Quad Low Offset, Low Power Operational Amplifier OP400 OUTA 1 16 OUT D 15 –IN D 14 +IN D 13 V– 12 +IN C 11 –IN C OUT B 7 10 OUT C NC 8 9 NC OUT A 1 14 OUT D –IN A 2 –IN A 2 13 –IN D +IN A 3 12 +IN D V+ 4 11 V– +IN B 5 10 +IN C –IN B 6 9 –IN C 8 OUT C – + – + +IN A 3 OP400 V+ 4 +IN B 5 –IN B 6 – + + – OUT B 7 00304-001 Low input offset voltage: 150 μV maximum Low offset voltage drift over –55°C to +125°C: 1.2 pV/°C maximum Low supply current (per amplifier): 725 μA maximum High open-loop gain: 5000 V/mV minimum Input bias current: 3 nA maximum Low noise voltage density: 11 nV/√Hz at 1 kHz Stable with large capacitive loads: 10 nF typical Pin-compatible to LM148, HA4741, RM4156, and LT1014, with improved performance Available in die form – + + – OP400 – + + – NC = NO CONNECT Figure 1. 14-Pin Ceramic DIP (Y-Suffix) and 14-Pin Plastic DIP (P-Suffix) 00304-002 FUNCTIONAL BLOCK DIAGRAMS FEATURES Figure 2. 16-Pin SOIC (S-Suffix) GENERAL DESCRIPTION The OP400 is the first monolithic quad operational amplifier that features OP77-type performance. Precision performance is not sacrificed with the OP400 to obtain the space and cost savings offered by quad amplifiers. The OP400 features an extremely low input offset voltage of less than 150 μV with a drift of less than 1.2 μV/°C, guaranteed over the full military temperature range. Open-loop gain of the OP400 is more than 5 million into a 10 kΩ load, input bias current is less than 3 nA, CMR is more than 120 dB, and PSRR is less than 1.8 μV/V. On-chip Zener zap trimming is used to achieve the low input offset voltage of the OP400 and eliminates the need for offset nulling. The OP400 conforms to the industrystandard quad pinout, which does not have null terminals. The OP400 features low power consumption, drawing less than 725 μA per amplifier. The total current drawn by this quad amplifier is less than that of a single OP07, yet the OP400 offers significant improvements over this industry-standard op amp. Voltage noise density of the OP400 is a low 11 nV/√Hz at 10 Hz, half that of most competitive devices. The OP400 is pin-compatible with the LM148, HA4741, RM4156, and LT1014 operational amplifiers and can be used to upgrade systems having these devices. The OP400 is an ideal choice for applications requiring multiple precision operational amplifiers and where low power consumption is critical. V+ BIAS VOLTAGE LIMITING NETWORK +IN OUT –IN 00304-003 V– Figure 3. Simplified Schematic (One of Four Amplifiers Is Shown) Rev. E Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2007 Analog Devices, Inc. All rights reserved. OP400 TABLE OF CONTENTS Features .............................................................................................. 1 Typical Performance Characteristics ..............................................6 Functional Block Diagrams............................................................. 1 Applications..................................................................................... 11 General Description ......................................................................... 1 Dual Low Power Instrumentation Amplifier ......................... 