56xP60x D Conditions Thermal resistance junction-to-ambient, natural convection(1) (2) Single layer board—1s 47.3 °C/W Four layer board—2s2p 35.6 °C/W Four layer board—2s2p 19.1 °C/W 9.1 °C/W Operating conditions 19.1 °C/W Operating conditions 1.1 °C/W RJB D Thermal resistance junction-to-board RJCtop D Thermal resistance junction-to-case (top)(3) Single layer board—1s JB JC D D Junction-to-board, natural convection Junction-to-case, natural convection (4) (5) Typical value Unit 1. Junction-to-ambient thermal resistance determined per JEDEC JESD51-7. Thermal test board meets JEDEC specification for this package. 2. Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. 3. Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. 4. Thermal characterization parameter indicating the temperature difference between the board and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB. 5. Thermal characterization parameter indicating the temperature difference between the case and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JC. 3.5.1 General notes for specifications at maximum junction temperature An estimation of the chip junction temperature, TJ, can be obtained from Equation 1: Equation 1 TJ = TA + (RJA × PD) where: TA = ambient temperature for the package (oC) RJA = junction to ambient thermal resistance (oC/W) PD = power dissipation in the package (W) The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. When a heat sink is used, the thermal resistance is expressed in Equation 2 as the sum of a junction to case thermal resistance and a case to ambient thermal resistance: Equation 2 RJA = RJC + RCA where: 56/104 RJA = junction to ambient thermal resistance (°C/W) RJC = junction to case thermal resistance (°C/W) RCA = case to ambient thermal resistance (°C/W) Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Electrical characteristics RJC is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, RCA. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (JT) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using Equation 3: Equation 3 TJ = TT + (JT × PD) where: TT = thermocouple temperature on top of the package (°C) JT = thermal characterization parameter (°C/W) PD = power dissipation in the package (W) The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire. References Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134 U.S.A. (408) 943-6900 MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956. JEDEC specifications are available on the WEB at http://www.jedec.org. 1. C.E. Triplett and B. Joiner, An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module, Proceedings of SemiTherm, San Diego, 1998, pp. 47-54. 2. G. Kromann, S. Shidore, and S. Addison, Thermal Modeling of a PBGA for Air-Cooled Applications, Electronic Packaging and Production, pp. 53-58, March 1998. 3. B. Joiner and V. Adams, Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling, Proceedings of SemiTherm, San Diego, 1999, pp. 212-220. Doc ID 18340 Rev 3 57/104 Electrical characteristics SPC56xP54x, SPC56xP60x 3.6 Electromagnetic interference (EMI) characteristics Table 14. EMI testing specifications Parameter Symbol Conditions VDD = 5 V; TA = 25 °C VRE_TEM Radiated emissions, electric field 150 kHz–30 MHz RBW 9 kHz, Step Size 5 kHz 30 MHz–1 GHz RBW 120 kHz, Step Size 80 kHz fOSC/fBUS Frequency Unit 8 MHz crystal 150 kHz–150 MHz 64 MHz bus 150–1000 MHz No PLL frequency IEC Level modulation 18 150 kHz–150 MHz 18 150–1000 MHz 12 IEC Level M — Conditions Value Unit 2000 V 8 MHz crystal 64 MHz bus ±2% PLL frequency modulation Electrostatic discharge (ESD) characteristics Table 15. ESD ratings(1),(2) Parameter dBV 12 M — dBV 3.7 Symbol Level (Max) VESD(HBM) SR Electrostatic discharge (Human Body Model) — VESD(CDM) SR Electrostatic discharge (Charged Device Model) — 750 (corners) V 500 (other) 1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. 2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification 3.8 Power management electrical characteristics 3.8.1 Voltage regulator electrical characteristics The internal voltage regulator requires an external NPN ballast to be connected as shown in Figure 9. Table 16 contains all approved NPN ballast components. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the VDD_HV_REG, BCTRL and VDD_LV_CORx pins to less than LReg, see Table 17. Note: The voltage regulator output cannot be used to drive external circuits. Output pins are used only for decoupling capacitances. VDD_LV_COR must be generated using internal regulator and external NPN transistor. It is not possible to provide VDD_LV_COR through external regulator. For the SPC56xP54/60 microcontroller, capacitors, with total values not below CDEC1, should be placed between VDD_LV_CORx/VSS_LV_CORx close to external ballast transistor emitter. 4 capacitors, with total values not below CDEC2, should be placed close to microcontroller pins between each VDD_LV_CORx/VSS_LV_CORx supply pairs and the 58/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Electrical characteristics VDD_LV_REGCOR/VSS_LV_REGCOR pair . Additionally, capacitors with total values not below CDEC3, should be placed between the VDD_HV_REG/VSS_HV_REG pins close to ballast collector. Capacitors values have to take into account capacitor accuracy, aging and variation versus temperature. All reported information are valid for voltage and temperature ranges described in recommended operating condition, Table 10 and Table 11. Figure 9. Voltage regulator configuration VDD_HV_REG SPC56xP54/60 CDEC3 BJT(1) BCTRL VDD_LV_COR CDEC2 CDEC1 1. Refer to Table 16. Table 16. Approved NPN ballast components Manufacturer Approved derivatives(1) ON Semi BCP68 NXP BCP68-25 Infineon BCP68-25 BCX68 Infineon BCX68-10;BCX68-16;BCX68-25 BC868 NXP BC868 Infineon BC817-16;BC817-25;BC817SU; NXP BC817-16;BC817-25 ST BCP56-16 Infineon BCP56-10;BCP56-16 ON Semi BCP56-10 NXP BCP56-10;BCP56-16 Part BCP68 BC817 BCP56 1. For automotive applications please check with the appropriate transistor vendor for automotive grade certification Doc ID 18340 Rev 3 59/104 Electrical characteristics Table 17. SPC56xP54x, SPC56xP60x Voltage regulator electrical characteristics Value Symbol C Parameter Conditions Unit Min Output voltage under VDD_LV_REGCOR CC P maximum load run supply current configuration CDEC1 SR — Post-trimming 1.15 — 1.32 V BJT from Table 16. 3 capacitances (i.e. X7R or X8R capacitors) with nominal value of 10 µF 19.5 30 — µF BJT BC817, one capacitance of 22 µF 14.3 22 Resulting ESR of all three capacitors of CDEC1 BJT from Table 16. 