Pressure Freescale Semiconductor MPXHZ6116A Rev 2, 06/2010 Media Resistant Integrated Silicon Pressure Sensor for Measuring Absolute Pressure, On-Chip Signal Conditioned, Temperature Compensated and Calibrated MPXHZ6116A Series 20 to 115 kPa (2.9 to 16.7 psi) 0.399 to 4.645 V Output The MPXHZ6116A series pressure sensor integrates on-chip, bipolar op amp circuitry and thin film resistor networks to provide a high output signal and temperature compensation. The sensor’s packaging has been designed to provide resistance to high humidity conditions as well as common automotive media. The small form factor and high reliability of onchip integration make this sensor a logical and economical choice for the system designer. The MPXHZ6116A series pressure sensor is a state-of-the-art, monolithic, signal conditioned sensor designed for a wide range of applications, but particularly those employing a microcontroller or microprocessor with A/D inputs. This piezoresistive transducer combines advanced micromachining techniques, thin-film metallization, and bipolar processing to provide an accurate, high level analog output signal that is proportional to the applied pressure. Features • • • • • Resistant to High Humidity and Common Automotive Media 1.43% Maximum Error over 0 to 85°C Temperature Compensated from -40°C to +125°C Durable Thermoplastic (PPS) Surface Mount Package (SSOP) Ideally Suited for Microprocessor or Microcontroller-Based Systems ORDERING INFORMATION # of Ports Package Case Device Name Options No. None Single Dual Super Small Outline Package (Media Resistant Gel) (MPXHZ6116A Series) MPXHZ6116A6U MPXHZ6116A6T1 Rail 1317 Tape & Reel 1317 Gauge • • SUPER SMALL OUTLINE PACKAGE MPXHZ6116A6U/6T1 CASE 1317 © Freescale Semiconductor, Inc., 2009, 2010. All rights reserved. Pressure Type Differential Absolute • • Device Marking MPXHZ6116A MPXHZ6116A Pressure Operating Characteristics Table 1. Operating Characteristics (VS = 5.0 Vdc, TA = 25°C unless otherwise noted, Decoupling circuit shown in Figure 3 required to meet electrical specifications.) Characteristic Symbol Min Typ Max Unit Pressure Range POP 20 — 115 kPa Supply Voltage(1) VS 4.75 5.0 5.25 Vdc Supply Current IS — 6.0 10 mAdc Full Scale Span(2) (0 to 85°C) VFSS — 4.2 — Vdc Offset(3) (0 to 85°C) Voff 0.335 0.399 0.463 Vdc V/P — 44.2 — mV/kPa — -1.5 — +1.5 %VFSS POP 20 — 115 kPa Sensitivity Accuracy(4) (0 to 85°C) Pressure Range 1. Device is ratiometric within this specified excitation range. 2. Full Scale Span (VFSS) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure. 3. Offset (Voff) is defined as the output voltage at the minimum rated pressure. 4. Accuracy (error budget) is the deviation in actual output from nominal output over the entire pressure range and temperature range as a percent of VSS span at 25°C due to all sources of error including the following: Linearity: Temperature Hysteresis: Pressure Hysteresis: Offset Stability: TcSpan: TcOffset: Output deviation from a straight line relationship with pressure over the specified pressure range. Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied. Output deviation at any pressure within the specified range, when this pressure is cycled to and from minimum or maximum rated pressure at 25°C. Output deviation, after 1000 temperature cycles, -40° to 125°C, and 1.5 million pressure cycles, with minimum rated pressure applied. Output deviation over the temperature range of 0° to 85°C, relative to 25°C. Output deviation with minimum pressure applied, over the temperature range of 0° to 85°C, relative to 25°C. MPXHZ6116A 2 Sensors Freescale Semiconductor Pressure Maximum Ratings Table 2. Maximum Ratings(1) Rating Symbol Value Units Maximum Pressure Pmax 400 kPa Storage Temperature Tstg -40 to +125 °C Operating Temperature TA -40 to +125 °C Output Source Current @ Full Scale Output(2) I o+ +0.5 mAdc Output Sink Current @ Minimum Pressure Offset(2) Io - -0.5 mAdc 1. Exposure beyond the specified limits may cause permanent damage or degradation to the device. 