11 Revision History ............................................................................... 2 Bipolar Current Transmitter ..................................................... 12 Specifications..................................................................................... 3 Differential Output Instrumentation Amplifier .................... 12 Electrical Characteristics............................................................. 3 Multiple Output Tracking Voltage Reference......................... 13 Absolute Maximum Ratings............................................................ 5 Outline Dimensions ....................................................................... 14 Thermal Resistance ...................................................................... 5 Ordering Guide .......................................................................... 15 ESD Caution.................................................................................. 5 SMD Parts and Equivalents ...................................................... 15 REVISION HISTORY 1/07—Rev. D to Rev. E Updated Format..................................................................Universal Changes to Figure 1 and Figure 2................................................... 1 Removed Figure 4............................................................................. 4 Changes to Table 3............................................................................ 4 Changes to Figure 16 through Figure 19, Figure 21..................... 8 Changes to Figure 27........................................................................ 9 Changes to Figure 28...................................................................... 10 Changes to Figure 33...................................................................... 13 Updated Outline Dimensions ....................................................... 14 3/06—Rev. C to Rev. D Updated Format..................................................................Universal Deleted Wafer Test Limits Table ..................................................... 4 New Package Drawing: R-14 ......................................................... 15 Updated Outline Dimensions ....................................................... 15 Changes to Ordering Guide .......................................................... 16 6/03—Rev. B to Rev. C Edits to Specifications .......................................................................2 10/02—Rev. A to Rev. B Addition of Absolute Maximum Ratings .......................................5 Edits to Outline Dimensions......................................................... 12 4/02—Rev. 0 to Rev. A Edits to Features.................................................................................1 Edits to Ordering Information ........................................................1 Edits to Pin Connections..................................................................1 Edits to General Descriptions..................................................... 