ONSEMI NCV4275DSR4

NCV4275
5.0 V Low−Drop Voltage
Regulator
This industry standard linear regulator has the capability to drive
loads up to 450 mA at 5.0 V. It is available in DPAK and D2PAK.
This device is pin−for−pin compatible with Infineon part number
TLE4275.
http://onsemi.com
Features
•
•
•
•
•
•
5.0 V, ±2%, 450 mA Output Voltage
Very Low Current Consumption
Active RESET
Reset Low Down to VQ = 1.0 V
500 mV (max) Dropout Voltage
Fault Protection
♦ +45 V Peak Transient Voltage
♦ −42 V Reverse Voltage
♦ Short Circuit
♦ Thermal Overload
NCV Prefix for Automotive and Other Applications Requiring Site
and Control Changes
•
MARKING
DIAGRAMS
DPAK
5−PIN
DT SUFFIX
CASE 175AA
1
5
4275
ALYWW
x
1
D2PAK
5−PIN
DS SUFFIX
CASE 936A
1
NCV4275
AWLYYWW
5
Pin 1. I
1
2. RO
Tab, 3. GND*
4. D
5. Q
* Tab is connected to
Pin 3 on all packages
I
Q
Bandgap
Reference
Error
Amplifier
A
WL, L
YY, Y
WW
Current Limit and
Saturation Sense
+
−
Thermal
Shutdown
ORDERING INFORMATION
Reset
Generator
D
RO
Figure 1. Block Diagram
 Semiconductor Components Industries, LLC, 2004
Package
Shipping†
NCV4275DT
DPAK
75 Units/Rail
NCV4275DTRK
DPAK
2500 Tape & Reel
NCV4275DS
D2PAK
50 Units/Rail
NCV4275DSR4
D2PAK
800 Tape & Reel
Device
GND
August, 2004 − Rev. 8
= Assembly Location
= Wafer Lot
= Year
= Work Week
1
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specification
Brochure, BRD8011/D.
Publication Order Number:
NCV4275/D
NCV4275
PIN FUNCTION DESCRIPTION
ÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑ
ÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑ
ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
Pin No.
Symbol
1
I
2
RO
3
GND
Description
Input; Battery Supply Input Voltage. Bypass to ground with a ceramic capacitor.
Reset Output; Open Collector Active Reset (accurate when I > 1.0 V).
Ground; Pin 3 internally connected to tab.
4
D
Reset Delay; timing capacitor to GND for Reset Delay function.
5
Q
Output; ±2.0%, 450 mA output. Use 22 F, ESR < 5.0 Ω to ground.
MAXIMUM RATINGS†
Rating
Min
Max
Unit
−42
45
V
−
45
V
Output (Q)
−1.0
16
V
Reset Output (RO)
−0.3
25
V
Reset Output (RO)
−5.0
5.0
mA
Reset Delay (D)
−0.3
7.0
V
Reset Delay (D)
−2.0
2.0
mA
Operating Range (I)
5.5
42
V
ESD Susceptibility (Human Body Model)
2.0
−
kV
Junction Temperature
−40
150
°C
Storage Temperature
−55
150
°C
Reflow (SMD styles only) Note 1
−
°C
Wave Solder (through hole styles only) Note 2
−
240 Peak
(Note 3)
260 Peak
Input [I (DC)]
Input [I (Peak Transient Voltage)]
Lead Temperature Soldering
°C
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values
(not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage
may occur and reliability may be affected.
THERMAL CHARACTERISTICS
Parameter
Test Conditions (Typical Value)
Unit
DPAK 5−PIN PACKAGE
Min Pad Board (Note 4)
1″ Pad Board (Note 5)
Junction−to−Tab (psi−JLx, JLx)
4.2
4.7
C/W
Junction−to−Ambient (RJA, JA)
100.9
46.8
C/W
0.4 sq. in. Spreader Board (Note 6)
1.2 sq. in. Spreader Board (Note 7)
Junction−to−Tab (psi−JLx, JLx)
3.8
4.0
C/W
Junction−to−Ambient (RJA, JA)
74.8
41.6
C/W
D2PAK
5−PIN PACKAGE
1. 60 seconds max above 183°C.
2. 10 seconds max.
3. −5°C/+0°C allowable conditions.
4. 1 oz. copper, 0.26 inch2 (168 mm2) copper area, 0.62″ thick FR4.
5. 1 oz. copper, 1.14 inch2 (736 mm2) copper area, 0.62″ thick FR4.
6. 1 oz. copper, 0.373 inch2 (241 mm2) copper area, 0.62″ thick FR4.