3x10 µF. Absolute maximum value between 100 kHz and 10 MHz — — 50 m Resulting ESR of the unique capacitor CDEC1 BJT BC817, 1x 22 µF. Absolute maximum value between 100 kHz and 10 MHz 10 — 40 m External decoupling/stability ceramic capacitor 4 capacitances (i.e. X7R or X8R capacitors) with nominal 1200 1760 value of 440 nF — nF 3 capacitances (i.e. X7R or X8R capacitors) with nominal value of 10 µF; CDEC3 has to be equal or greater than CDEC1 19.5 30 — µF — — — 15 nH External decoupling/stability ceramic capacitor µF SR — RREG CDEC2 SR — CDEC3 External decoupling/stability SR — ceramic capacitor on VDD_HV_REG SR — LReg 3.8.2 Typ Max Resulting ESL of VDD_HV_REG, BCTRL and VDD_LV_CORx pins Voltage monitor electrical characteristics The device implements a Power On Reset module to ensure correct power-up initialization, as well as three low voltage detectors to monitor the VDD and the VDD_LV voltage while device is supplied: 60/104 ● POR monitors VDD during the power-up phase to ensure device is maintained in a safe reset state ● LVDHV3 monitors VDD to ensure device reset below minimum functional supply ● LVDHV5 monitors VDD when application uses device in the 5.0V ± 10% range ● LVDLVCOR monitors low voltage digital power domain Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Table 18. Electrical characteristics Low voltage monitor electrical characteristics Symbol Parameter Conditions(1) Value Unit Min Max — 1.5 2.7 V TA = 25°C 1.0 — V VPORH T Power-on reset threshold VPORUP P Supply for functional POR module VREGLVDMOK_H P Regulator low voltage detector high threshold — — 2.95 V VREGLVDMOK_L P Regulator low voltage detector low threshold — 2.6 — V VFLLVDMOK_H P Flash memory low voltage detector high threshold — — 2.95 V VFLLVDMOK_L P Flash memory low voltage detector low threshold — 2.6 — V VIOLVDMOK_H P I/O low voltage detector high threshold — — 2.95 V VIOLVDMOK_L P I/O low voltage detector low threshold — 2.6 — V VIOLVDM5OK_H P I/O 5V low voltage detector high threshold — — 4.4 V VIOLVDM5OK_L P I/O 5V low voltage detector low threshold — 3.8 — V VMLVDDOK_H P Digital supply low voltage detector high — — 1.15 V VMLVDDOK_L P Digital supply low voltage detector low — 1.08 — V 1. VDD = 3.3V ± 10% / 5.0V ± 10%, TA = –40 °C to TA MAX, unless otherwise specified 3.9 Power Up/Down sequencing To prevent an overstress event or a malfunction within and outside the device, the SPC56xP54/60 implements the following sequence to ensure each module is started only when all conditions for switching it ON are available: 1. A POWER_ON module working on voltage regulator supply controls the correct startup of the regulator. This is a key module ensuring safe configuration for all voltage regulator functionality when supply is below 1.5V. Associated POWER_ON (or POR) signal is active low. – Several low voltage detectors, working on voltage regulator supply monitor the voltage of the critical modules (voltage regulator, I/Os, flash memory and low voltage domain). LVDs are gated low when POWER_ON is active. – A POWER_OK signal is generated when all critical supplies monitored by the LVD are available. This signal is active high and released to all modules including I/Os, flash memory and RC16 oscillator needed during power-up phase and reset phase. When POWER_OK is low the associated modules are set into a safe state. Doc ID 18340 Rev 3 61/104 Electrical characteristics SPC56xP54x, SPC56xP60x Figure 10. Power-up typical sequence VPORH VDD_HV_REG VLVDHV3H 3.3V VPOR_UP 0V 3.3V POWER_ON 0V 3.3V LVDM (HV) 0V VMLVDOK_H VDD_LV_REGCOR 1.2V 0V 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator ~1us Internal Reset Generation Module FSM Figure 11. 1.2V 0V P0 P1 1.2V 0V Power-down typical sequence VLVDHV3L VDD_HV_REG VPORH 3.3V 0V 3.3V LVDM (HV) 0V 3.3V POWER_ON 0V 1.2V 0V VDD_LV_REGCOR 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator 1.2V 0V Internal Reset Generation Module FSM IDLE 62/104 P0 Doc ID 18340 Rev 3 1.2V 0V SPC56xP54x, SPC56xP60x Electrical characteristics Figure 12. Brown-out typical sequence VLVDHV3L VLVDHV3H 3.3V VDD_HV_REG 0V 3.3V LVDM (HV) 0V 3.3V POWER_ON 0V 1.2V 0V VDD_LV_REGCOR 3.3V LVDD (LV) 0V 3.3V POWER_OK 0V RC16MHz Oscillator 1.2V 0V ~1us Internal Reset Generation Module FSM IDLE 3.10 P0 P1 1.2V 0V NVUSRO register Portions of the device configuration, such as high voltage supply, and watchdog enable/disable after reset are controlled via bit values in the non-volatile user options register (NVUSRO) register. For a detailed description of the NVUSRO register, please refer to the device reference manual. 3.10.1 NVUSRO[PAD3V5V] field description Table 19 shows how NVUSRO[PAD3V5V] controls the device configuration. Table 19. PAD3V5V field description(1) Value(2) Description 0 High voltage supply is 5.0 V 1 High voltage supply is 3.3 V 1. See the device reference manual for more information on the NVUSRO register. 2. '1' is delivery value. It is part of shadow Flash, thus programmable by customer. The DC electrical characteristics are dependent on the PAD3V5V bit value. Doc ID 18340 Rev 3 63/104 Electrical characteristics SPC56xP54x, SPC56xP60x 3.11 DC electrical characteristics 3.11.1 DC electrical characteristics (5 V) Table 20 gives the DC electrical characteristics at 5 V (4.5 V < VDD_HV_IOx < 5.5 V, NVUSRO[PAD3V5V]=0) as described in Figure 13. Figure 13. I/O input DC electrical characteristics definition VIN VDD VIH VHYS VIL PDIx = ‘1’ (GPDI register of SIUL) PDIx = ‘0’ Table 20. DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0) Symbol Parameter Conditions Min Max Unit VIL D Minimum low level input voltage — –0.1(1) — V VIL P Maximum level input voltage — — 0.35 VDD_HV_IOx V VIH P Minimum high level input voltage — 0.65 VDD_HV_IOx — V (1) D Maximum high level input voltage — — VHYS T Schmitt trigger hysteresis — 0.1 VDD_HV_IOx — V VOL_S P Slow, low level output voltage IOL = 3 mA — 0.1 VDD_HV_IOx V VOH_S P Slow, high level output voltage IOH = –3 mA 0.8VDD_HV_IOx — V VOL_M P Medium, low level output voltage IOL = 3 mA — 0.1 VDD_HV_IOx V VOH_M P Medium, high level output voltage IOH = –3 mA 0.8 VDD_HV_IOx — V VOL_F P Fast, low level output voltage IOL = 3 mA — 0.1 VDD_HV_IOx V VOH_F P Fast, high level output voltage IOH = –3 mA 0.8 VDD_HV_IOx — V — 0.1 VDD_HV_IOx V 0.8 VDD_HV_IOx — V VIH VOL_SYM P Symmetric, low level output voltage IOL = 3 mA VOH_SYM P Symmetric, high level output voltage IOH = –3 mA 64/104 Doc ID 18340 Rev 3 VDD_HV_IOx + 0.1 V SPC56xP54x, SPC56xP60x Table 20. Electrical characteristics DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0) (continued) Symbol Parameter Conditions Min Max VIN = VIL –130 — VIN = VIH — –10 VIN = VIL 10 — VIN = VIH — 130 Unit IPU P Equivalent pull-up current IPD P Equivalent pull-down current IIL P Input leakage current (all bidirectional ports) TA = –40 to 125 °C –1 1 µA IIL P Input leakage current (all ADC input-only ports) TA = –40 to 125 °C –0.5 0.5 µA CIN D Input capacitance — — 10 pF — D RESET, equivalent pull-up current VIN = VIL –130 IPU VIN = VIH — –10 — D VIN = VIL 10 IPD VIN = VIH — 130 RESET, equivalent pull-down current µA µA µA µA 1. “SR” parameter values must not exceed the absolute maximum ratings shown in Table 9. Doc ID 18340 Rev 3 65/104 Electrical characteristics Table 21. SPC56xP54x, SPC56xP60x Supply current (5.0 V, NVUSRO[PAD3V5V]=0) Value Symbol Parameter Conditions Max 64 MHz 90 120 16 MHz 21 37 40 MHz 35 55 64 MHz 48 72 16 MHz 24 41 40 MHz 42 64 64 MHz 58 85 VDD_LV_CORE externally forced at 1.3 V 64 MHz 85 113 HALT Mode(5) VDD_LV_CORE externally forced at 1.3 V — 5.5 15 STOP Mode(6) VDD_LV_CORE externally forced at 1.3 V — 4.5 13 Flash memory supply current during read VDD_HV_FL at 5.0 V — — 14 Flash memory supply current during erase operation on 1 flash memory module VDD_HV_FL at 5.0 V — — 42 — 3 4 8 MHz 2.6 3.2 RUN — Maximum Mode(1) VDD_LV_CORE externally forced at 1.3 V ADC Freq = 32 MHz PLL Freq = 64 MHz RUN - Platform consumption, single core(2) T VDD_LV_CORE externally forced to 1.3V IDD_LV_CORE RUN - Platform consumption, dual core(3) Supply current P IDD_FLASH T Unit Typ RUN — Maximum Mode(4) IDD_ADC T ADC supply current — Maximum Mode VDD_HV_AD at 5.0 V ADC Freq = 16 MHz IDD_OSC T OSC supply current VDD_OSC at 5.0 V mA 1. Maximum mode configuration: Code fetched from Flash executed by dual core, SIUL, PIT, ADC_0, eTimer_0/1, LINFlex_0/1, STM, INTC_0/1, DSPI_0/1/2/3/4, FlexCAN_0/1, FlexRay (static consumption), CRC_0/1, FCCU, SRAM enabled. I/O supply current excluded. 