1, 2 Edits to Package Type .......................................................................2 Rev. E | Page 2 of 16 OP400 SPECIFICATIONS ELECTRICAL CHARACTERISTICS @ VS = ±15 V, TA = +25°C, unless otherwise noted. Table 1. Parameter INPUT CHARACTERISTICS Input Offset Voltage Long-Term Input Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage Input Resistance Differential Mode Input Resistance Common Mode Large Signal Voltage Gain Symbol Conditions VOS IOS IB en p-p RIN VCM = 0 V VCM = 0 V 0.1 Hz to 10 Hz AVO Capacitive Load Stability NOISE PERFORMANCE Input Noise Voltage Density 3 Input Noise Current Input Noise Current Density IVR CMR OP400A/E Typ Max Min OP400F Typ Max Min OP400G/H Typ Max Unit 40 0.1 150 60 0.1 230 80 0.1 300 μV μV/mo 0.1 0.75 0.5 10 1.0 3.0 0.1 0.75 0.5 10 2.0 6.0 0.1 0.75 0.5 10 3.5 7.0 nA nA μV p-p MΩ 200 RINCM 200 200 GΩ 7000 3000 ±13 135 V/mV V/mV V dB 3.2 pF ±12.6 V VO = ±10 V RL = 10 kΩ RL = 2 kΩ Input Voltage Range 1 Common-Mode Rejection Input Capacitance OUTPUT CHARACTERISTICS Output Voltage Swing POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Slew Rate Gain Bandwidth Product Channel Separation Min VCM = 12 V 5000 12,000 2000 3500 ±12 ±13 120 140 CIN 3000 1500 ±12 115 3.2 3000 1500 ±12 110 3.2 VO RL = 10 kΩ PSRR VS = 3 V to 18 V 0.1 1.8 0.1 3.2 0.2 5.6 μV/V ISY No load 600 725 600 725 600 725 μA SR GBWP AV = 1 CS en in p-p in VO = 20 V p-p, fO = 10 Hz 2 AV = 1, no oscillations fO = 10 Hz3 fO = 1000 Hz3 0.1 Hz to 10 Hz fO = 10 Hz ±12 7000 3000 ±13 140 ±12.6 ±12 ±12.6 ±12 0.1 0.15 500 0.1 0.15 500 0.1 0.15 500 V/μs kHz 123 135 123 135 123 135 dB 10 nF 22 11 15 0.6 nV/√Hz nV/√Hz pA p-p pA/√Hz 10 22 11 15 0.6 10 36 18 1 Guaranteed by CMR test. Guaranteed but not 100% tested. 3 Sample tested. 2 Rev. E | Page 3 of 16 22 11 15 0.6 36 18 OP400 @ VS = ±15 V, −55°C ≤ TA ≤ +125°C for OP400A, unless otherwise noted. Table 2. Parameter INPUT CHARACTERISTICS Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Input Bias Current Large Signal Voltage Gain Symbol Input Voltage Range 1 Common-Mode Rejection OUTPUT CHARACTERISTICS Output Voltage Swing POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Capacitive Load Stability IVR CMR VCM = ±12 V VO RL = 10 kΩ PSRR ISY VO = 3 V to 18 V No load 0.2 600 AV = 1, no oscillations 8 1 VOS TCVOS IOS IB AVO Conditions Min VCM = 0 V VCM = 0 V VO = ±10 V, RL = 10 kΩ RL = 2 kΩ 3000 1000 ±12 ±12 Typ Max Unit 70 0.3 0.1 1.3 9000 2300 ±12.5 115 270 1.2 2.5 5.0 μV μV/°C nA nA V/mV 130 V dB 3.2 775 μV/V μA ±12.4 nF Guaranteed by CMR test. @ VS = ±15 V, −25°C ≤ TA ≤ +85°C for OP400E/F, 0°C ≤ TA ≤ 70°C for OP400G, −40°C ≤ TA ≤ +85°C for OP400H, unless otherwise noted. Table 3. Parameter INPUT CHARACTERISTICS Input Offset Voltage Average Input Offset Voltage Drift Input Offset Current Input Bias Current Large-Signal Voltage Gain Input Voltage Range 1 Common-Mode Rejection OUTPUT CHARACTERISTICS Output Voltage Swing POWER SUPPLY Power Supply Rejection Ratio Supply Current per Amplifier DYNAMIC PERFORMANCE Capacitive Load Stability 1 Symbol Conditions Min VOS TCVOS IOS IB AVO VCM = 0 V E, F, G grades H grade VCM = 0 V E, F, G grades H grade VCM = 0 V RL = 10 kΩ RL = 2 kΩ OP400E Typ Max Min OP400F Typ Max Min OP400G/H Typ Max Unit 60 0.3 220 1.2 