7. 1 oz. copper, 1.222 inch2 (788 mm2) copper area, 0.62″ thick FR4.
†During the voltage range which exceeds the maximum tested voltage of I, operation is assured, but not specified. Wider limits may apply. Thermal
dissipation must be observed closely.
http://onsemi.com
2
NCV4275
ELECTRICAL CHARACTERISTICS (I = 13.5 V; −40°C < TJ < 150°C; unless otherwise noted)
Characteristic
Test Conditions
Min
Typ
Max
Unit
Output Voltage
5.0 mA < IQ < 400 mA, 6.0 V < VI < 28 V
4.9
5.0
5.1
V
Output Voltage
5.0 mA < IQ < 200 mA, 6.0 V < VI < 40 V
4.9
5.0
5.1
V
−
450
700
−
mA
Output
Output Current Limitation
Quiescent Current, Iq = II − IQ
IQ = 1.0 mA
−
150
200
A
Quiescent Current, Iq = II − IQ
IQ = 250 mA
−
10
15
mA
Quiescent Current, Iq = II − IQ
IQ = 400 mA
−
23
35
mA
Dropout Voltage
IQ = 300 mA, Vdr = VI − VQ
−
250
500
mV
Load Regulation
IQ = 5.0 mA to 400 mA
−30
15
30
mV
Line Regulation
∆V = 8.0 V to 32 V, IQ = 5.0 mA
−25
5.0
25
mV
Power Supply Ripple Rejection
fr = 100 Hz, Vr = 0.5 Vpp
−
60
−
dB
−
−
0.5
−
mV/k
−
4.5
4.65
4.8
V
−
0.2
0.4
V
Temperature Output Voltage Drift
Reset Timing D and Output RO
Reset Switching Threshold
Reset Output Low Voltage
Rext > 5.0 k, VQ > 1.0 V
Reset Output Leakage Current
VROH = 5.0 V
Reset Charging Current
VD = 1.0 V
−
0
10
A
3.0
5.5
9.0
A
Upper Timing Threshold
−
1.5
1.8
2.2
V
Lower Timing Threshold
−
0.2
0.4
0.7
V
Reset Delay Time
CD = 47 nF
10
16
22
ms
Reset Reaction Time
CD = 47 nF
−
1.5
4.0
s
TYPICAL PERFORMANCE CHARACTERISTICS
1000
Unstable ESR Region for
CVout = 1 F − 22 F
ESR ()
100
Maximum ESR for
CVout = 1 F − 22 F
10
Stable ESR Region
1
Minimum ESR for
CVout = 1 F
0.1
Unstable Region for CVout = 1 F
0.01
0
100
200
300
400
OUTPUT CURRENT (mA)
Figure 2. Output Stability with Output
Capacitor ESR
http://onsemi.com
3
500
NCV4275
APPLICATION INFORMATION
VI
II
CI1
1000 µF
I
1
CI2
100 nF
ID
5
IQ
Q
NCV4275
D
4
CD
47 nF
VQ
CQ
22 µF
2
3
Rext
5.0 k
IRO
RO
VRO
GND
Figure 3. Test Circuit
Circuit Description
The error amplifier compares a temperature−stable
reference voltage to a voltage that is proportional to the
output voltage (Q) (generated from a resistor divider) and
drives the base of a series transistor via a buffer. Saturation
control as a function of the load current prevents
oversaturation of the output power device, thus preventing
excessive substrate current (quiescent current).
Typical drop out voltage at 300 mA load is 250 mV,
500 mV maximum. Test voltage for drop out is 5.0 V input.
Calculating Power Dissipation
in a Single Output Linear Regulator
The maximum power dissipation for a single output
regulator (Figure 4) is:
PD(max) [VI(max) VQ(min)] IQ(max)
(1)
VI(max)Iq
where
VI(max)
VQ(min)
IQ(max)
is the maximum input voltage,
is the minimum output voltage,
is the maximum output current for the
application,
Iq
is the quiescent current the regulator
consumes at IQ(max).
Once the value of PD(max) is known, the maximum
permissible value of RJA can be calculated:
Stability Considerations
The input capacitors (CI1 and CI2) are necessary to
control line influences. Using a resistor of approximately
1.0 Ω in series with CI2 can solve potential oscillations due
to stray inductance and capacitance.
The output or compensation capacitor helps determine
three main characteristics of a linear regulator: start−up
delay, load transient response and loop stability.
