FREESCALE MRF7S16150HR3

Freescale Semiconductor
Technical Data
Document Number: MRF7S16150H
Rev. 1, 12/2008
RF Power Field Effect Transistors
N - Channel Enhancement - Mode Lateral MOSFETs
MRF7S16150HR3
MRF7S16150HSR3
Designed for WiMAX base station applications with frequencies up to
1700 MHz. Suitable for WiMAX, WiBro, BWA, and OFDM multicarrier Class
AB and Class C amplifier applications.
• Typical WiMAX Performance: VDD = 28 Volts, IDQ = 1500 mA,
Pout = 32 Watts Avg., f = 1600 and 1660 MHz, 802.16d, 64 QAM 3/4,
4 bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01%
Probability on CCDF.
Power Gain — 19.7 dB
Drain Efficiency — 25.4%
Device Output Signal PAR — 8.2 dB @ 0.01% Probability on CCDF
ACPR @ 5.25 MHz Offset — - 47.5 dBc in 0.5 MHz Channel Bandwidth
• Capable of Handling 10:1 VSWR, @ 32 Vdc, 1630 MHz, 150 Watts CW
Output Power
• Pout @ 1 dB Compression Point w 150 Watts CW
Features
• Characterized with Series Equivalent Large - Signal Impedance Parameters
• Internally Matched for Ease of Use
• Integrated ESD Protection
• Greater Negative Gate - Source Voltage Range for Improved Class C
Operation
• RoHS Compliant
• In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel.
1600- 1660 MHz, 32 W AVG., 28 V
WiMAX
LATERAL N - CHANNEL
RF POWER MOSFETs
CASE 465 - 06, STYLE 1
NI - 780
MRF7S16150HR3
CASE 465A - 06, STYLE 1
NI - 780S
MRF7S16150HSR3
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain- Source Voltage
VDSS
- 0.5, +65
Vdc
Gate- Source Voltage
VGS
- 6.0, +10
Vdc
Operating Voltage
VDD
32, +0
Vdc
Storage Temperature Range
Tstg
- 65 to +150
°C
Case Operating Temperature
TC
150
°C
Operating Junction Temperature (1,2)
TJ
225
°C
Symbol
Value (2,3)
Unit
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 80°C, 149 W CW
Case Temperature 75°C, 32 W CW
RθJC
0.34
0.37
°C/W
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access
MTTF calculators by product.
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
© Freescale Semiconductor, Inc., 2007 - 2008. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF7S16150HR3 MRF7S16150HSR3
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
IC (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
IV (Minimum)
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted)
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 65 Vdc, VGS = 0 Vdc)
IDSS
—
—
10
μAdc
Zero Gate Voltage Drain Leakage Current
(VDS = 28 Vdc, VGS = 0 Vdc)
IDSS
—
—
1
μAdc
Gate- Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
IGSS
—
—
1
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 348 μAdc)
VGS(th)
1.2
2
2.7
Vdc
Gate Quiescent Voltage
(VDD = 28 Vdc, ID = 1500 mAdc, Measured in Functional Test)
VGS(Q)
2
2.7
3.5
Vdc
Drain- Source On - Voltage
(VGS = 10 Vdc, ID = 3.48 Adc)
VDS(on)
0.1
0.2
0.3
Vdc
Reverse Transfer Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
1.09
—
pF
Output Capacitance
(VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
585
—
pF
Input Capacitance
(VDS = 28 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
Ciss
—
363
—
pF
Characteristic
Off Characteristics
On Characteristics
Dynamic Characteristics (1)
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1500 mA, Pout = 32 W Avg., f = 1600 MHz and f =
1660 MHz, WiMAX Signal, 802.16d, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 bursts, PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR
measured in 0.5 MHz Channel Bandwidth @ ±5.25 MHz Offset.