80 0.3 350 2.0 110 0.6 400 2.5 μV μV/°C 0.1 2.5 0.1 3.5 0.2 0.2 6.0 12.0 nA nA 0.9 5.0 0.9 10.0 1.0 1.0 12.0 20.0 nA nA VCM = ±12 V 3000 1500 ±12 115 10,000 2700 ±12.5 135 2000 1000 ±12 110 5000 2000 ±12.5 135 2000 1000 ±12 105 5000 2000 ±12.5 130 V/mV V/mV V dB VO RL = 10 kΩ RL = 2 kΩ ±12 ±11 ±12.4 ±12 ±12 ±11 ±12.4 ±12 ±12 ±11 ±12.6 ±12.2 V V PSRR VS = ±3 V to ±18 V No load 0.15 3.2 0.15 5.6 0.3 10.0 μV/V 600 775 600 775 600 775 μA No oscillations 10 IVR CMR ISY Guaranteed by CMR test. Rev. E | Page 4 of 16 10 10 nF OP400 ABSOLUTE MAXIMUM RATINGS Table 4. Parameter Supply Voltage Differential Input Voltage Input Voltage Output Short-Circuit Duration Storage Temperature Range P, Y Packages Lead Temperature (Soldering 60 sec) Junction Temperature (TJ) Range Operating Temperature Range OP400A OP400E, OP400F OP400G OP400H Rating ±20 V ±30 V Supply voltage Continuous −65°C to +150°C 300°C −65°C to +150°C −55°C to +125°C −25°C to +85°C 0°C to 70°C −40°C to +85°C Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Absolute maximum ratings apply to both dice and packaged parts, unless otherwise noted. THERMAL RESISTANCE θJA is specified for worst-case mounting conditions, that is, θJA is specified for device in socket for CERDIP and PDIP packages; θJA is specified for device soldered to printed circuit board for SOIC package. Table 5. Thermal Resistance Package Type 14-Pin Ceramic DIP (Y) 14-Pin Plastic DIP (P) 16-Pin SOIC (S) ESD CAUTION Rev. E | Page 5 of 16 θJA 94 76 88 θJC 10 33 23 Unit °C/W °C/W °C/W OP400 TYPICAL PERFORMANCE CHARACTERISTICS 3 1 0 1 2 3 100 90 80 –75 5 4 110 00304-007 INPUT OFFSET CURRENT (pA) 2 0 VS = ±15V 120 00304-004 CHANGE IN OFFSET VOLTAGE (μV) TA = 25°C VS = ±15V –50 –25 0 25 50 75 100 125 TEMPERATURE (°C) TIME (Minutes) Figure 7. Input Offset Current vs. Temperature Figure 4. Warmup Drift 1.1 70 VS = ±15V 1.0 INPUT BIAS CURRENT (nA) 50 40 30 0.8 0.7 00304-005 20 10 –75 0.9 –50 –25 0 25 50 75 100 0.6 –15 125 00304-008 INPUT OFFSET VOLTAGE (μV) 60 –10 –5 0 5 10 Figure 8. Input Bias Current vs. Common-Mode Voltage Figure 5. Input Offset Voltage vs. Temperature 140 2.0 TA = 25°C VS = ±15V 1.2 0.8 0.4 00304-006 INPUT BIAS CURRENT (nA) 1.6 –50 –25 0 25 50 75 100 120 100 80 60 40 20 0 125 00304-009 COMMON-MODE REJECTION (dB) VS = ±15V 0 –75 15 COMMON-MODE VOLTAGE (V) TEMPERATURE (°C) 1 10 100 1k 10k FREQUENCY (Hz) TEMPERATURE (°C) Figure 9. Common-Mode Rejection vs. Frequency Figure 6. Input Bias Current vs. Temperature Rev. E | Page 6 of 16 100k OP400 2.5 10 1 100 FOUR AMPLIFIERS TA = 25°C 2.4 2.3 2.2 00304-013 10 00304-010 TOTAL SUPPLY CURRENT (mA) NOISE VOLTAGE DENSITY (nV/ Hz) 100 2.1 ±2 1k ±4 ±6 ±8 2.5 TOTAL SUPPLY CURRENT (mA) 800 600 400 200 ±16 ±18 ±20 100 FOUR AMPLIFIERS VS = ±15V 2.4 2.3 2.2 2.1 00304-011 10 ±14 00304-014 TA = 25°C VS = ±15V –75 1k –50 –25 0 25 50 75 100 125 150 TEMPERATURE (°C) FREQUENCY (Hz) Figure 14. Total Supply Current vs. Temperature Figure 11. Current Noise Density vs. Frequency 0 2 4 6 8 120 100 80 POSITIVE SUPPLY 60 40 20 0 0.1 10 TIME (Seconds) NEGATIVE SUPPLY 00304-015 POWER SUPPLY REJECTION (dB) 140 00304-012 CURRENT NOISE DENSITY (fA/ Hz) 1k 1 ±12 Figure 13. Total Supply Current vs. Supply Voltage Figure 10. Noise Voltage Density vs. Frequency 0 ±10 SUPPLY VOLTAGE (V) FREQUENCY (Hz) 1 10 100 1k 10k FREQUENCY (Hz) Figure 12. 