The capacitor value and type should be based on cost,
availability, size and temperature constraints. A tantalum
or aluminum electrolytic capacitor is best, since a film or
ceramic capacitor with almost zero ESR can cause
instability. The aluminum electrolytic capacitor is the least
expensive solution, but, if the circuit operates at low
temperatures (−25°C to −40°C), both the value and ESR of
the capacitor will vary considerably. The capacitor
manufacturers data sheet usually provides this
information.
The value for the output capacitor CQ shown in Figure 3
should work for most applications, however it is not
necessarily the optimized solution. Stability is guaranteed for
CQ > 22 F and an ESR ≤ 5.0 Ω.
T
RJA 150°C A
PD
(2)
The value of RJA can then be compared with those in the
package section of the data sheet. Those packages with
RJA’s less than the calculated value in Equation 2 will keep
the die temperature below 150°C.
In some cases, none of the packages will be sufficient to
dissipate the heat generated by the IC, and an external
heatsink will be required.
IQ
II
VI
SMART
REGULATOR
VQ
} Control
Features
Iq
Figure 4. Single Output Regulator with Key
Performance Parameters Labeled
http://onsemi.com
4
NCV4275
Heat Sinks
A heat sink effectively increases the surface area of the
package to improve the flow of heat away from the IC and
into the surrounding air.
Each material in the heat flow path between the IC and
the outside environment will have a thermal resistance.
Like series electrical resistances, these resistances are
summed to determine the value of RJA:
RJA RJC RCS RSA
where
RJC is the junction−to−case thermal resistance,
RCS is the case−to−heatsink thermal resistance,
RSA is the heatsink−to−ambient thermal
resistance.
RJC appears in the package section of the data sheet.
Like RJA, it too is a function of package type. RCS and
RSA are functions of the package type, heatsink and the
interface between them. These values appear in heat sink
data sheets of heat sink manufacturers.
Thermal, mounting, and heatsinking considerations are
discussed in the ON Semiconductor application note
AN1040/D.
(3)
VI
t
< Reset Reaction Time
VQ
VQ,rt
t
Reset Charge Current
dVD
dt
CD
VD
Upper Timing Threshold
Lower Timing Threshold
t
Reset
Delay Time
Reset
Reaction Time
VRO
t
Power−on−Reset
Thermal
Shutdown
Voltage Dip
at Input
Undervoltage
Secondary
Spike
Figure 5. Reset Timing
http://onsemi.com
5
Overload
at Output
NCV4275
Table 1. DPAK 5−Lead Thermal RC Network Models
Drain Copper Area (1 oz thick)
168 mm2
(SPICE Deck Format)
736 mm2
168 mm2
Cauer Network
168
mm2
736 mm2
Foster Network
736
mm2
Units
Tau
Tau
Units
C_C1
Junction
Gnd
1.00E−06
1.00E−06
W−s/C
1.36E−08
1.361E−08
sec
C_C2
node1
Gnd
1.00E−05
1.00E−05
W−s/C
7.41E−07
7.411E−07
sec
C_C3
node2
Gnd
6.00E−05
6.00E−05
W−s/C
1.04E−05
1.029E−05
sec
C_C4
node3
Gnd
1.00E−04
1.00E−04
W−s/C
3.91E−05
3.737E−05
sec
C_C5
node4
Gnd
4.36E−04
3.64E−04
W−s/C
1.80E−03
1.376E−03
sec
C_C6
node5
Gnd
6.77E−02
1.92E−02
W−s/C
3.77E−01
2.851E−02
sec
C_C7
node6
Gnd
1.51E−01
1.27E−01
W−s/C
3.79E+00
9.475E−01
sec
C_C8
node7
Gnd
4.80E−01
1.018
W−s/C
2.65E+01
1.173E+01
sec
C_C9
node8
Gnd
3.740
2.955
W−s/C
8.71E+01
8.59E+01
sec
C_C10
node9
Gnd
10.322
0.438
W−s/C
168
mm2
736
mm2
sec
R’s
R’s
R_R1
Junction
node1
0.015
0.015
C/W
0.0123
0.0123
C/W
R_R2
node1
node2
0.08
0.08
C/W
0.0585
0.0585
C/W
R_R3
node2
node3
0.4
0.4
C/W
0.0304
0.0287
C/W
R_R4
node3
node4
0.2
0.2
C/W
0.3997
0.3772
C/W
R_R5
node4
node5
2.97519
2.6171
C/W
3.115
2.68
C/W
R_R6
node5
node6
8.2971
1.6778
C/W
3.571
1.38
C/W
R_R7
node6
node7
25.9805
7.4246
C/W
12.851
5.92
C/W
R_R8
node7
node8
46.5192
14.9320
C/W
35.471
7.39
C/W
R_R9
node8
node9
17.7808
19.2560
C/W
46.741
28.94
C/W
node9
Gnd
0.1
0.1758
C/W
R_R10
NOTE:
Bold face items represent the package without the external thermal system.