2. RAM, Code and Data Flash powered, code fetched from Flash executed by single core, all peripherals gated; IRC16MHz on, PLL64MHz OFF(except for code running at 64MHz). Code is performing continous data transfet from Flash to RAM. 3. RAM, Code and Data Flash powered, code fetched from Flash executed by dual core, all peripherals gated; IRC16MHz on, PLL64MHz OFF(except for code running at 64MHz). Code is performing continous data transfet from Flash to RAM. 4. Maximum mode configuration: Code fetched from RAM executed by dual core, SIUL, PIT, ADC_0, eTimer_0/1, LINFlex_0/1, STM, INTC_0/1, DSPI_0/1/2/3/4, FlexCAN_0/1, FlexRay (static consumption), CRC_0/1, FCCU, SRAM enabled. I/O supply current excluded. 5. HALT mode configuration, only for the “P” classification: Code Flash memory in low power mode, data Flash memory in power down mode, OSC/PLL are OFF, FIRC is ON, Core clock gated, all peripherals are disabled. 6. STOP mode configuration, only for the “P” classification: Code and data Flash memories in power down mode, OSC/PLL are OFF, FIRC is ON, Core clock gated, all peripherals are disabled. 66/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x 3.11.2 Electrical characteristics DC electrical characteristics (3.3 V) Table 22 gives the DC electrical characteristics at 3.3 V (3.0 V < VDD_HV_IOx < 3.6 V, NVUSRO[PAD3V5V]=1) as described in Figure 14. Figure 14. I/O input DC electrical characteristics definition VIN VDD VIH VHYS VIL PDIx = ‘1’ (GPDI register of SIUL) PDIx = ‘0’ DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1)(1) Table 22. Symbol Parameter Conditions Min Max Unit VIL D Minimum low level input voltage — –0.1(2) — V VIL P Maximum low level input voltage — — 0.35 VDD_HV_IOx V VIH P Minimum high level input voltage — 0.65 VDD_HV_IOx — V D Maximum high level input voltage — — VHYS T Schmitt trigger hysteresis — 0.1 VDD_HV_IOx — V VOL_S P Slow, low level output voltage IOL = 1.5 mA — 0.5 V VOH_S P Slow, high level output voltage IOH = –1.5 mA VDD_HV_IOx – 0.8 — V VOL_M P Medium, low level output voltage IOL = 2 mA — 0.5 V VOH_M P Medium, high level output voltage IOH = –2 mA VDD_HV_IOx – 0.8 — V VOL_F P Fast, high level output voltage IOL = 1.5 mA — 0.5 V VOH_F P Fast, high level output voltage IOH = –1.5 mA VDD_HV_IOx – 0.8 — V — 0.5 V VDD_HV_IOx – 0.8 — V VIN = VIL –130 — VIN = VIH — –10 VIH VOL_SYM P Symmetric, high level output voltage IOL = 1.5 mA VOH_SYM P Symmetric, high level output voltage IOH = –1.5 mA IPU P Equivalent pull-up current Doc ID 18340 Rev 3 VDD_HV_IOx + 0.1(2) V µA 67/104 Electrical characteristics SPC56xP54x, SPC56xP60x DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1)(1) (continued) Table 22. Symbol Parameter Conditions Min Max VIN = VIL 10 — VIN = VIH — 130 Unit IPD P Equivalent pull-down current IIL P Input leakage current (all bidirectional ports) TA = –40 to 125 °C — 1 µA IIL P Input leakage current (all ADC input-only ports) TA = –40 to 125 °C — 0.5 µA CIN D Input capacitance — — 10 pF — D RESET, equivalent pull-up current VIN = VIL –130 IPU VIN = VIH — –10 — D VIN = VIL 10 IPD VIN = VIH — 130 RESET, equivalent pull-down current µA µA µA 1. These specifications are design targets and subject to change per device characterization. 2. “SR” parameter values must not exceed the absolute maximum ratings shown in Table 9. 68/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Table 23. Electrical characteristics Supply current (3.3 V, NVUSRO[PAD3V5V]=1) Value Symbol Parameter Conditions Max 64 MHz 90 120 16 MHz 21 37 40 MHz 35 55 64 MHz VDD_LV_CORE externally forced to 1.3V 16 MHz 48 72 24 41 40 MHz 42 64 64 MHz 58 85 VDD_LV_CORE externally forced at 1.3 V 64 MHz 85 113 HALT Mode(5) VDD_LV_CORE externally forced at 1.3 V — 5.5 15 STOP Mode(6) VDD_LV_CORE externally forced at 1.3 V — 4.5 13 Flash memory supply current during read VDD_HV_FL at 3.3 V — — 14 Flash memory supply current during erase operation on 1 flash memory module VDD_HV_FL at 3.3 V — — 42 — 3 4 8 MHz 2.4 3 RUN — Maximum Mode(1) T RUN - Platform consumption, dual core(3) Supply current P IDD_FLASH VDD_LV_CORE externally forced at 1.3 V ADC Freq = 32 MHz PLL Freq = 64 MHz RUN - Platform consumption, single core(2) IDD_LV_CORE D Unit Typ RUN — Maximum Mode(4) IDD_ADC T ADC supply current — Maximum Mode VDD_HV_AD at 3.3 V ADC Freq = 16 MHz IDD_OSC T OSC supply current VDD_OSC at 3.3 V mA 1. Maximum mode configuration: Code fetched from Flash executed by dual core, SIUL, PIT, ADC_0, eTimer_0/1, LINFlex_0/1, STM, INTC_0/1, DSPI_0/1/2/3/4, FlexCAN_0/1, FlexRay (static consumption), CRC_0/1, FCCU, SRAM enabled. I/O supply current excluded. 2. RAM, Code and Data Flash powered, code fetched from Flash executed by single core, all peripherals gated; IRC16MHz on, PLL64MHz OFF(except for code running at 64MHz). Code is performing continous data transfet from Flash to RAM. 3. RAM, Code and Data Flash powered, code fetched from Flash executed by dual core, all peripherals gated; IRC16MHz on, PLL64MHz OFF(except for code running at 64MHz). Code is performing continous data transfet from Flash to RAM. 4. Maximum mode configuration: Code fetched from RAM executed by dual core, SIUL, PIT, ADC_0, eTimer_0/1, LINFlex_0/1, STM, INTC_0/1, DSPI_0/1/2/3/4, FlexCAN_0/1, FlexRay (static consumption), CRC_0/1, FCCU, SRAM enabled. I/O supply current excluded. 5. HALT mode configuration, only for the “P” classification: Code Flash memory in low power mode, data Flash memory in power down mode, OSC/PLL are OFF, FIRC is ON, Core clock gated, all peripherals are disabled. 6. STOP mode configuration, only for the “P” classification: Code and data Flash memories in power down mode, OSC/PLL are OFF, FIRC is ON, Core clock gated, all peripherals are disabled. Doc ID 18340 Rev 3 69/104 Peripherals supply current (5 V and 3.3 V)(1) Value Symbol Parameter Conditions Total (static + dynamic) consumption: • FlexCAN in loop-back mode • XTAL@ 8 MHz used as CAN engine clock source • Message sending period is 580 µs Unit Typ Max 21.6 * fperiph 28.1* fperiph Doc ID 18340 Rev 3 IDD_BV(CAN) T CAN (FlexCAN) supply current on VDD_BV 500 Kbyte/s IDD_BV(SCI) T SCI (LINFlex) supply current on VDD_BV Total (static + dynamic) consumption: • LIN mode • Baudrate: 115.2 Kbyte/s 10.8 * fperiph 14.1 * fperiph IDD_BV(SPI) T SPI (DSPI) supply current on VDD_BV Ballast dynamic consumption (continuous communication): • Baudrate: 2 Mbit/s • Transmission every 8 µs • Frame: 16 bits 4.8 * fperiph 6.3 * fperiph IDD_BV(ADC) T ADC supply current on VDD_BV VDD = 5.5 V Ballast dynamic consumption (continuous conversion) 120 * fperiph 156 * fperiph IDD_HV_ADC(ADC) T ADC supply current on VDD_HV_ADC VDD = 5.5 V Analog dynamic consumption (continuous conversion) T eTimer supply current PWM signals generation on Dynamic consumption does not on VDD_BV all 1 channel @10kHz change varying the frequency IDD_BV(FlexRay) T FlexRay supply current on VDD_BV