0.1 Hz to 10 Hz Noise Figure 15. Power Supply Rejection vs. Frequency Rev. E | Page 7 of 16 100k OP400 144 POWER SUPPLY REJECTION (dB) VS = ±15V TA = 25°C VS = ±15V 80 142 AV = 1000 60 GAIN (dB) 140 138 AV = 100 40 AV = 10 20 136 AV = 1000 00304-016 134 –75 00304-019 0 –50 –25 0 25 50 75 TEMPERATURE (°C) 100 125 1 150 10 100 1k 10k FREQUENCY (Hz) 100k 1M Figure 19. Closed-Loop Gain vs. Frequency Figure 16. Power Supply Rejection vs. Temperature 5k 3k 2k 0 –75 00304-017 1k –50 –25 0 25 50 75 TEMPERATURE (°C) 100 125 TA = 25°C VS = ±15V 25 20 15 10 5 00304-020 RL = 2kΩ 4k OPEN-LOOP GAIN (V/mV) OUTPUT SWING (V p-p AT 1% Distortion) VS = ±15V 10 150 Figure 17. Open-Loop Gain vs. Temperature 90 20 135 0 180 1k 10k FREQUENCY (Hz) 100k 1M AV = 100 1 AV = 10 AV = 1 0.1 0.01 0.001 Figure 18. Open-Loop Gain and Phase Shift vs. Frequency 000304-021 40 VOUT = 10V p-p RL = 2kΩ DISTORTION (%) 45 PHASE PHASE SHIFT (Degrees) GAIN 00304-018 OPEN-LOOP GAIN (dB) 0 100 100k TA = 25°C 80 10 10k VS = ±15V 10 100 60 1k FREQUENCY (Hz) Figure 20. Maximum Output Swing Frequency TA = 25°C VS = ±15V 120 100 100 1k FREQUENCY (Hz) Figure 21. Total Harmonic Distortion vs. Frequency Rev. E | Page 8 of 16 10k OP400 50 45 TA = 25°C TA = 25°C VS = ±15V VS = ±15V 40 AV = +1 AV = +1 FALLING OVERSHOOT (%) 35 30 25 RISING 20 15 5 0 0 0.5 1.0 1.5 2.0 CAPACITIVE LOAD (nF) 2.5 5V 3.0 Figure 22. Overshoot vs. Capacitive Load Figure 25. Large Signal Transient Response TA = 25°C TA = 25°C VS = ±15V VS = ±15V AV = +1 32 SINKING 30 28 0 1 2 3 TIME (Minutes) 4 20mV 5μs 5 Figure 23. Short Circuit vs. Time 00304-026 SOURCING 00304-023 SHORT-CIRCUIT CURRENT (mA) 34 100μs 00304-025 000304-022 10 Figure 26. Small Signal Transient Response TA = 25°C VS = ±15V VIN = 20V p-p 130 TA = 25°C VS = ±15V AV = +1 120 110 90 10 100 1k FREQUENCY (Hz) 10k 20mV 5μs 100k Figure 27. Small Signal Transient Response, CLOAD = 1 nF Figure 24. Channel Separation vs. Frequency Rev. E | Page 9 of 16 00304-027 100 00304-024 CHANNEL SEPARATION (dB) 140 OP400 100Ω 10kΩ – – eOUT ( nV ~ ) 2 × en ( nV ) × 101 Hz = Hz Figure 28. Noise Test Schematic –18V 14 13 12 11 10 9 8 V– 4 – – + + + 1– 3 2 V+ 1 2 3 4 5 6 7 GND 00304-029 OP400 + OP400 + 1/4 OP400 + + 1/4 1/4 – – 1/4 eOUT OP400 + TO SPECTRUM ANALYZER +18V Figure 29. Burn-In Circuit Rev. E | Page 10 of 16 00304-028 – OP400 APPLICATIONS Total supply current can be reduced by connecting the inputs of an unused amplifier to V−. This turns the amplifier off, lowering the total supply current. Table 6. Gain Bandwidth Gain 5 10 100 1000 Bandwidth 150 kHz 67 kHz 7.5 kHz 500 Hz + + VIN DUAL LOW POWER INSTRUMENTATION AMPLIFIER + – A dual instrumentation amplifier that consumes less than 33 mW of power per channel is shown in Figure 30. The linearity of the instrumentation amplifier exceeds 16 bits in gains of 5 to 200 and is better than 14 bits in gains from 200 to 1000. CMRR is above 115 dB (G = 1000). Offset voltage drift is typically 0.4 μV/°C over the military temperature