Freescale Semiconductor Technical Data Document Number: MRF7S16150H Rev. 1, 12/2008 RF Power Field Effect Transistors N - Channel Enhancement - Mode Lateral MOSFETs MRF7S16150HR3 MRF7S16150HSR3 Designed for WiMAX base station applications with frequencies up to 1700 MHz. Suitable for WiMAX, WiBro, BWA, and OFDM multicarrier Class AB and Class C amplifier applications. • Typical WiMAX Performance: VDD = 28 Volts, IDQ = 1500 mA, Pout = 32 Watts Avg., f = 1600 and 1660 MHz, 802.16d, 64 QAM 3/4, 4 bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. Power Gain — 19.7 dB Drain Efficiency — 25.4% Device Output Signal PAR — 8.2 dB @ 0.01% Probability on CCDF ACPR @ 5.25 MHz Offset — - 47.5 dBc in 0.5 MHz Channel Bandwidth • Capable of Handling 10:1 VSWR, @ 32 Vdc, 1630 MHz, 150 Watts CW Output Power • Pout @ 1 dB Compression Point w 150 Watts CW Features • Characterized with Series Equivalent Large - Signal Impedance Parameters • Internally Matched for Ease of Use • Integrated ESD Protection • Greater Negative Gate - Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel. 1600- 1660 MHz, 32 W AVG., 28 V WiMAX LATERAL N - CHANNEL RF POWER MOSFETs CASE 465 - 06, STYLE 1 NI - 780 MRF7S16150HR3 CASE 465A - 06, STYLE 1 NI - 780S MRF7S16150HSR3 Table 1. Maximum Ratings Rating Symbol Value Unit Drain- Source Voltage VDSS - 0.5, +65 Vdc Gate- Source Voltage VGS - 6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg - 65 to +150 °C Case Operating Temperature TC 150 °C Operating Junction Temperature (1,2) TJ 225 °C Symbol Value (2,3) Unit Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 149 W CW Case Temperature 75°C, 32 W CW RθJC 0.34 0.37 °C/W 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. © Freescale Semiconductor, Inc., 2007 - 2008. All rights reserved. RF Device Data Freescale Semiconductor MRF7S16150HR3 MRF7S16150HSR3 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) IC (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 μAdc Gate- Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 348 μAdc) VGS(th) 1.2 2 2.7 Vdc Gate Quiescent Voltage (VDD = 28 Vdc, ID = 1500 mAdc, Measured in Functional Test) VGS(Q) 2 2.7 3.5 Vdc Drain- Source On - Voltage (VGS = 10 Vdc, ID = 3.48 Adc) VDS(on) 0.1 0.2 0.3 Vdc Reverse Transfer Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 1.09 — pF Output Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 585 — pF Input Capacitance (VDS = 28 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 363 — pF Characteristic Off Characteristics On Characteristics Dynamic Characteristics (1) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1500 mA, Pout = 32 W Avg., f = 1600 MHz and f = 1660 MHz, WiMAX Signal, 802.16d, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 bursts, PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR measured in 0.5 MHz Channel Bandwidth @ ±5.25 MHz Offset. Power Gain Gps 18.5 19.7 21.5 dB Drain Efficiency ηD 24 25.4 — % PAR 7.7 8.2 — dB ACPR - 58 - 47.5 - 45 dBc IRL — - 12.1 -7 dB Output Peak - to - Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Input Return Loss 1. Part internally matched both on input and output. (continued) MRF7S16150HR3 MRF7S16150HSR3 2 RF Device Data Freescale Semiconductor Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Performances OFDM Signal (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1500 mA, Pout = 32 W Avg., f = 1600 MHz