Power Gain
Gps
18.5
19.7
21.5
dB
Drain Efficiency
ηD
24
25.4
—
%
PAR
7.7
8.2
—
dB
ACPR
- 58
- 47.5
- 45
dBc
IRL
—
- 12.1
-7
dB
Output Peak - to - Average Ratio @ 0.01% Probability on CCDF
Adjacent Channel Power Ratio
Input Return Loss
1. Part internally matched both on input and output.
(continued)
MRF7S16150HR3 MRF7S16150HSR3
2
RF Device Data
Freescale Semiconductor
Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued)
Characteristic
Symbol
Min
Typ
Max
Unit
Typical Performances OFDM Signal (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1500 mA, Pout = 32 W Avg.,
f = 1600 MHz and f = 1660 MHz, WiMAX Signal, OFDM Single - Carrier, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, PAR = 9.5 dB @
0.01% Probability on CCDF.
Mask System Type G @ Pout = 32 W Avg.
Mask
Point B at 3.5 MHz Offset
Point C at 5 MHz Offset
Point D at 7.4 MHz Offset
Point E at 14 MHz Offset
Point F at 17.5 MHz Offset
dBc
—
—
—
—
—
- 27
- 36
- 41
- 59
- 62
—
—
—
—
—
Relative Constellation Error @ Pout = 32 W Avg. (1)
RCE
—
- 29.6
—
dB
Error Vector Magnitude (1)
(Typical EVM Performance @ Pout = 32 W Avg. with OFDM 802.16d
Signal Call)
EVM
—
3.3
—
% rms
Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1500 mA, 1600 - 1660 MHz Bandwidth
Video Bandwidth @ 180 W PEP Pout where IM3 = - 30 dBc
(Tone Spacing from 100 kHz to VBW)
ΔIMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both
sidebands)
VBW
MHz
—
20
—
Gain Flatness in 60 MHz Bandwidth @ Pout = 32 W Avg.
GF
—
0.292
—
dB
Average Deviation from Linear Phase in 60 MHz Bandwidth
@ Pout = 150 W CW
Φ
—
82.71
—
°
Delay
—
7.19
—
ns
Part - to - Part Insertion Phase Variation @ Pout = 150 W CW,
f = 1630 MHz, Six Sigma Window
ΔΦ
—
22.38
—
°
Gain Variation over Temperature
( - 30°C to +85°C)
ΔG
—
0.01387
—
dB/°C
ΔP1dB
—
0.409
—
dBm/°C
Average Group Delay @ Pout = 150 W CW, f = 1630 MHz
Output Power Variation over Temperature
( - 30°C to +85°C)
1. RCE = 20Log(EVM/100)
MRF7S16150HR3 MRF7S16150HSR3
RF Device Data
Freescale Semiconductor
3
VSUPPLY
B1
+
VBIAS
C5
+
C1
R1
C2
R2
C7
C8
C9
Z8
Z1
Z2
Z3
Z6
Z7
Z9
Z10
RF
OUTPUT
Z11
C10
Z4
C4
Z1, Z5, Z11
Z2
Z3
Z4
Z6
C6
+
C3
Z5
RF
INPUT
+
DUT
0.744″ x 0.084″ Microstrip
0.822″ x 0.084″ Microstrip
0.252″ x 1.240″ Microstrip
0.402″ x 1.240″ Microstrip
0.111″ x 1.330″ Microstrip
Z7
Z8
Z9
Z10
PCB
0.619″ x 1.330″ Microstrip
0.284″ x 0.190″ Microstrip
0.220″ x 0.250″ Microstrip
0.531″ x 0.084″ Microstrip
Arlon CuClad 250GX - 0300- 55- 22, 0.030″, εr = 2.55
Figure 1. MRF7S16150HR3(HSR3) Test Circuit Schematic
Table 5. MRF7S16150HR3(HSR3) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1
Small Ferrite Bead
2743019447
Fair Rite
C1
10 μF, 35 V Electrolytic Capacitor
EMVY350ADA100ME55G
Nippon Chemi - Con
C2, C8
0.01 μF, 50 V Chip Capacitors
C1825C103J5RAC
Kemit
C3, C5
10 pF Chip Capacitors