range, which is comparable to the best monolithic instrumentation amplifiers. The bandwidth of the low power instrumentation amplifier is a function of gain and is shown in Table 6. The output signal is specified with respect to the reference input, which is normally connected to analog ground. The reference input can be used to offset the output from −10 V to +10 V if required. VOUT 1/4 OP400A – 1/4 OP400A – REFERENCE 5kΩ 5kΩ 20kΩ 20kΩ VOUT RG VIN + + VIN =5+ 1/4 40,000 RG VOUT OP400A + – – 1/4 OP400A – REFERENCE 5kΩ 5kΩ 20kΩ 20kΩ RG Figure 30. Dual Low Power Instrumentation Amplifier Rev. E | Page 11 of 16 00304-030 The OP400 is inherently stable at all gains and is capable of driving large capacitive loads without oscillating. Nonetheless, good supply decoupling is highly recommended. Proper supply decoupling reduces problems caused by supply line noise and improves the capacitive load-driving capability of the OP400. OP400 DIFFERENTIAL OUTPUT INSTRUMENTATION AMPLIFIER BIPOLAR CURRENT TRANSMITTER In the circuit of Figure 31, which is an extension of the standard three op amp instrumentation amplifier, the output current is proportional to the differential input voltage. Maximum output current is ±5 mA, with voltage compliance equal to ±10 V when using ±15 V supplies. Output impedance of the current transmitter exceeds 3 MΩ, and linearity is better than 16 bits with gain set for a full-scale input of ±100 μV. + – 1/4 The output voltage swing of a single-ended instrumentation amplifier is limited by the supplies, normally at ±15 V, to a maximum of 24 V p-p. The differential output instrumentation amplifier shown in Figure 32 can provide an output voltage swing of 48 V p-p when operated with ±15 V supplies. The extended output swing is due to the opposite polarity of the outputs. Both outputs swing 24 V p-p, but with opposite polarity, for a total output voltage swing of 48 V p-p. The reference input can be used to set a common-mode output voltage over the range ±10 V. The PSRR of the amplifier is less than 1 μV/V with CMRR (G = 1000) better than 115 dB. Offset voltage drift is typically 0.4 μV/°C over the military temperature range. 25kΩ OP400E 25kΩ – – VOUT 1/4 200Ω OP400E 25kΩ IOUT 5mA + VIN RG 25kΩ 1/4 25kΩ OP400E OP400E – + IOUT – VIN 200Ω 00304-031 + + 1/4 25kΩ 1 – 50,000 RG Figure 31. Bipolar Current Transmitter 22pF + – 1/4 OP400A 25kΩ – 25kΩ + 25kΩ 1/4 OP400A VIN RG – 25kΩ 22pF – 1/4 + 25kΩ 25kΩ OP400A 22pF + 25kΩ 22pF VIN VOUT = 50kΩ + R G RG 25kΩ – VOUT 1/4 OP400A REFERENCE INPUT + Figure 32. Differential Output Instrumentation Amplifier Rev. E | Page 12 of 16 00304-032 – OP400 under 25 μV/mA. Line regulation is better than 15 μV/V, and output voltage drift is under 20 μV/°C. Output voltage noise from 0.1 Hz to 10 Hz is typically 75 μV p-p from the 10 V output and proportionately less from the 7.5 V, 5 V, and 2.5 V outputs. MULTIPLE OUTPUT TRACKING VOLTAGE REFERENCE Figure 33 shows a circuit that provides outputs of 10 V, 7.5 V, 5 V, and 2.5 V for use as a system voltage reference. Maximum output current from each reference is 5 mA with load regulation 10V 15V 10kΩ 22kΩ 1N4002 + 1/4 OP400A 1μF 10kΩ 2 REF 