Static consumption 1. Operating conditions: fperiph = 8 MHz to 64 MHz 0.005 * fperiph + 2.8 0.007 * fperiph + 3.4 mA 1.8 2.4 mA 4.2 * fperiph 5.5 * fperiph µA SPC56xP54x, SPC56xP60x IDD_BV(eTimer) µA Electrical characteristics 70/104 Table 24. SPC56xP54x, SPC56xP60x 3.11.3 Electrical characteristics I/O pad current specification The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a VDD/VSS supply pair as described in Table 25. Table 25. I/O supply segment Supply segment Package 1 2 3 4 5 6 7 LQFP144 pin8 – pin20 pin23 – pin38 pin39 – pin55 pin58 – pin68 pin73 – pin89 pin92 – pin125 pin128 – pin5 LQFP100 pin15 – pin26 pin27 – pin38 pin41 – pin46 pin51 – pin61 pin64 – pin86 pin89 – pin10 — Table 26. Symbol ISWTSLW(2) ISWTMED (2) ISWTFST(2) I/O consumption C Dynamic I/O current CC D for SLOW CL = 25 pF configuration Dynamic I/O current CC D for MEDIUM CL = 25 pF configuration Dynamic I/O current CC D for FAST CL = 25 pF configuration CL = 25 pF, 4 MHz Typ Max VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 16 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 29 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 17 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 110 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 50 — — 2.3 — — 3.2 — — 6.6 — — 1.6 — — 2.3 — — 4.7 — — 6.6 — — 13.4 — — 18.3 — — 5 — — 8.5 — — 11 mA mA mA VDD = 5.0 V ± 10%, PAD3V5V = 0 Root medium square C = 100 pF, 2 MHz L CC D I/O current for SLOW CL = 25 pF, 2 MHz configuration CL = 25 pF, 4 MHz mA VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF, 2 MHz CL = 25 pF, 13 MHz VDD = 5.0 V ± 10%, PAD3V5V = 0 IRMSMED Unit Min CL = 25 pF, 2 MHz IRMSSLW Value Conditions(1) Parameter CL = 25 pF, 40 MHz Root medium square CL = 100 pF, 13 MHz I/O current for CC D MEDIUM CL = 25 pF, 13 MHz configuration VDD = 3.3 V ± 10%, CL = 25 pF, 40 MHz PAD3V5V = 1 CL = 100 pF, 13 MHz Doc ID 18340 Rev 3 mA 71/104 Electrical characteristics Table 26. Symbol SPC56xP54x, SPC56xP60x I/O consumption (continued) C Value Conditions(1) Parameter Unit Min Typ Max — — 22 — — 33 — — 56 — — 14 — — 20 CL = 100 pF, 40 MHz — — 35 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 70 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 65 CL = 25 pF, 40 MHz CL = 25 pF, 64 MHz IRMSFST Root medium square C = 100 pF, 40 MHz L CC D I/O current for FAST CL = 25 pF, 40 MHz configuration CL = 25 pF, 64 MHz IAVGSEG VDD = 5.0 V ± 10%, PAD3V5V = 0 Sum of all the static SR D I/O current within a supply segment mA VDD = 3.3 V ± 10%, PAD3V5V = 1 mA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified 2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition. 3.12 Main oscillator electrical characteristics The SPC56xP54/60 provides an oscillator/resonator driver. Table 27. Main oscillator electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0) Symbol fOSC Parameter SR Oscillator frequency gm P Transconductance VOSC T Oscillation amplitude on EXTAL pin tOSCSU T Start-up time(1),(2) Min Max Unit 4 40 MHz 6.5 25 mA/V 1 — V 8 — ms 1. The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time. 2. Value captured when amplitude reaches 90% of EXTAL Table 28. Main oscillator electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1) Symbol fOSC Parameter SR Oscillator frequency Min Max Unit 4 40 MHz gm P Transconductance 4 20 mA/V VOSC T Oscillation amplitude on EXTAL pin 1 — V tOSCSU T Start-up time(1),(2) 8 — ms 1. The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time. 2. Value captured when amplitude reaches 90% of EXTAL 72/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Table 29. Electrical characteristics Input clock characteristics Symbol Parameter Min Typ Max Unit fOSC SR Oscillator frequency 4 — 40 MHz fCLK SR Frequency in bypass — — 64 MHz trCLK SR Rise/fall time in bypass — — 1 ns tDC SR Duty cycle 47.5 50 52.5 % 3.13 FMPLL electrical characteristics Table 30. PLLMRFM electrical specifications (VDDPLL = 1.08 V to 1.32 V, VSS = VSSPLL = 0 V, TA = TL to TH) Value Symbol Parameter Conditions Unit min max 4 40 MHz fref_crystal fref_ext D PLL reference frequency range(1) fpll_in D Phase detector input frequency range (after pre-divider) — 4 16 MHz fFMPLLOUT D Clock frequency range in normal mode — 4 120 MHz fFREE P Free running frequency 20 150 MHz fsys D On-chip PLL frequency — 16 64 MHz tCYC D System clock period — — 1 / fsys ns fLORL fLORH Loss of reference frequency window(2) Lower limit 1.6 3.7 D Upper limit 24 56 fSCM D — 20 150 MHz fSYS maximum –4 4 % fCLKOUT fPLLIN = 16 MHz (resonator), fPLLCLK at 64 MHz, 4000 cycles — 10 ns Crystal reference Measured using clock division — typically /16 MHz Self-clocked mode frequency(3),(4) (9) Short-term jitter CLKOUT period Long-term jitter (avg. jitter(5),(6),(7),(8) over 2 ms interval) CJITTER T tlpll D PLL lock time (10), (11) — — 200 µs tdc D Duty cycle of reference — 40 60 % fLCK D Frequency LOCK range — –6 6 % fsys fUL D Frequency un-LOCK range — –18 18 % fsys fCS fDS Center spread ±0.25 ±4.0(12) D Modulation Depth Down Spread –0.5 –8.0 fMOD D — 70 Modulation frequency(13) — %fsys kHz 1. Considering operation with PLL not bypassed. Doc ID 18340 Rev 3 73/104 Electrical characteristics SPC56xP54x, SPC56xP60x 2. “Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self clocked mode. 3. Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the fLOR window. 4. fVCO self clock range is 20–150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in enhanced mode. 5. This value is determined by the crystal manufacturer and board design. 6. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency increase the CJITTER percentage for a given interval. 7. Proper PC board layout procedures must be followed to achieve specifications. 8. Values are obtained with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of CJITTER and either fCS or fDS (depending on whether center spread or down spread modulation is enabled). 9. Short term jitter is measured on the clock rising edge at cycle n and cycle n+4. 10. This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this PLL, load capacitors should not exceed these limits. 11. This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). 12. This value is true when operating at frequencies above 60 MHz, otherwise fCS is 2% (above 64 MHz). 13. Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz. 3.14 16 MHz RC oscillator electrical characteristics Table 31. 16 MHz RC oscillator electrical characteristics Symbol fRC Parameter Conditions Min Typ Max Unit TA = 25 °C — 16 — MHz — –6 — 6 % P RC oscillator frequency RCMVAR P Fast internal RC oscillator variation over temperature and supply with respect to fRC at TA = 25 °C in high-frequency configuration RCMTRIM T Post Trim Accuracy: The variation of the PTF(1) from the 16 MHz TA = 25 °C –1 — 1 % RCMSTEP T Fast internal RC oscillator trimming step TA = 25 °C — 1.6 — % 1. PTF = Post Trimming Frequency: The frequency of the output clock after trimming at typical supply voltage and temperature 3.15 Analog-to-Digital converter (ADC) electrical characteristics The device provides a 10-bit Successive Approximation Register (SAR) Analog-to-Digital Converter. 