ATC100B100BT500XT
ATC
C4, C10
47 pF Chip Capacitors
ATC100B470BT500XT
ATC
C6, C7
22 μF, 35 V Tantalum Capacitors
T491X226K035AT
Kemet
C9
220 μF, 50 V Electrolytic Capacitor
EMVY500ADA221MJ0G
Nippon Chemi - Con
R1
1 KΩ, 1/4 W Chip Resistor
CRCW12061001FKEA
Vishay
R2
10 Ω, 1/4 W Chip Resistor
CRCW120610R1FKEA
Vishay
MRF7S16150HR3 MRF7S16150HSR3
4
RF Device Data
Freescale Semiconductor
R1
B1 R2
C3
C6
C5
C8
C9
C7
C2
C4
CUT OUT AREA
C1
C10
Figure 2. MRF7S16150HR3(HSR3) Test Circuit Component Layout
MRF7S16150HR3 MRF7S16150HSR3
RF Device Data
Freescale Semiconductor
5
30
ηD
28
22
26
21
24
20
22
Gps
19
VDD = 28 Vdc, Pout = 32 W (Avg.), IDQ = 1500 mA,
802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel
Bandwidth, Input Signal PAR = 9.5 dB @ 0.01%
Probability on CCDF
18
17
IRL
16
15
0
−30
−4
−36
−42
ACPR
14
1560
−24
1580
−48
1600
1620
1640
1660
1680
ACPR (dBc)
Gps, POWER GAIN (dB)
23
−8
−12
−16
−54
1700
−20
IRL, INPUT RETURN LOSS (dB)
24
ηD, DRAIN
EFFICIENCY (%)
TYPICAL CHARACTERISTICS
f, FREQUENCY (MHz)
38
22
36
21
34
20
32
Gps
19
18
17
16
IRL
VDD = 28 Vdc, Pout = 64 W (Avg.), IDQ = 1500 mA
802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel
Bandwidth, Input Signal PAR = 9.5 dB @ 0.01%
Probability on CCDF
−20
0
−25
−4
−30
−35
−40
15
ACPR
14
1560 1580
1600
1620
1640
1660
1680
ACPR (dBc)
Gps, POWER GAIN (dB)
40
ηD
23
−8
−12
−16
−45
1700
−20
IRL, INPUT RETURN LOSS (dB)
24
ηD, DRAIN
EFFICIENCY (%)
Figure 3. WiMAX Broadband Performance
@ Pout = 32 Watts Avg.
f, FREQUENCY (MHz)
Figure 4. WiMAX Broadband Performance
@ Pout = 64 Watts Avg.
21
0
1875 mA
20
Gps, POWER GAIN (dB)
IMD, THIRD ORDER
INTERMODULATION DISTORTION (dBc)
IDQ = 2250 mA
1500 mA
19
1125 mA
18
750 mA
VDD = 28 Vdc, IDQ = 1500 mA
f1 = 1625 MHz, f2 = 1635 MHz
Two−Tone Measurements, 10 MHz Tone Spacing
17
16
VDD = 28 Vdc, IDQ = 1500 mA
f1 = 1625 MHz, f2 = 1635 MHz
Two−Tone Measurements, 10 MHz Tone Spacing
−10
−20
IDQ = 375 mA
−30
−40
937.5 mA
562.5 mA
−50
1500 mA
750 mA
−60
1
10
100
400
1
10
100
400
Pout, OUTPUT POWER (WATTS) PEP
Pout, OUTPUT POWER (WATTS) PEP
Figure 5. Two - Tone Power Gain versus
Output Power
Figure 6. Third Order Intermodulation Distortion
versus Output Power
MRF7S16150HR3 MRF7S16150HSR3
6
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
IMD, INTERMODULATION DISTORTION (dBc)
VDD = 28 Vdc, IDQ = 1500 mA
f1 = 1625 MHz, f2 = 1635 MHz
Two−Tone Measurements, 10 MHz Tone Spacing
−20
−30
−40
3rd Order
−50
5th Order
−60
7th Order
−70
1
10
0
−20
IM3−U
−30
IM3−L
IM5−U
−40
IM5−L
IM7−U
−50
IM7−L
−60
10
1
400
100
VDD = 28 Vdc, Pout = 180 W (PEP), IDQ = 1500 mA
Two−Tone Measurements
(f1 + f2)/2 = Center Frequency of 1630 MHz
−10
100
TWO−TONE SPACING (MHz)
Figure 7. Intermodulation Distortion Products
versus Output Power
Figure 8. Intermodulation Distortion Products