43 2.5V REFERENCE 6 10kΩ 10kΩ + 1/4 + OP400A 4 – 10kΩ 2μF 10kΩ + 1/4 OP400A 5V – 10kΩ 1/4 OP400A 2.5V – 00304-033 1μF 7.5V – Figure 33. Multiple Output Tracking Voltage Reference Rev. E | Page 13 of 16 OP400 OUTLINE DIMENSIONS 8 1 0.310 (7.87) 0.220 (5.59) 9 16 7.60 (0.2992) 7.40 (0.2913) 7 1 0.100 (2.54) BSC 0.785 (19.94) MAX 0.200 (5.08) MAX 0.060 (1.52) 0.015 (0.38) 0.150 (3.81) MIN SEATING 0.070 (1.78) PLANE 0.030 (0.76) 0.200 (5.08) 0.125 (3.18) 0.023 (0.58) 0.014 (0.36) 1.27 (0.0500) BSC 0.30 (0.0118) 0.10 (0.0039) COPLANARITY 0.10 15° 0° 0.015 (0.38) 0.008 (0.20) 0.775 (19.69) 0.750 (19.05) 0.735 (18.67) 1 7 0.280 (7.11) 0.250 (6.35) 0.240 (6.10) 0.325 (8.26) 0.310 (7.87) 0.300 (7.62) 0.100 (2.54) BSC 0.060 (1.52) MAX 0.210 (5.33) MAX 0.015 (0.38) MIN 0.150 (3.81) 0.130 (3.30) 0.110 (2.79) SEATING PLANE 0.022 (0.56) 0.018 (0.46) 0.014 (0.36) 0.005 (0.13) MIN 0.195 (4.95) 0.130 (3.30) 0.115 (2.92) 0.015 (0.38) GAUGE PLANE 0.014 (0.36) 0.010 (0.25) 0.008 (0.20) 0.430 (10.92) MAX 070606-A 0.070 (1.78) 0.050 (1.27) 0.045 (1.14) COMPLIANT TO JEDEC STANDARDS MS-001 CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. 2.65 (0.1043) 2.35 (0.0925) SEATING PLANE 0.50 (0.0197) 0.25 (0.0098) Figure 35. 14-Lead Plastic Dual In-Line Package [PDIP] (N-14) [P-Suffix] Dimensions shown in inches and (millimeters) Rev. E | Page 14 of 16 45° 8° 0° 0.33 (0.0130) 0.20 (0.0079) 1.27 (0.0500) 0.40 (0.0157) Figure 36. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (R-16) [S-Suffix] Dimensions shown in millimeters and (inches) Figure 34. 14-Lead Ceramic Dual In-Line Package [CERDIP] (Q-14) [Y-Suffix] Dimensions shown in inches and (millimeters) 8 0.51 (0.0201) 0.31 (0.0122) 10.65 (0.4193) 10.00 (0.3937) COMPLIANT TO JEDEC STANDARDS MS-013- AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. 14 8 0.320 (8.13) 0.290 (7.37) 060606-A 14 PIN 1 10.50 (0.4134) 10.10 (0.3976) 0.098 (2.49) MAX 0.005 (0.13) MIN OP400 ORDERING GUIDE Model OP400AY OP400EY OP400FY OP400GP OP400GPZ 1 OP400HP OP400HPZ1 OP400GS OP400GS-REEL OP400GSZ1 OP400GSZ-REEL1 OP400HS OP400HS-REEL OP400HSZ1 OP400HSZ-REEL1 OP400GBC 1 Temperature Range −55°C to +125°C −25°C to +85°C −25°C to +85°C 0°C to +70°C 0°C to +70°C −40°C to +85°C −40°C to +85°C 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C −40°C to +85°C −40°C to +85°C −40°C to +85°C −40°C to +85°C Package Description 14-Lead CERDIP 14-Lead CERDIP 14-Lead CERDIP 14-Lead PDIP 14-Lead PDIP 14-Lead PDIP 14-Lead PDIP 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W 16-Lead SOIC_W Die Package Option Y-Suffix (Q-14) Y-Suffix (Q-14) Y-Suffix (Q-14) P-Suffix (N-14) P-Suffix (N-14) P-Suffix (N-14) P-Suffix (N-14) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) S-Suffix (RW-16) Z = Pb-free part. SMD PARTS AND EQUIVALENTS SMD Part Number 1 5962-8777101M3A 5962-8777101MCA 1 Analog Devices Equivalent OP400ATCMDA OP400AYMDA For military processed devices, please refer to the standard microcircuit drawing (SMD) available at the Defense Supply Center Columbus website. Rev. E | Page 15 of 16 OP400 NOTES ©2007 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. C00304-0-1/07(E) Rev. E | Page 16 of 16