2. Maximum Output Current is controlled by effective impedance from Vout to Gnd or Vout to VS in the application circuit. Figure 1 shows a block diagram of the internal circuitry integrated on a pressure sensor chip. VS 2 Thin Film Temperature Compensation and Gain Stage #1 Sensing Element GND 3 Gain Stage #2 and Ground Reference Shift Circuitry 4 VOUT Pins 1, 5, 6, 7, and 8 are NO CONNECTS Figure 1. Fully Integrated Pressure Sensor Schematic MPXHZ6116A Sensors Freescale Semiconductor 3 Pressure On-chip Temperature Compensation and Calibration as common automotive media. NOTE: The MPXHZ6116A series pressure sensor’s operating characteristics, internal reliability and qualification tests are based on use of air as the pressure media. Media, other than air, may have adverse effects on sensor performance and long–term reliability. Contact the factory for information regarding media compatibility in your application. Figure 3 shows the recommended decoupling circuit for interfacing the integrated sensor to the A/D input of a microprocessor or microcontroller. Proper decoupling of the power supply is recommended. The performance over temperature is achieved by integrating the shear–stress strain gauge, temperature compensation, calibration, and signal conditioning circuitry onto a single monolithic chip. Figure 2 illustrates the configuration in the basic chip carrier (case 1317) prior to porting. A gel die coat isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the sensor diaphragm. The gel die coat and durable thermoplastic package provide a media resistant barrier that allows the sensor to operate reliably in high humidity conditions as well Fluoro Silicone Gel Die Coat Wire Bond +5.0 V Stainless Steel Cap Die P1 VS Pin 2 Thermoplastic Case MPXHZ6116A 100 nF Lead Frame to ADC Vout Pin 4 47 pF GND Pin 3 51 K Die Bond Absolute Element Sealed Vacuum Reference Figure 2. Cross Sectional Diagram SSOP (not to scale) Figure 3. Typical Application Circuit (Output Source Current Operation) 5.0 Vout = VS (0.008938 x P (kPa) - 0.09895) 4.5 ± (1.5 x TM x V x 0.008938) S 3.0 2.5 2.0 NOM 1.5 MIN 1.0 140 120 100 40 20 0 0 60 MAX 0.5 80 OUTPUT (V) 4.0 TEMP = 0 to 85ºC VS = 5.0 V ± 0.25 3.5 PRESSURE (kPa) Figure 4. Output vs. Absolute Pressure MPXHZ6116A 4 Sensors Freescale Semiconductor Pressure Temperature Error Band Temperature Error Factor (TM) MPXHZ6116A SERIES 4.0 Break Points 3.0 2.0 Temp Multiplier - 40 0 to 85 125 2.85 0.96 1.66 1.0 0.0 -40 -20 0 20 80 40 60 Temperature in Cº 100 120 140 NOTE: The Temperature Multiplier is a linear response from 0ºC to -40ºC and from 85ºC to 125ºC Pressure Error Band Error Limits for Pressure 3.0 Pressure Error (kPa) 2.0 1.0 0.0 Pressure (in kPa) 20 40 60 80 100 120 -1.0 -2.0 Pressure 20 to 115 (kPa) Error (Max) ±1.5 (kPa) -3.0 MPXHZ6116A Sensors Freescale Semiconductor 5 Pressure MINIMUM RECOMMENDED FOOTPRINT FOR SUPER SMALL PACKAGES Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor package must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a 0.050 1.27 TYP solder reflow process. It is always recommended to fabricate boards with a solder mask layer to avoid bridging and/or shorting between solder pads, especially on tight tolerances and/or tight layouts. 0.387 9.83 0.150 3.81 0.027 TYP 8X 0.69 0.053 TYP 8X 1.35 inch mm Figure 5. SSOP Footprint (Case 1317) MPXHZ6116A 6 Sensors Freescale Semiconductor Pressure PACKAGE DIMENSIONS CASE 1317-04 ISSUE F SUPER SMALL OUTLINE PACKAGE MPXHZ6116A Sensors Freescale Semiconductor 7 Pressure PACKAGE DIMENSIONS CASE 1317-04 ISSUE F SUPER SMALL OUTLINE PACKAGE MPXHZ6116A 8 Sensors Freescale Semiconductor Pressure PACKAGE DIMENSIONS CASE 1317-04 ISSUE F SUPER SMALL OUTLINE PACKAGE MPXHZ6116A Sensors Freescale Semiconductor 9 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 010 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 [email protected] MPXHZ6116A Rev.2 06/2010 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010. All rights reserved.