and f = 1660 MHz, WiMAX Signal, OFDM Single - Carrier, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, PAR = 9.5 dB @ 0.01% Probability on CCDF. Mask System Type G @ Pout = 32 W Avg. Mask Point B at 3.5 MHz Offset Point C at 5 MHz Offset Point D at 7.4 MHz Offset Point E at 14 MHz Offset Point F at 17.5 MHz Offset dBc — — — — — - 27 - 36 - 41 - 59 - 62 — — — — — Relative Constellation Error @ Pout = 32 W Avg. (1) RCE — - 29.6 — dB Error Vector Magnitude (1) (Typical EVM Performance @ Pout = 32 W Avg. with OFDM 802.16d Signal Call) EVM — 3.3 — % rms Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1500 mA, 1600 - 1660 MHz Bandwidth Video Bandwidth @ 180 W PEP Pout where IM3 = - 30 dBc (Tone Spacing from 100 kHz to VBW) ΔIMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both sidebands) VBW MHz — 20 — Gain Flatness in 60 MHz Bandwidth @ Pout = 32 W Avg. GF — 0.292 — dB Average Deviation from Linear Phase in 60 MHz Bandwidth @ Pout = 150 W CW Φ — 82.71 — ° Delay — 7.19 — ns Part - to - Part Insertion Phase Variation @ Pout = 150 W CW, f = 1630 MHz, Six Sigma Window ΔΦ — 22.38 — ° Gain Variation over Temperature ( - 30°C to +85°C) ΔG — 0.01387 — dB/°C ΔP1dB — 0.409 — dBm/°C Average Group Delay @ Pout = 150 W CW, f = 1630 MHz Output Power Variation over Temperature ( - 30°C to +85°C) 1. RCE = 20Log(EVM/100) MRF7S16150HR3 MRF7S16150HSR3 RF Device Data Freescale Semiconductor 3 VSUPPLY B1 + VBIAS C5 + C1 R1 C2 R2 C7 C8 C9 Z8 Z1 Z2 Z3 Z6 Z7 Z9 Z10 RF OUTPUT Z11 C10 Z4 C4 Z1, Z5, Z11 Z2 Z3 Z4 Z6 C6 + C3 Z5 RF INPUT + DUT 0.744″ x 0.084″ Microstrip 0.822″ x 0.084″ Microstrip 0.252″ x 1.240″ Microstrip 0.402″ x 1.240″ Microstrip 0.111″ x 1.330″ Microstrip Z7 Z8 Z9 Z10 PCB 0.619″ x 1.330″ Microstrip 0.284″ x 0.190″ Microstrip 0.220″ x 0.250″ Microstrip 0.531″ x 0.084″ Microstrip Arlon CuClad 250GX - 0300- 55- 22, 0.030″, εr = 2.55 Figure 1. MRF7S16150HR3(HSR3) Test Circuit Schematic Table 5. MRF7S16150HR3(HSR3) Test Circuit Component Designations and Values Part Description Part Number Manufacturer B1 Small Ferrite Bead 2743019447 Fair Rite C1 10 μF, 35 V Electrolytic Capacitor EMVY350ADA100ME55G Nippon Chemi - Con C2, C8 0.01 μF, 50 V Chip Capacitors C1825C103J5RAC Kemit C3, C5 10 pF Chip Capacitors ATC100B100BT500XT ATC C4, C10 47 pF Chip Capacitors ATC100B470BT500XT ATC C6, C7 22 μF, 35 V Tantalum Capacitors T491X226K035AT Kemet C9 220 μF, 50 V Electrolytic Capacitor EMVY500ADA221MJ0G Nippon Chemi - Con R1 1 KΩ, 1/4 W Chip Resistor CRCW12061001FKEA Vishay R2 10 Ω, 1/4 W Chip Resistor CRCW120610R1FKEA Vishay MRF7S16150HR3 MRF7S16150HSR3 4 RF Device Data Freescale Semiconductor R1 B1 R2 C3 C6 C5 C8 C9 C7 C2 C4 CUT OUT AREA C1 C10 Figure 2. MRF7S16150HR3(HSR3) Test Circuit Component Layout MRF7S16150HR3 MRF7S16150HSR3 RF Device Data Freescale Semiconductor 5 30 ηD 28 22 26 21 24 20 22 Gps 19 VDD = 28 Vdc, Pout = 32 W (Avg.), IDQ = 1500 mA, 802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 18 17 IRL 16 15 0 −30 −4 −36 −42 ACPR 14 1560 −24 1580 −48 1600 1620 1640 1660 1680 ACPR (dBc) Gps, POWER GAIN (dB) 23 −8 −12 −16 −54 1700 −20 IRL, INPUT RETURN LOSS (dB) 24 ηD, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS f, FREQUENCY (MHz) 38 22 36 21 34 20 32 Gps 19 18 17 16 IRL VDD = 28 Vdc, Pout = 64 W (Avg.), IDQ = 1500 mA 802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF −20 0 −25 −4 −30 −35 −40 15 ACPR 14 1560 1580 1600 