versus Tone Spacing
ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB)
Pout, OUTPUT POWER (WATTS) PEP
60
55
50
−30_C
VDD = 28 Vdc, IDQ = 1500 mA
f = 1630 MHz, 802.16d, 64 QAM 3/4
4 Bursts, 7 MHz Channel
Bandwidth, Input Signal PAR = 9.5 dB
@ 0.01% Probability on CCDF
45
40
35
30
25_C
−25
−30
85_C
−30_C
25
−55
−60
85_C
−65
25_C
ηD
0
1
100
10
−35
−40
−45
−50
TC = −30_C
Gps
20
15 ACPR
10
5
−15
−20
ACPR (dBc)
IMD, INTERMODULATION DISTORTION (dBc)
−10
−70
−75
300
Pout, OUTPUT POWER (WATTS) CW
Figure 9. WiMAX, ACPR, Power Gain and Drain
Efficiency versus Output Power
21
25_C 60
20
25_C
19
Gps
50
85_C
40
18
85_C
17
30
16
20
15
VDD = 28 Vdc
IDQ = 1500 mA
f = 1630 MHz
ηD
14
1
10
100
10
0
400
Gps, POWER GAIN (dB)
TC = −30_C
20
Gps, POWER GAIN (dB)
70
−30_C
ηD, DRAIN EFFICIENCY (%)
21
IDQ = 1500 mA
f = 1630 MHz
19
18
17
28 V
16
VDD = 24 V
32 V
15
0
100
200
Pout, OUTPUT POWER (WATTS) CW
Pout, OUTPUT POWER (WATTS) CW
Figure 10. Power Gain and Drain Efficiency
versus CW Output Power
Figure 11. Power Gain versus Output Power
300
MRF7S16150HR3 MRF7S16150HSR3
RF Device Data
Freescale Semiconductor
7
TYPICAL CHARACTERISTICS
MTTF (HOURS)
108
107
106
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 28 Vdc, Pout = 32 W Avg., and ηD = 25.4%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 12. MTTF versus Junction Temperature
WIMAX TEST SIGNAL
−10
100
Input Signal
−30
1
−40
0.1
(dB)
PROBABILITY (%)
10 MHz
Channel BW
−20
10
−50
0.01
802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz
Channel Bandwidth, Input Signal
PAR = 9.5 dB @ 0.01% Probability
on CCDF
0.001
0.0001
0
2
4
−60
−70
6
8
PEAK−TO−AVERAGE (dB)
Figure 13. OFDM 802.16d Test Signal
10
−80
−90
−20
ACPR in 1 MHz
Integrated BW
−15
−10
ACPR in 1 MHz
Integrated BW
−5
0
5
10
15
20
f, FREQUENCY (MHz)
Figure 14. WiMAX Spectrum Mask Specifications
MRF7S16150HR3 MRF7S16150HSR3
8
RF Device Data
Freescale Semiconductor
Zo = 5 Ω
f = 1700 MHz
Zload
f = 1500 MHz
f = 1700 MHz
Zsource
f = 1500 MHz
VDD = 28 Vdc, IDQ = 1500 mA, Pout = 32 W Avg.
f
MHz
Zsource
W
Zload
W
1500
1.09 - j3.76
1.00 - j2.35
1520
1.06 - j3.62
0.96 - j2.19
1540
1.04 - j3.48
0.93 - j2.03
1560
1.01 - j3.34
0.91 - j1.88
1580
0.99 - j3.21
0.88 - j1.74
1600
0.96 - j3.07
0.86 - j1.60
1620
0.94 - j2.94
0.83 - j1.46
1640
0.92 - j2.81
0.81 - j1.33
1660
0.90 - j2.69
0.79 - j1.20
1680
0.88 - j2.56
0.77 - j1.07
1700
0.86 - j2.44
0.76 - j0.95
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 15. Series Equivalent Source and Load Impedance
MRF7S16150HR3 MRF7S16150HSR3
RF Device Data
Freescale Semiconductor
9
PACKAGE DIMENSIONS
B
G
Q
bbb
2X
1
T A
M
M
B
M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M−1994.
2. CONTROLLING DIMENSION: INCH.
3. DELETED
4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY
FROM PACKAGE BODY.