74/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Electrical characteristics Figure 15. ADC characteristics and error definitions Offset Error OSE Gain Error GE 1023 1022 1021 1020 1019 1 LSB ideal = VDD_ADC / 1024 1018 (2) code out 7 (1) 6 (1) Example of an actual transfer curve 5 (2) The ideal transfer curve (5) (3) Differential non-linearity error (DNL) 4 (4) Integral non-linearity error (INL) (4) (5) Center of a step of the actual transfer curve 3 (3) 2 1 1 LSB (ideal) 0 1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023 Vin(A) (LSBideal) Offset Error OSE 3.15.1 Input impedance and ADC accuracy To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high-frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuate the noise present on the input pin; further, it sources charge during the sampling phase, when the analog signal source is a highimpedance source. A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the source impedance value of the transducer or circuit supplying the analog signal to be measured. Doc ID 18340 Rev 3 75/104 Electrical characteristics SPC56xP54x, SPC56xP60x The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself. In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: being CS and CP2 substantially two switched capacitances, with a frequency equal to the ADC conversion rate, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with CS + CP2 equal to 3 pF, a resistance of 330 k is obtained (REQ = 1 / (fc × (CS + CP2)), where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on CS + CP2) and the sum of RS + RF , the external circuit must be designed to respect the Equation 4: Equation 4 RS + RF 1 V A --------------------- --- LSB R EQ 2 Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (RSW and RAD) can be neglected with respect to external resistances. Figure 16. Input equivalent circuit (precise channels) EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source RS VA Filter RF Current Limiter RL CF CP1 RS Source Impedance RF Filter Resistance CF Filter Capacitance Current Limiter Resistance RL RSW1 Channel Selection Switch Impedance RAD Sampling Switch Impedance CP Pin Capacitance (two contributions, CP1 and CP2) CS Sampling Capacitance 76/104 Doc ID 18340 Rev 3 Channel Selection Sampling RSW1 RAD CP2 CS SPC56xP54x, SPC56xP60x Electrical characteristics Figure 17. Input equivalent circuit (extended channels) EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME VDD Source Filter RS RF Current Limiter RL CF VA CP1 Channel Selection Extended Switch Sampling RSW1 RSW2 RAD CP3 CP2 CS RS: Source impedance RF: Filter resistance CF: Filter capacitance RL: Current limiter resistance RSW1: Channel selection switch impedance (two contributions, RSW1 and RSW2) RAD: Sampling switch impedance CP: Pin capacitance (two contributions, CP1, CP2 and CP3) CS: Sampling capacitance A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2 are initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 16): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close). Figure 18. Transient behavior during sampling phase Voltage Transient on CS VCS VA VA2 V <0.5 LSB 1 2 1 < (RSW + RAD) CS << TS 2 = RL (CS + CP1 + CP2) VA1 TS Doc ID 18340 Rev 3 t 77/104 Electrical characteristics SPC56xP54x, SPC56xP60x In particular two different transient periods can be distinguished: ● A first and quick charge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and CS are in series, and the time constant is Equation 5 CP CS 1 = R SW + R AD ---------------------CP + CS Equation 5 can again be simplified considering only CS as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time TS is always much longer than the internal time constant: Equation 6 1 R SW + R AD C S « T S The charge of CP1 and CP2 is redistributed also on CS, determining a new value of the voltage VA1 on the capacitance according to Equation 7: Equation 7 V A1 C S + C P1 + C P2 = V A C P1 + C P2 ● A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance RL: again considering the worst case in which CP2 and CS were in parallel to CP1 (since the time constant in reality would be faster), the time constant is: Equation 8 2 R L C S + C P1 + C P2 In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time TS, a constraint on RL sizing is obtained: Equation 9 8.5 2 = 8.5 R L C S + C P1 + C P2 TS Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (source impedance) and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the charge transfer transient) will be much higher than VA1. Equation 10 must be respected (charge balance assuming now CS already charged at VA1): Equation 10 VA2 C S + C P1 + C P2 + C F = V A C F + V A1 C P1 + C P2 + C S The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to provide the extra charge to compensate the voltage drop on 78/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Electrical characteristics CS with respect to the ideal source VA; the time constant RFCF of the filter is very high with respect to the sampling time (TS). The filter is typically designed to act as anti-aliasing. Figure 19. Spectral representation of input signal Analog Source Bandwidth (VA) TC 2 RFCF (Conversion Rate vs. Filter Pole) fF f0 (Anti-aliasing Filtering Condition) Noise 2 f0 fC (Nyquist) f0 f Anti-Aliasing Filter (fF = RC Filter pole) fF Sampled Signal Spectrum (fC = conversion Rate) f0 f fC f Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, fF), according to the Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (TC). Again the conversion period TC is longer than the sampling time TS, which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the sampling time TS, so the charge level on CS cannot be modified by the analog signal source during the time in which the sampling switch is closed. The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on CS; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled voltage on CS: Equation 11 VA C P1 + C P2 + C F --------- = ------------------------------------------------------C P1 + C P2 + C F + C S V A2 From this formula, in the worst case (when VA is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on CF value: Equation 12 C F 2048 C S Doc ID 18340 Rev 3 79/104 Electrical characteristics SPC56xP54x, SPC56xP60x 3.15.2 ADC conversion characteristics Table 32. ADC conversion characteristics Symbol VINAN fCK fs tADC_S Parameter Value Conditions(1) Unit Min Typ Max SR Analog input voltage(2) — VSS_HV_AD 0.3 — VSS_HV_AD + 0.3 V ADC Clock frequency (depends on ADC SR configuration) (The duty cycle depends on AD_clk(3) frequency) — 3(4) — 60 MHz SR Sampling frequency — — — 1.53 MHz fADC = 20 MHz, INPSAMP = 3 125 — — ns fADC = 9 MHz, INPSAMP = 255 — — 28.2 µs 0.650 — — µs D Sample time(5) fADC = 20 MHz(7), INPCMP = 1 tADC_C P Conversion time(6) CS(8) D ADC input sampling capacitance — — — 2.5 pF CP1(8) D ADC input pin capacitance 1 — — — 3 pF CP2(8) D ADC input pin capacitance 2 — — — 1 pF CP3(8) D ADC input pin capacitance 3 — — — 1 pF RSW1(8) Internal resistance of analog source VDD_HV_AD = 5 V ±10% — — 0.6 k D VDD_HV_AD = 3.3 V ±10% — — 3 k RSW2(8) VDD_HV_AD = 5 V ±10% — — 2.15 k D VDD_HV_AD = 3.3 V ±10% — — 3.6 k RAD(8) D Internal resistance of analog source Internal resistance of analog source — — — 2 k –5 — 5 mA IINJ T Input current injection Current injection on one ADC input, different from the converted one. Remains within TUE spec. INL P Integral Non Linearity No overload — ±1.5 — LSB DNL P Differential Non Linearity No overload –1.0 — 1.0 LSB OFS T Offset error — — ±1 — LSB GNE T Gain error — — ±1 — LSB TUE P Total unadjusted error without current injection –2.5 — 2.5 LSB 80/104 16 precision channels Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Table 32. Electrical characteristics ADC conversion characteristics (continued) Symbol Value Conditions(1) Parameter Unit Min Typ Max TUE T Total unadjusted error with 16 precision channels current injection –3 — 3 LSB TUE T Total unadjusted error with 10 standard channels current injection –4 — 4 LSB 1. VDD = 3.3 V to 3.6 V / 4.5 V to 5.5 V, TA = –40 °C to TA MAX, unless otherwise specified and analog input voltage from VSS_HV_AD to VDD_HV_AD. 2. VINAN may exceed VSS_ADC and VDD_ADC limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF. 3. AD_clk clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC. 4. When configured to allow 60 MHz ADC, the minimum ADC clock speed is 9 MHz, below which precision is lost. 5. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tADC_S. After the end of the sample time tADC_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock tADC_S depend on programming. 6. This parameter includes the sample time tADC_S. 7. 20 MHz ADC clock. Specific prescaler is programmed on MC_PLL_CLK to provide 20 MHz clock to the ADC. 8. See Figure 16. 3.16 Flash memory electrical characteristics Table 33. Program and erase specifications Value Symbol Parameter Conditions Min Typ(1) Unit Initial Max(3) max(2) Twprogram P Word Program (32 bits) Time(4) Data Flash — 30 70 500 µs Tdwprogram P Double Word (64 bits) Program Time(4) Code Flash — 18 50 500 µs P Bank Program (64 TBKPRG TMDPRG KB)(4), (5) P Bank Program (1056 Data Flash — 0.49 1.2 4.1 s KB)(4), (5) Code Flash — 2.6 6.6 66 s KB)(4) Code Flash — 1.3 1.65 33 s 200 500 5000 ms 700 800 P Module Program (512 Code Flash T16kpperase P 16 KB Block Pre-program and Erase Time T32kpperase P 32 KB Block Pre-program and Erase Time Code Flash — 300 600 5000 ms T64kpperase P 64 KB Block Pre-program and Erase Time Code Flash — 400 900 5000 ms Code Flash — 600 1300 5000 ms Code Flash 20 — — — ms Data Flash 10 Data Flash T128kpperase P 128 KB Block Pre-program and Erase Time tESRT — P Erase Suspend Request Rate(6) 1. Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization. 2. Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage. Doc ID 18340 Rev 3 81/104 Electrical characteristics SPC56xP54x, SPC56xP60x 3. The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed. 4. Actual hardware programming times. This does not include software overhead. 5. Typical bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will require more than one pulse, adding a small overhead to total bank programming time (see Initial Max column). 6. Time between erase suspend resume and next erase suspend. Table 34. Flash memory module life Value Symbol Parameter Conditions Unit Min Typ P/E Number of program/erase cycles per block C for 16 KB blocks over the operating temperature range (TJ) — 100000 100000 cycles P/E Number of program/erase cycles per block C for 32 KB blocks over the operating temperature range (TJ) — 10000 100000 cycles P/E Number of program/erase cycles per block C for 64 KB blocks over the operating temperature range (TJ) — 10000 100000 cycles P/E Number of program/erase cycles per block C for 128 KB blocks over the operating temperature range (TJ) — 1000 100000 cycles Blocks with 0 – 1000 P/E cycles 20 — years Blocks with 10000 P/E cycles 10 — years Blocks with 100000 P/E cycles 5 — years Retention C Minimum data retention at 85 °C average ambient temperature(1) 1. Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range. Table 35. Flash read access timing Symbol C Fmax C Fmax C Parameter Maximum working frequency for Code Flash at given number of WS in worst conditions Maximum working frequency for Data Flash at given number of WS in worst conditions Conditions(1) Max 2 wait states 66 0 wait states 22 8 wait states 66 MHz 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified 82/104 Doc ID 18340 Rev 3 Unit MHz SPC56xP54x, SPC56xP60x Electrical characteristics 3.17 AC specifications 3.17.1 Pad AC specifications Table 36. Output pin transition times Symbol C Value Conditions(1) Parameter Unit Min Typ Max Ttr CC D Output transition time output pin(2) CL = 25 pF SLOW configuration T CL = 50 pF Ttr — 50 — — 100 — — 125 — — 40 — — 50 — — 75 — — 10 — — 20 — — 40 — — 12 — — 25 — — 40 — — 4 — — 6 — — 12 — — 4 — — 7 CL = 100 pF — — 12 VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 4 VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 5 CL = 100 pF D CL = 25 pF T CL = 50 pF VDD = 3.3 V ± 10%, PAD3V5V = 1 CL = 100 pF D Ttr — D VDD = 5.0 V ± 10%, PAD3V5V = 0 CC D Output transition time output MEDIUM configuration T pin(2) CL = 25 pF CL = 50 pF D CL = 100 pF D CL = 25 pF T CL = 50 pF D CL = 100 pF CC D Output transition time output pin(2) CL = 25 pF FAST configuration CL = 50 pF VDD = 5.0 V ± 10%, PAD3V5V = 0 SIUL.PCRx.SRC = 1 VDD = 3.3 V ± 10%, PAD3V5V = 1 SIUL.PCRx.SRC = 1 VDD = 5.0 V ± 10%, PAD3V5V = 0 SIUL.PCRx.SRC = 1 CL = 100 pF CL = 25 pF CL = 50 pF Tsim (3) CC T Symmetric, same drive strength between N and P transistor VDD = 3.3 V ± 10%, PAD3V5V = 1 SIUL.PCRx.SRC = 1 ns ns ns ns 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 °C to TA MAX, unless otherwise specified 2. CL includes device and package capacitances (CPKG < 5 pF). 3. Transition timing of both positive and negative slopes will differ maximum 50% 3.18 AC timing characteristics 3.18.1 RESET pin characteristics The SPC56xP54/60 implements a dedicated bidirectional RESET pin. Doc ID 18340 Rev 3 83/104 Electrical characteristics SPC56xP54x, SPC56xP60x Figure 20. Start-up reset requirements(f) VDD VDDMIN VRESET VIH VIL device reset forced by VRESET device start-up phase TPOR Figure 21. Noise filtering on reset signal VRESET hw_rst VDD ‘1’ VIH VIL ‘0’ filtered by hysteresis filtered by lowpass filter WFRST filtered by lowpass filter unknown reset state device under hardware reset WFRST WNFRST f. The output drive provided is open drain and hence must be terminated by an external resistor of value 1 k 84/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Table 37. Electrical characteristics RESET electrical characteristics Symbol C Value Conditions(1) Parameter Unit Min Typ Max VIH SR P Input High Level CMOS (Schmitt Trigger) — 0.65VDD — VDD+0.4 V VIL SR P Input low Level CMOS (Schmitt Trigger) — 0.4 — 0.35VDD V VHYS CC C Input hysteresis CMOS (Schmitt Trigger) — 0.1VDD — — V Push Pull, IOL = 2mA, VDD = 5.0 V ± 10%, PAD3V5V = 0 (recommended) — — 0.1VDD Push Pull, IOL = 1mA, VDD = 5.0 V ± 10%, PAD3V5V = 1(2) — — 0.1VDD Push Pull, IOL = 1mA, VDD = 3.3 V ± 10%, PAD3V5V = 1 (recommended) — — 0.5 CL = 25pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 10 CL = 50pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 20 CL = 100pF, VDD = 5.0 V ± 10%, PAD3V5V = 0 — — 40 CL = 25pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 12 CL = 50pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 25 CL = 100pF, VDD = 3.3 V ± 10%, PAD3V5V = 1 — — 40 — — — 40 ns — 500 — — ns Monotonic VDD_HV supply ramp — — 1 ms VDD = 3.3 V ± 10%, PAD3V5V = 1 10 — 150 VDD = 5.0 V ± 10%, PAD3V5V = 0 10 — 150 10 — 250 VOL Ttr WFRST CC P Output low level Output transition time CC D output pin(3) MEDIUM configuration SR P RESET input filtered pulse WNFRST SR P RESET input not filtered pulse TPOR maximum delay before internal reset is released CC D after all VDD_HV reach nominal supply |IWPU| Weak pull-up current CC P absolute value VDD = 5.0 V ± 10%, PAD3V5V = 1(4) V ns µA 1. VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 °C to TA MAX, unless otherwise specified 2. This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to RGM module section of device reference manual). 