ETC PJ9910

PJ9910
Preliminary
LED 恒流驱动控制 IC
PJ9910
概述
特性
PJ9910 是一款高效率,稳定可靠的高亮度 LED
灯恒流驱动控制 IC,内置高精度比较器,
off-time 控制电路,恒流驱动等电路,特别适合
大功率,多个高亮度 LED 灯串恒流驱动。
y
可编程的 LED 驱动电流,编程范围为几毫
安到 1 安培
y
高效率:优于 90%
y
宽输入电压范围:2.5V~400V
y
高工作频率:最大 2.5MHz
y
工作频率可调:10KHz~2.5MHz
y
驱动 LED 灯功能强:LED 灯串可从 1 个到
几百个 LED 高亮度灯
y
亮度可 PWM 可调:通过 EN 端,调节 LED
灯亮度
PJ9910 采用固定 off-time 控制工作方式,其工
作频率可高达 2.5MHz,可使外部电感和滤波电
高、体积减少,效率提高。off-time 最小时间,
可通过外部电阻和电感进行设置,工作频率可
根据用户要求而改变。在 EN 端加 PWM 信号,
可调节 LED 灯的亮度。
通过调节外置的电阻,能控制高亮度 LED 灯的
驱动电流,使 LED 灯亮度达到预期恒定亮度,
流过高亮度 LED 灯的电流可从几毫安到 1 安培
变化。
订货信息
应用范围
y
220V 交流供电 LED 照明灯
y
RGB 大显示屏 LED 灯
y
220V 交流供电 LED 日光灯
y
平板显示器 LED 背光灯
y
交通警示 LED 灯
y
恒流充电器控制
y
通用恒流源
封装
1 of 9
PJ9910
Preliminary
典型应用电路图
L
VIN
Bandgap
VDD
TOFF
Offtime
S
Q
DRV
R
Zener
Diode
2.5V5.5V
EN
+
250mV
CS
RDC(option)
GND
RCS
图1
管脚排列
管脚序号
管脚名称
功能描述
1
VSS
电源地
2
EN
芯片使能端
3
NC
空脚
4
GND
电源地
5
DRV
外部 MOS 驱动脚
6
CS
输出电流检测
7
TOFF
关断时间设置
8
VDD
电源正端
2 of 9
PJ9910
Preliminary
最大额定参数值
参数类型
符号
描述
典型值
单位
电压
Vmax
VDD 脚最大电压
8
V
Vmin-max
EN 脚、CS 脚和 FB 脚电压范围
-0.3-VDD+0.3
V
Tmin-max
工作温度
-20-85
o
C
Tstorage
存储温度
-40-165
o
C
VESD
ESD 抗静电能力(人体模式)
2000
V
温度
ESD 抗静电
电气特性
参数
符号
测试条件
最小
电源电压
VDD
2.5
CS 脚反馈电压
VCS
240
工作电流
典型
最大
单位
6.5
V
250
260
mV
IDD
0.5
1
mA
关断时间 (Toff 脚悬空)
TOFF0
620
待机电流
IDDQ
EN 脚逻辑高电平
VENH
EN 脚逻辑低电平
VENL
DR 脚电平上升时间
TRISE
DRV 脚电平下降时间
TFALL
ns
1
2.0
uA
V
0.8
V
DRV 脚接 500pF 电容
50
ns
DRV 脚接 500pF 电容
50
ns
3 of 9
PJ9910
App Notes(Step Down)
应用指引
一 、 市 电 交 流 220V 供 电 LED 灯 照 明 应 用
高 亮 度 大 功 率 LED 灯 , 由 于 相 同 亮 度 的 情 况 下 , 比 白 炽 灯 省 电 约 80%, 得 到 了
广泛的交流供电照明应用,大有逐渐替代既耗电、发热、寿命短的白炽灯的趋势。
PJ9910 特 别 适 合 110V/220V 交 流 供 电 的 照 明 ,典 型 应 用 如 图 2 所 示 ,220V 交 流
电 通 过 整 流 桥 整 流 后 , 可 获 得 约 400V 的 直 流 电 压 。 由 于 PJ9910 VDD 供 电 为 5.1 V,
所 以 要 通 过 一 个 电 阻 和 一 个 稳 压 管 给 IC 供 电 。 在 MOSFET 控 制 电 压 为 高 电 平 时 ,
MOSFET 功 率 开 关 管 导 通 , 电 感 L 储 存 能 量 , 当 控 制 电 压 为 低 电 平 时 , MOSFET 关 断 ,
储 能 电 感 通 过 肖 特 基 二 极 管 释 放 能 量 , 从 而 点 亮 LED 灯 串 。
电路参数选择:
1) LED 平 均 电 流
在 图 1 工 作 在 连 续 工 作 模 式 下 , LED 的 平 均 电 流 IL 如 图 2 示 。
T
TON
ILMAX
IL
ΔIL
TOFF
iL(t)
图 2
I L M A X 是 通 过 LED 灯 的 最 大 电 流 。
2)工作频率确定
工作频率由接在 TOFF 脚的 ROSC 和 COSC 来设定,ROSC 接到 VDD 端,ROSC 阻值越小,频率越高,COSC
越大,工作频率越低。
工作频率的高低,是根据实际使用情况决定的。工作频率越高,电感可以越小,电感的成
本越低。
LED 灯 驱 动 的 占 空 比 为 D=Vout/ Vin。 TON 为 MOSFET 管接通时间,TOFF 为 MOSFET 管断
开时间(休 止 期 )。休 止 期 计 算 公 式 如 下 :
TOFF = 0.51 •
100 K Ω • ROFF
• (COFF + 10 pF )
ROFF + 100 K Ω
如 TOFF 脚不接电阻电容,则
TOFF = 0.51 • 100 K Ω • 10 pF = 510ns
4 of 9
App Notes(Step Down)
电路工作频率计 算 公 式 如 下 : F =
PJ9910
1 1− D
=
T TOFF
如 TOFF 脚接 1000P 电容, TOFF=51ms, D=0.1, 则电路工作频率 F 约为 20KHz。
3)电感 L 选择