3
B
K
2
(FLANGE)
D
bbb
M
T A
M
B
M
M
R
(INSULATOR)
bbb
N
T A
M
M
B
M
ccc
M
T A
M
S
(LID)
ccc
H
T A
M
M
B
M
aaa
M
T A
M
(LID)
B
M
(INSULATOR)
B
M
C
F
E
A
SEATING
PLANE
T
A
DIM
A
B
C
D
E
F
G
H
K
M
N
Q
R
S
aaa
bbb
ccc
INCHES
MIN
MAX
1.335
1.345
0.380
0.390
0.125
0.170
0.495
0.505
0.035
0.045
0.003
0.006
1.100 BSC
0.057
0.067
0.170
0.210
0.774
0.786
0.772
0.788
.118
.138
0.365
0.375
0.365
0.375
0.005 REF
0.010 REF
0.015 REF
MILLIMETERS
MIN
MAX
33.91
34.16
9.65
9.91
3.18
4.32
12.57
12.83
0.89
1.14
0.08
0.15
27.94 BSC
1.45
1.70
4.32
5.33
19.66
19.96
19.60
20.00
3.00
3.51
9.27
9.53
9.27
9.52
0.127 REF
0.254 REF
0.381 REF
STYLE 1:
PIN 1. DRAIN
2. GATE
3. SOURCE
(FLANGE)
CASE 465 - 06
ISSUE G
NI - 780
MRF7S16150HR3
4X U
(FLANGE)
4X Z
(LID)
B
1
K
2X
2
B
(FLANGE)
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M−1994.
2. CONTROLLING DIMENSION: INCH.
3. DELETED
4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY
FROM PACKAGE BODY.
D
bbb
M
T A
M
B
M
N
(LID)
ccc
M
R
M
T A
M
B
M
ccc
M
T A
M
M
B
M
aaa
M
T A
M
S
(INSULATOR)
bbb
M
T A
(LID)
B
M
(INSULATOR)
B
M
H
C
3
E
A
A
F
T
SEATING
PLANE
(FLANGE)
CASE 465A - 06
ISSUE H
NI - 780S
MRF7S16150HSR3
DIM
A
B
C
D
E
F
H
K
M
N
R
S
U
Z
aaa
bbb
ccc
INCHES
MIN
MAX
0.805
0.815
0.380
0.390
0.125
0.170
0.495
0.505
0.035
0.045
0.003
0.006
0.057
0.067
0.170
0.210
0.774
0.786
0.772
0.788
0.365
0.375
0.365
0.375
−−−
0.040
−−−
0.030
0.005 REF
0.010 REF
0.015 REF
MILLIMETERS
MIN
MAX
20.45
20.70
9.65
9.91
3.18
4.32
12.57
12.83
0.89
1.14
0.08
0.15
1.45
1.70
4.32
5.33
19.61
20.02
19.61
20.02
9.27
9.53
9.27
9.52
−−−
1.02
−−−
0.76
0.127 REF
0.254 REF
0.381 REF
STYLE 1:
PIN 1. DRAIN
2. GATE
5. SOURCE
MRF7S16150HR3 MRF7S16150HSR3
10
RF Device Data
Freescale Semiconductor
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
0
June 2007
1
Dec. 2008
Description
• Initial Release of Data Sheet
• Table 4, On Characteristics, tightened VGS(Q) max value from 3.8 to 3.5 to match production test value, p. 2
• Updated PCB information to show more specific material details, Fig. 1, Test Circuit Schematic, p. 4
• Updated Part Numbers in Table 5, Component Designations and Values, to latest RoHS compliant part
numbers, p. 4
• Updated Fig. 13, OFDM 802.16d Test Signal, to show input signal only, p. 8
• Updated Fig. 14, WiMAX Spectrum Mask Specifications, to more accurately represent the WiMAX
spectrum, p. 8
MRF7S16150HR3 MRF7S16150HSR3
RF Device Data
Freescale Semiconductor
11
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1 - 800- 521- 6274 or +1 - 480- 768- 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800- 441- 2447 or +1 - 303- 675- 2140
Fax: +1 - 303- 675- 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007 - 2008. All rights reserved.
MRF7S16150HR3 MRF7S16150HSR3
Document Number: MRF7S16150H
Rev. 1, 12/2008
12
RF Device Data
Freescale Semiconductor