3. CL includes device and package capacitance (CPKG < 5 pF). 4. The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state. Doc ID 18340 Rev 3 85/104 Electrical characteristics SPC56xP54x, SPC56xP60x 3.18.2 IEEE 1149.1 interface timing Table 38. JTAG pin AC electrical characteristics No. Symbol C Parameter Conditions Min Max Unit 1 tJCYC CC D TCK cycle time — 100 — ns 2 tJDC CC D TCK clock pulse width (measured at VDD_HV_IOx/2) — 40 60 ns 3 tTCKRISE CC D TCK rise and fall times (40% – 70%) — — 3 ns 4 tTMSS, tTDIS CC D TMS, TDI data setup time — 5 — ns 5 tTMSH, tTDIH CC D TMS, TDI data hold time — 25 — ns 6 tTDOV CC D TCK low to TDO data valid — — 40 ns 7 tTDOI CC D TCK low to TDO data invalid — 0 — ns 8 tTDOHZ CC D TCK low to TDO high impedance — 40 — ns 9 tBSDV CC D TCK falling edge to output valid — — 50 ns 10 tBSDVZ CC D TCK falling edge to output valid out of high impedance — — 50 ns 11 tBSDHZ CC D TCK falling edge to output high impedance — — 50 ns 12 tBSDST CC D Boundary scan input valid to TCK rising edge — 50 — ns 13 tBSDHT CC D TCK rising edge to boundary scan input invalid — 50 — ns Figure 22. JTAG test clock input timing TCK 2 3 2 1 86/104 3 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Electrical characteristics Figure 23. JTAG test access port timing TCK 4 5 TMS, TDI 6 8 7 TDO Doc ID 18340 Rev 3 87/104 Electrical characteristics SPC56xP54x, SPC56xP60x Figure 24. JTAG boundary scan timing TCK 9 11 Output Signals 10 Output Signals 12 13 Input Signals 3.18.3 Nexus timing Table 39. Nexus debug port timing(1) Value No. Symbol C Parameter Unit Min Typ Max 32 — — ns 1 tMCYC CC D MCKO cycle time 2 tMDOV CC D MCKO edge to MDO data valid – 0.1 × tMCYC — 0.25 × tMCYC ns 3 tMSEOV CC D MCKO edge to MSEO data valid – 0.1 × tMCYC — 0.25 × tMCYC ns 4 tEVTOV CC D MCKO edge to EVTO data valid – 0.1 × tMCYC — 0.25 × tMCYC ns 5 tTCYC CC D TCK cycle time 64(2) — — ns 88/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Electrical characteristics Nexus debug port timing(1) (continued) Table 39. Value No. 6 7 Symbol C Parameter Unit Min Typ Max tNTDIS CC D TDI data setup time 6 — — ns tNTMSS CC D TMS data setup time 6 — — ns tNTDIH CC D TDI data hold time 10 — — ns tNTMSH CC D TMS data hold time 10 — — ns 8 tTDOV CC D TCK low to TDO data valid — — 35 ns 9 tTDOI CC D TCK low to TDO data invalid 6 — — ns 1. All values need to be confirmed during device validation. 2. Lower frequency is required to be fully compliant to standard. Figure 25. Nexus output timing 1 MCKO 2 3 4 MDO MSEO EVTO Output Data Valid Figure 26. Nexus event trigger and test clock timings TCK EVTI EVTO 5 Doc ID 18340 Rev 3 89/104 Electrical characteristics SPC56xP54x, SPC56xP60x Figure 27. Nexus TDI, TMS, TDO timing TCK 6 7 TMS, TDI 9 8 TDO 3.18.4 External interrupt timing (IRQ pin) Table 40. External interrupt timing(1) No. Symbol C Parameter Conditions Min Max Unit 1 tIPWL CC D IRQ pulse width low — 4 — tCYC 2 tIPWH CC D IRQ pulse width high — 4 — tCYC 3 tICYC CC D IRQ edge to edge time(2) — 4 + N (3) — tCYC 1. IRQ timing specified at fSYS = 64 MHz and VDD_HV_IOx = 3.0 V to 5.5 V, TA = TL to TH, and CL = 200pF with SRC = 0b00. 2. Applies when IRQ pins are configured for rising edge or falling edge events, but not both. 3. N= ISR time to clear the flag. 90/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Electrical characteristics Figure 28. External interrupt timing IRQ 1 2 3 3.18.5 DSPI timing Table 41. DSPI timing(1) No. 1 Symbol C Parameter Conditions tSCK CC D DSPI cycle time Min Max Master (MTFE = 0) 60 — Slave (MTFE = 0) 60 — Unit ns 2 tCSC CC D PCS to SCK delay — 16 — ns 3 tASC CC D After SCK delay — 26 — ns 4 tSDC CC D SCK duty cycle — 5 tA 6 tDIS 0.4 × tSCK 0.6 × tSCK ns CC D Slave access time SS active to SOUT valid — 30 ns CC D Slave SOUT disable time SS inactive to SOUT High-Z or invalid — 16 ns 7 tPCSC CC D PCSx to PCSS time — 13 — ns 8 tPASC CC D PCSS to PCSx time — 13 — ns Master (MTFE = 0) 35 — Slave 4 — Master (MTFE = 1, CPHA = 0) 35 — Master (MTFE = 1, CPHA = 1) 35 — Master (MTFE = 0) –5 — Slave 4 — Master (MTFE = 1, CPHA = 0) 11 — Master (MTFE = 1, CPHA = 1) –5 — Master (MTFE = 0) — 12 Slave — 36 Master (MTFE = 1, CPHA = 0) — 12 Master (MTFE = 1, CPHA = 1) — 12 9 10 11 tSUI tHI ns CC D Data setup time for inputs CC D Data hold time for inputs ns tSUO CC D Data valid (after SCK edge) ns Doc ID 18340 Rev 3 91/104 Electrical characteristics Table 41. No. 12 DSPI timing(1) (continued) Symbol tHO SPC56xP54x, SPC56xP60x C Parameter Conditions Min Max Master (MTFE = 0) –2 — Slave 6 — Master (MTFE = 1, CPHA = 0) 6 — Master (MTFE = 1, CPHA = 1) –2 — CC D Data hold time for outputs ns 1. All timing are provided with 50pF capacitance on output, 1ns transition time on input signal Figure 29. DSPI classic SPI timing — master, CPHA = 0 2 3 PCSx 1 4 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 10 9 SIN First Data Data 12 SOUT 92/104 First Data Unit Last Data 11 Data Last Data Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Electrical characteristics Figure 30. DSPI classic SPI timing — master, CPHA = 1 CSx SCK Output (CPOL=0) 10 SCK Output (CPOL=1) 9 Data First Data SIN Last Data 12 SOUT 11 Data First Data Last Data Figure 31. DSPI classic SPI timing — slave, CPHA = 0 3 2 SS 1 4 SCK Input (CPOL=0) 4 SCK Input (CPOL=1) 5 SOUT First Data 9 SIN 12 11 Data Last Data Data Last Data 6 10 First Data Doc ID 18340 Rev 3 93/104 Electrical characteristics SPC56xP54x, SPC56xP60x Figure 32. DSPI classic SPI timing — slave, CPHA = 1 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 6 12 SOUT First Data 9 SIN Data Last Data Data Last Data 10 First Data Figure 33. DSPI modified transfer format timing — master, CPHA = 0 3 PCSx 4 1 2 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 9 SIN First Data 10 12 SOUT 94/104 First Data Last Data Data 11 Data Last Data Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Electrical characteristics Figure 34. DSPI modified transfer format timing — master, CPHA = 1 PCSx SCK Output (CPOL=0) SCK Output (CPOL=1) 10 9 SIN First Data Last Data Data 12 First Data SOUT 11 Last Data Data Figure 35. DSPI modified transfer format timing — slave, CPHA = 0 3 2 SS 1 SCK Input (CPOL=0) 4 4 SCK Input (CPOL=1) SOUT First Data Data First Data 6 Last Data 10 9 SIN 12 11 5 Data Last Data Doc ID 18340 Rev 3 95/104 Electrical characteristics SPC56xP54x, SPC56xP60x Figure 36. DSPI modified transfer format timing — slave, CPHA = 1 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 6 12 First Data SOUT 9 Last Data Data Last Data 10 First Data SIN Data Figure 37. DSPI PCS strobe (PCSS) timing 8 7 PCSS PCSx 96/104 Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Package characteristics 4 Package characteristics 4.1 ECOPACK® In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 4.2 