http://onsemi.com
6
C/W
NCV4275
Table 2. D2PAK 5−Lead Thermal RC Network Models
Drain Copper Area (1 oz thick)
241 mm2
(SPICE Deck Format)
788 mm2
241 mm2
Cauer Network
241
mm2
788 mm2
Foster Network
653
mm2
Units
Tau
Tau
Units
C_C1
Junction
Gnd
1.00E−06
1.00E−06
W−s/C
1.361E−08
1.361E−08
sec
C_C2
node1
Gnd
1.00E−05
1.00E−05
W−s/C
7.411E−07
7.411E−07
sec
C_C3
node2
Gnd
6.00E−05
6.00E−05
W−s/C
1.005E−05
1.007E−05
sec
C_C4
node3
Gnd
1.00E−04
1.00E−04
W−s/C
3.460E−05
3.480E−05
sec
C_C5
node4
Gnd
2.82E−04
2.87E−04
W−s/C
7.868E−04
8.107E−04
sec
C_C6
node5
Gnd
5.58E−03
5.95E−03
W−s/C
7.431E−03
7.830E−03
sec
C_C7
node6
Gnd
4.25E−01
4.61E−01
W−s/C
2.786E+00
2.012E+00
sec
C_C8
node7
Gnd
9.22E−01
2.05
W−s/C
2.014E+01
2.601E+01
sec
C_C9
node8
Gnd
1.73
4.88
W−s/C
1.134E+02
1.218E+02
sec
C_C10
node9
Gnd
7.12
1.31
W−s/C
241
mm2
653
mm2
sec
R’s
R’s
R_R1
Junction
node1
0.015
0.0150
C/W
0.0123
0.0123
C/W
R_R2
node1
node2
0.08
0.0800
C/W
0.0585
0.0585
C/W
R_R3
node2
node3
0.4
0.4000
C/W
0.0257
0.0260
C/W
R_R4
node3
node4
0.2
0.2000
C/W
0.3413
0.3438
C/W
R_R5
node4
node5
1.85638
1.8839
C/W
1.77
1.81
C/W
R_R6
node5
node6
1.23672
1.2272
C/W
1.54
1.52
C/W
R_R7
node6
node7
9.81541
5.3383
C/W
4.13
3.46
C/W
R_R8
node7
node8
33.1868
18.9591
C/W
6.27
5.03
C/W
R_R9
node8
node9
27.0263
13.3369
C/W
60.80
29.30
C/W
node9
gnd
1.13944
0.1191
C/W
R_R10
NOTE:
C/W
Bold face items represent the package without the external thermal system.
The Cauer networks generally have physical significance and may be divided between nodes to separate thermal behavior
due to one portion of the network from another. The Foster networks, though when sorted by time constant (as above) bear
a rough correlation with the Cauer networks, are really only convenient mathematical models. Cauer networks can be easily
implemented using circuit simulating tools, whereas Foster networks may be more easily implemented using mathematical
tools (for instance, in a spreadsheet program), according to the following formula:
n
R(t) Ri 1−e−ttaui i1
http://onsemi.com
7
110
110
100
100
90
90
80
80
70
JA (C°/W)
JA (C°/W)
NCV4275
1 oz
60
2 oz
70
60
1 oz
2 oz
50
50
40
40
30
150 200 250 300 350 400 450 500 550 600 650 700 750
30
150 200 250 300 350 400 450 500 550 600 650 700 750
COPPER AREA (mm2)
COPPER AREA (mm2)
Figure 6. JA vs. Copper Spreader Area,
DPAK 5−Lead
Figure 7. JA vs. Copper Spreader Area,
D2PAK 5−Lead
100
Cu Area 167 mm2
Cu Area 736 mm2
R(t) C°/W
10
1.0
sqrt(t)
0.1
0.01
0.0000001
0.000001
0.00001
0.0001
0.001
0.01
0.1
1.0
10
100
1000
TIME (sec)
Figure 8. Single−Pulse Heating Curves, DPAK 5−Lead
100
Cu Area 167 mm2
Cu Area 736 mm2
R(t) C°/W
10
1.0
0.1
0.01
0.0000001
0.000001
0.00001
0.0001
0.001
0.01
0.1
1.0
TIME (sec)
Figure 9. Single−Pulse Heating Curves, D2PAK 5−Lead
http://onsemi.com
8
10
100
1000
NCV4275
100
50% Duty Cycle
RJA 736 mm2 C°/W
20%
10
1.0
10%
5%
2%
1%
0.1
Non−normalized Response
0.01
0.0000001
0.000001
0.00001
0.0001
0.001
0.01
0.1
1.0
10
100
1000
10
100
1000
PULSE WIDTH (sec)
Figure 10. Duty Cycle for 1” Spreader Boards, DPAK 5−Lead
100
RJA 788 mm2 C°/W
50% Duty Cycle
10
20%
10%
5%
1.0
2%
1%
0.1
Non−normalized Response
0.01
0.0000001
0.000001
0.00001
0.0001
0.001
0.01
0.1
1.0
PULSE WIDTH (sec)
Figure 11. Duty Cycle for 1” Spreader Boards, D2PAK 5−Lead
R1
Junction
C1
R2
C2
R3
C3
Rn
Cn
Time constants are not simple RC products. Amplitudes
of mathematical solution are not the resistance values.