1620 1640 1660 1680 ACPR (dBc) Gps, POWER GAIN (dB) 40 ηD 23 −8 −12 −16 −45 1700 −20 IRL, INPUT RETURN LOSS (dB) 24 ηD, DRAIN EFFICIENCY (%) Figure 3. WiMAX Broadband Performance @ Pout = 32 Watts Avg. f, FREQUENCY (MHz) Figure 4. WiMAX Broadband Performance @ Pout = 64 Watts Avg. 21 0 1875 mA 20 Gps, POWER GAIN (dB) IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) IDQ = 2250 mA 1500 mA 19 1125 mA 18 750 mA VDD = 28 Vdc, IDQ = 1500 mA f1 = 1625 MHz, f2 = 1635 MHz Two−Tone Measurements, 10 MHz Tone Spacing 17 16 VDD = 28 Vdc, IDQ = 1500 mA f1 = 1625 MHz, f2 = 1635 MHz Two−Tone Measurements, 10 MHz Tone Spacing −10 −20 IDQ = 375 mA −30 −40 937.5 mA 562.5 mA −50 1500 mA 750 mA −60 1 10 100 400 1 10 100 400 Pout, OUTPUT POWER (WATTS) PEP Pout, OUTPUT POWER (WATTS) PEP Figure 5. Two - Tone Power Gain versus Output Power Figure 6. Third Order Intermodulation Distortion versus Output Power MRF7S16150HR3 MRF7S16150HSR3 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS IMD, INTERMODULATION DISTORTION (dBc) VDD = 28 Vdc, IDQ = 1500 mA f1 = 1625 MHz, f2 = 1635 MHz Two−Tone Measurements, 10 MHz Tone Spacing −20 −30 −40 3rd Order −50 5th Order −60 7th Order −70 1 10 0 −20 IM3−U −30 IM3−L IM5−U −40 IM5−L IM7−U −50 IM7−L −60 10 1 400 100 VDD = 28 Vdc, Pout = 180 W (PEP), IDQ = 1500 mA Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 1630 MHz −10 100 TWO−TONE SPACING (MHz) Figure 7. Intermodulation Distortion Products versus Output Power Figure 8. Intermodulation Distortion Products versus Tone Spacing ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) Pout, OUTPUT POWER (WATTS) PEP 60 55 50 −30_C VDD = 28 Vdc, IDQ = 1500 mA f = 1630 MHz, 802.16d, 64 QAM 3/4 4 Bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 45 40 35 30 25_C −25 −30 85_C −30_C 25 −55 −60 85_C −65 25_C ηD 0 1 100 10 −35 −40 −45 −50 TC = −30_C Gps 20 15 ACPR 10 5 −15 −20 ACPR (dBc) IMD, INTERMODULATION DISTORTION (dBc) −10 −70 −75 300 Pout, OUTPUT POWER (WATTS) CW Figure 9. WiMAX, ACPR, Power Gain and Drain Efficiency versus Output Power 21 25_C 60 20 25_C 19 Gps 50 85_C 40 18 85_C 17 30 16 20 15 VDD = 28 Vdc IDQ = 1500 mA f = 1630 MHz ηD 14 1 10 100 10 0 400 Gps, POWER GAIN (dB) TC = −30_C 20 Gps, POWER GAIN (dB) 70 −30_C ηD, DRAIN EFFICIENCY (%) 21 IDQ = 1500 mA f = 1630 MHz 19 18 17 28 V 16 VDD = 24 V 32 V 15 0 100 200 Pout, OUTPUT POWER (WATTS) CW Pout, OUTPUT POWER (WATTS) CW Figure 10. Power Gain and Drain Efficiency versus CW Output Power Figure 11. Power Gain versus Output Power 300 MRF7S16150HR3 MRF7S16150HSR3 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS MTTF (HOURS) 108 107 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 28 Vdc, Pout = 32 W Avg., and ηD = 25.4%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 12. MTTF versus Junction Temperature WIMAX TEST SIGNAL −10 100 Input Signal −30 1 −40 0.1 (dB) PROBABILITY (%) 10 MHz Channel BW −20 10 −50 0.01 802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 0.001 0.0001 0 2 4 −60 −70 6 8 PEAK−TO−AVERAGE (dB) Figure 13. OFDM 802.16d Test Signal 10 −80 −90 −20 ACPR in 1 MHz Integrated BW −15 −10 ACPR in 1 MHz Integrated BW −5 0 5 10 15 20 f, FREQUENCY (MHz) Figure 14. WiMAX Spectrum Mask Specifications MRF7S16150HR3 MRF7S16150HSR3 8 RF Device Data Freescale Semiconductor Zo = 5 Ω f = 1700 MHz Zload f = 1500 MHz f = 1700 MHz Zsource f = 1500 MHz VDD = 28 Vdc, IDQ = 1500 mA, Pout = 32 W Avg. f