Package mechanical data 4.2.1 LQFP144 mechanical outline drawing Figure 38. LQFP144 package mechanical drawing Seating plane C A A2 A1 c b 0.25 mm gage plane ccc C k D D1 A1 D3 L1 108 73 72 109 E3 E1 144 Pin 1 identification L E 37 1 36 e Doc ID 18340 Rev 3 ME_1A 97/104 Package characteristics Table 42. SPC56xP54x, SPC56xP60x LQFP144 mechanical data inches(1) mm Symbol Min Typ Max Min Typ Max A — — 1.600 — — 0.0630 A1 0.050 — 0.150 0.0020 — 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 — 0.200 0.0035 — 0.0079 D 21.800 22.000 22.200 0.8583 0.8661 0.8740 D1 19.800 20.000 20.200 0.7795 0.7874 0.7953 D3 — 17.500 — — 0.6890 — E 21.800 22.000 22.200 0.8583 0.8661 0.8740 E1 19.800 20.000 20.200 0.7795 0.7874 0.7953 E3 — 17.500 — — 0.6890 — e — 0.500 — — 0.0197 — L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 — 1.000 — — 0.0394 — k 0.0 ° 3.5 ° 7.0° 3.5 ° 0.0 ° 7.0 ° (2) ccc 0.080 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Tolerance 98/104 Doc ID 18340 Rev 3 0.0031 SPC56xP54x, SPC56xP60x 4.2.2 Package characteristics LQFP100 mechanical outline drawing Figure 39. LQFP100 package mechanical drawing 0.25 mm 0.10 inch GAGE PLANE k D L D1 L1 D3 51 75 C 76 50 b E3 E1 E 100 26 Pin 1 1 identification 25 ccc C e A1 A2 A SEATING PLANE C 1L_ME Table 43. LQFP100 mechanical data inches(1) mm Symbol Min Typ Max Min Typ Max A — — 1.600 — — 0.0630 A1 0.050 — 0.150 0.0020 — 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 Doc ID 18340 Rev 3 99/104 Package characteristics Table 43. SPC56xP54x, SPC56xP60x LQFP100 mechanical data (continued) inches(1) mm Symbol Min Typ Max Min Typ Max b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 — 0.200 0.0035 — 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 — 12.000 — — 0.4724 — E 15.800 16.000 16.200 0.6220 0.6299 0.6378 E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 — 12.000 — — 0.4724 — e — 0.500 — — 0.0197 — L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 — 1.000 — — 0.0394 — k 0.0 ° 3.5 ° 7.0 ° 0.0 ° 3.5 ° 7.0 ° ccc(2) 0.080 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Tolerance 100/104 Doc ID 18340 Rev 3 0.0031 SPC56xP54x, SPC56xP60x 5 Ordering information Ordering information Figure 40. Ordering information scheme(g) Example code: Product identifier Core Family Memory Package Temperature Custom vers. Conditioning SPC56 A P 60 L3 C EFA Y Y = Tray R = Tape and Reel X = Tape and Reel 90° A = 5 V, 64 MHz B = 3,3 V, 64 MHz A = “Airbag” feature set F = “Full feature” set E = Data flash memory B = –40 to 105 °C C = –40 to 125 °C L5 = LQFP144 L3 = LQFP100 60 = 1 MB 54 = 768 KB P = SPC56xP54/60 family A = Dual core e200z0h 0 = Single core e200z0h SPC56 = Power Architecture in 90nm g. Not all configurations are available on the market. Please contact your ST Sales Rappresentative to get the list of orderable commercial part number. Doc ID 18340 Rev 3 101/104 Revision history 6 SPC56xP54x, SPC56xP60x Revision history Table 44 summarizes revisions to this document. Table 44. Date Revision 21-Dec-2010 1 Initial release 2 In the Feature list: Revised the first bullet. Changed “Up to 82 GPIO” to “Up to 80 GPIO” Changed “and 82 GPIO” to “and 49 GPIO” Changed “FlexRay module“ to “1 FlexRay™ module”. Added Section 1.5, Feature details Table 4: SPC56xP54/60 series block summary, added FlexRay entry. In the “LQFP176 pinout (top view)” figure: – Pin 104 now is TDI, was PB[5] – Pin 107 now is TDO, was PB[4] – Pin 71 now is NC, was OKOUT – Pin 72 now is NC, was OKOUT_B – Pin 87 now is NC, was NBYPASS_HV – Pin 88 now is NC, was IPP_LIVI_B_VDDIO Table 7: Pin muxing: PB[6] was clk_out_div5, is now clk_out_div256 Removed PB[4] and PB[5] rows In the A[3] row, changed ABS[2] to ABS[1] Section 3.11, DC electrical characteristics, added “Peripherals supply current (5 V and 3.3 V)” table Table 14: EMI testing specifications, removed all references to SAE Replaced both Table 12: Thermal characteristics for 144-pin LQFP and Table 13: Thermal characteristics for 100-pin LQFP Table 30: PLLMRFM electrical specifications (VDDPLL = 1.08 V to 1.32 V, VSS = VSSPLL = 0 V, TA = TL to TH), changed the max value of fSYS from 120 to 64 Table 33: Program and erase specifications: Removed all TBC changed the initial max value of TBKPRG (Code Flash) from 3.3 to 6.6 s changed the max value of TBKPRG (Data Flash) from 1.9 to 4.1 s changed the max value of Twprogram (Data Flash) from 300 to 500 µs Added tESRT row Table 17: Voltage regulator electrical characteristics, updated VDD_LV_REGCOR values Updated Table 18: Low voltage monitor electrical characteristics Updated Table 21: Supply current (5.0 V, NVUSRO[PAD3V5V]=0) and Table 23: Supply current (3.3 V, NVUSRO[PAD3V5V]=1) Removed “NVUSRO[OSCILLATOR_MARGIN] field description” section. Removed ordarable parts tables. 18-Oct-2011 102/104 Document revision history Substantive changes Doc ID 18340 Rev 3 SPC56xP54x, SPC56xP60x Table 44. Date 15-May-2012 Revision history Document revision history (continued) Revision Substantive changes 3 Removed “Enhanced Full-featured” version. In the cover page, added “(1 × Master/Slave, 1 × Master Only)“ at the end of the bullet “2 LINFlex modules (LIN 2.1)” Table 2: SPC56xP54/60 device comparison, updated the value of “LINFLEX module” to “2 (1 × Master/Slave, 1 × Master only)” Section 1.5.4: On-chip flash memory with ECC replaced two occurrences of “3 wait states” to “2 wait states” replaced 60 MHz to 64 MHz Section 1.5.21: Serial communication interface module (LINFlex), updated first bullet to “Supports LIN Master mode (on both modules), LIN Slave mode (on one module) and UART mode” Section 1.5.24: Analog-to-digital converter (ADC), removed bullet concerning the analog watchdogs from Normal mode features. Table 5: Supply pins, removed VREG_BYPASS row. Table 6: System pins: added VREG_BYPASS row added a footnote about RESET Table 9: Absolute maximum ratings: changed typical value of TVDD to 0.25 and added a footnote added VINAN entry Updated Section 3.8.1: Voltage regulator electrical characteristics Updated Table 14: EMI testing specifications Table 18: Low voltage monitor electrical characteristics, changed maximum value of VMLVDDOK_H to 1.15 Table 20: DC electrical characteristics (5.0 V, NVUSRO[PAD3V5V]=0), added IPU and IPD rows for RESET pin. Table 21: Supply current (5.0 V, NVUSRO[PAD3V5V]=0): added maximum values of IDD_LV_CORE for: RUN, HALT, and STOP mode updated values and parameter classification of IDD_FLASH Table 22: DC electrical characteristics (3.3 V, NVUSRO[PAD3V5V]=1), added IPU and IPD rows for RESET pin. Table 23: Supply current (3.3 V, NVUSRO[PAD3V5V]=1): added maximum values of IDD_LV_CORE for: RUN, HALT, and STOP mode updated values and parameter classification of IDD_FLASH Added Table 26: I/O consumption Table 31: 16 MHz RC oscillator electrical characteristics, changed minimum and maximum values of RCMVAR respectively to -6 and 6. Renamed Figure 16: Input equivalent circuit (precise channels) (was “Input equivalent circuit”) Added Figure 17: Input equivalent circuit (extended channels) Section 3.15.1: Input impedance and ADC accuracy, updated Equation 4 and Equation 10 Table 32: ADC conversion characteristics, added VINAN, CP3 and RSW2 rows Doc ID 18340 Rev 3 103/104 SPC56xP54x, SPC56xP60x Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 104/104 Doc ID 18340 Rev 3