Ambient
(thermal ground)
Figure 12. Grounded Capacitor Thermal Network (“Cauer” Ladder)
Junction
R1
C1
R2
C2
R3
C3
Rn
Cn
Each rung is exactly characterized by its RC−product
time constant; amplitudes are the resistances.
Ambient
(thermal ground)
Figure 13. Non−Grounded Capacitor Thermal Ladder (“Foster” Ladder)
http://onsemi.com
9
NCV4275
PACKAGE DIMENSIONS
DPAK 5 CENTER LEAD CROP
DT SUFFIX
CASE 175AA−01
ISSUE O
−T−
SEATING
PLANE
C
B
V
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
E
R
R1
Z
A
S
1 2 3 4 5
U
K
F
J
L
H
D
G
5 PL
0.13 (0.005)
M
T
http://onsemi.com
10
DIM
A
B
C
D
E
F
G
H
J
K
L
R
R1
S
U
V
Z
INCHES
MIN
MAX
0.235 0.245
0.250 0.265
0.086 0.094
0.020 0.028
0.018 0.023
0.024 0.032
0.180 BSC
0.034 0.040
0.018 0.023
0.102 0.114
0.045 BSC
0.170 0.190
0.185 0.210
0.025 0.040
0.020
−−−
0.035 0.050
0.155 0.170
MILLIMETERS
MIN
MAX
5.97
6.22
6.35
6.73
2.19
2.38
0.51
0.71
0.46
0.58
0.61
0.81
4.56 BSC
0.87
1.01
0.46
0.58
2.60
2.89
1.14 BSC
4.32
4.83
4.70
5.33
0.63
1.01
0.51
−−−
0.89
1.27
3.93
4.32
NCV4275
PACKAGE DIMENSIONS
D2PAK
5 LEAD
DS SUFFIX
CASE 936A−02
ISSUE B
−T−
OPTIONAL
CHAMFER
A
B
V
H
1 2 3 4 5
M
D
M
U
S
K
0.010 (0.254)
TERMINAL 6
E
T
L
P
N
G
R
C
http://onsemi.com
11
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS
A AND K.
4. DIMENSIONS U AND V ESTABLISH A MINIMUM
MOUNTING SURFACE FOR TERMINAL 6.
5. DIMENSIONS A AND B DO NOT INCLUDE MOLD
FLASH OR GATE PROTRUSIONS. MOLD FLASH
AND GATE PROTRUSIONS NOT TO EXCEED
0.025 (0.635) MAXIMUM.
DIM
A
B
C
D
E
G
H
K
L
M
N
P
R
S
U
V
INCHES
MIN
MAX
0.386
0.403
0.356
0.368
0.170
0.180
0.026
0.036
0.045
0.055
0.067 BSC
0.539
0.579
0.050 REF
0.000
0.010
0.088
0.102
0.018
0.026
0.058
0.078
5 REF
0.116 REF
0.200 MIN
0.250 MIN
MILLIMETERS
MIN
MAX
9.804 10.236
9.042
9.347
4.318
4.572
0.660
0.914
1.143
1.397
1.702 BSC
13.691 14.707
1.270 REF
0.000
0.254
2.235
2.591
0.457
0.660
1.473
1.981
5 REF
2.946 REF
5.080 MIN
6.350 MIN
NCV4275
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
12
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
NCV4275/D