MHz Zsource W Zload W 1500 1.09 - j3.76 1.00 - j2.35 1520 1.06 - j3.62 0.96 - j2.19 1540 1.04 - j3.48 0.93 - j2.03 1560 1.01 - j3.34 0.91 - j1.88 1580 0.99 - j3.21 0.88 - j1.74 1600 0.96 - j3.07 0.86 - j1.60 1620 0.94 - j2.94 0.83 - j1.46 1640 0.92 - j2.81 0.81 - j1.33 1660 0.90 - j2.69 0.79 - j1.20 1680 0.88 - j2.56 0.77 - j1.07 1700 0.86 - j2.44 0.76 - j0.95 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 15. Series Equivalent Source and Load Impedance MRF7S16150HR3 MRF7S16150HSR3 RF Device Data Freescale Semiconductor 9 PACKAGE DIMENSIONS B G Q bbb 2X 1 T A M M B M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M−1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. 3 B K 2 (FLANGE) D bbb M T A M B M M R (INSULATOR) bbb N T A M M B M ccc M T A M S (LID) ccc H T A M M B M aaa M T A M (LID) B M (INSULATOR) B M C F E A SEATING PLANE T A DIM A B C D E F G H K M N Q R S aaa bbb ccc INCHES MIN MAX 1.335 1.345 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 1.100 BSC 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 .118 .138 0.365 0.375 0.365 0.375 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 33.91 34.16 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 27.94 BSC 1.45 1.70 4.32 5.33 19.66 19.96 19.60 20.00 3.00 3.51 9.27 9.53 9.27 9.52 0.127 REF 0.254 REF 0.381 REF STYLE 1: PIN 1. DRAIN 2. GATE 3. SOURCE (FLANGE) CASE 465 - 06 ISSUE G NI - 780 MRF7S16150HR3 4X U (FLANGE) 4X Z (LID) B 1 K 2X 2 B (FLANGE) NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M−1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. D bbb M T A M B M N (LID) ccc M R M T A M B M ccc M T A M M B M aaa M T A M S (INSULATOR) bbb M T A (LID) B M (INSULATOR) B M H C 3 E A A F T SEATING PLANE (FLANGE) CASE 465A - 06 ISSUE H NI - 780S MRF7S16150HSR3 DIM A B C D E F H K M N R S U Z aaa bbb ccc INCHES MIN MAX 0.805 0.815 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 0.365 0.375 0.365 0.375 −−− 0.040 −−− 0.030 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 20.45 20.70 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 1.45 1.70 4.32 5.33 19.61 20.02 19.61 20.02 9.27 9.53 9.27 9.52 −−− 1.02 −−− 0.76 0.127 REF 0.254 REF 0.381 REF STYLE 1: PIN 1. DRAIN 2. GATE 5. SOURCE MRF7S16150HR3 MRF7S16150HSR3 10 RF Device Data Freescale Semiconductor PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 June 2007 1 Dec. 2008 Description • Initial Release of Data Sheet • Table 4, On Characteristics, tightened VGS(Q) max value from 3.8 to 3.5 to match production test value, p. 2 • Updated PCB information to show more specific material details, Fig. 1, Test Circuit Schematic, p. 4 • Updated Part Numbers in Table 5, Component Designations and Values, to latest RoHS compliant part numbers, p. 4 • Updated Fig. 13, OFDM 802.16d Test Signal, to show input signal only, p. 8 • Updated Fig. 14, WiMAX Spectrum Mask Specifications, to more accurately represent the WiMAX spectrum, p. 8 MRF7S16150HR3 MRF7S16150HSR3 RF Device Data Freescale Semiconductor 11 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800- 521- 6274 or +1 - 480- 768- 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800- 441- 2447 or +1 - 303- 675- 2140 Fax: +1 - 303- 675- 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007 - 2008. All rights reserved. MRF7S16150HR3 MRF7S16150HSR3 Document Number: MRF7S16150H Rev. 1, 12/2008 12 RF Device Data Freescale Semiconductor