电 感 L 的 选 用 原 则 是 确 保 流 过 电 感 的 电 流 变 化 值 ,远 小 于 通 过 电 感 的 最 大 电 流
值。在正常工作中,电感处于一个充电放电的状态,当输入电压和输出电压的压
差较大时,加大电感的值,当压差小时,可以用较小的电感。
为 了 减 少 流 过 电 感 的 电 流 波 动 ,电 路 应 工 作 在 连 续 工 作 模 式 。在 连 续 工 作 模 式
下 , ΔIL 最 小 。 在 休 止 期 , 流 过 LED 灯 的 ΔIL 计 算 如 下 :
∆I
L
=
VOUT
• TOFF
L
为 了 使 流 过 LED 灯 电 流 波 动 小 于 ΔIL,电感值应满足:
L≥
VOUT
• TOFF
∆IL
一般取值在几百微享到十几毫享,视实际应用而定。
4)RCS 阻 值 确 定
RCS 阻 值 不 同 , 就 可 设 置 通 过 LED 的 驱 动 电 流 , R C S 越 小 , 输 出 电 流 越 大 。 R C S
的选择公式如下:
RCS =
250mV
IL + 0.5∆IL
I L 为 通 过 LED 灯 的 平 均 电 流 ; 通 常 , 波 动 电 流 ΔIL 应 小 于 I L 的 十 分 之 一 。
例 如 : I L = 350mA, ΔIL= 17.5mA, 则 R C S =0.68Ω
5) MOSFET 管 的 选 用
在 220V 交 流 供 电 情 况 下 , 首 先 要 考 虑 MOSFET 的 耐 压 , 一 般 要 求 MOSFET 的
耐 压 高 于 600V。 其 次 , 根 据 驱 动 LED 灯 电 流 的 大 小 , 选 择 MOSFET 的 I D S 最 大 电
流。
一 般 情 况 下 , 应 选 用 MOSFET 的 I D S 最 大 电 流 是 LED 灯 驱 动 电 流 的 5 倍 以 上 。
另 外 MOSFET 的 内 阻 要 小 ; R D S 应 小 于 0.5 欧 以 下 , R D S 越 小 , 损 耗 在 MOSFET 管 上
的功率越小,电路的变换效率就越高。
为 了 降 低 对 MOSFET 管 的 要 求 , 可 选 用 图 3 应 用 电 路 图 。
6)LED 灯亮度调节
LED 灯的亮度调节,可由以下二种方法:
第一种方法是通过改变 RCS 的电阻,RCS 的电阻越小,LED 灯的亮度越高,RCS 电阻越大,亮
度越小。
第二种方法是在 EN 端加 PWM 信号调光,PWM 信号可由 CPU 产生,也可由其它脉冲信号
5 of 9
Preliminary
PJ9910
产生,PWM 信号可控制通过 LED 灯的电流从 0 变到正常电流状态,即可使 LED 灯从暗变为正常
亮度。PWM 占空比越大,亮度越亮。利用 PWM 控制 LED 的亮度,非常方便和灵活,是最常用的
调光方法,PWM 的频率可从几十 Hz 到几千 KHz。
7)EN 使能端子
在 EN 端接(低电平)地时,PJ9910 处于休眠状态,此时,工作电流小于 10uA,自耗电
非常小,当 EN 端为高电平时,PJ9910 处于工作状态,此时空载工作电流约为 200uA。
EN 端可接受 PWM 信号调光信号,完成调光功能。
6 of 9
Preliminary
PJ9910
典型应用设计
典型应用1:
市电交流220V供电,驱动45串、6并、20mA白光LED灯,输出总电流120mA,使用在LED
日光灯照明,应用电路如图3。改变R4可以改变输出电流大小。
图3
7 of 9
Preliminary
PJ9910
典型应用 2:
市电交流 220V 供电,驱动 12 颗 1W 白光 LED 灯,使用在 LED 洗墙灯装饰,应用电路如
图 4。
图4
8 of 9
Preliminary
PJ9910
封装信息
9 of 9
PJ9910
P.1
WIDE INPUT RANGE
POWER LED DRIVER
FEATURES
z
z
z
z
>90% Efficiency
8V to 450V input range
Constant-current LED driver
Applications from a few mA to more than 1A
output
z LED string from one to hundreds of diodes
z PWM Low-Frequency Dimming via Enable pin
z Input Voltage Surge ratings up to 450V
APPLICATIONS
z DC/DC LED driver
z Automotive
z Lighting
DESCRIPTION
The PJ9910 is a PWM high-efficiency LED
driver control IC. It allows efficient
operation of High Brightness (HB) LEDs
from voltage sources ranging from 8Vdc up
to 450Vdc. The PJ9910 controls an external
MOSFET at fixed switching frequency up to
300 kHz. The frequency can be programmed
using a single resistor. The LED string is
driven at constant current rather than
constant voltage, thus providing constant
light output and enhanced reliability. The
output current can be programmed between
a few milliamperes and up to more than 1A.
PAD DIAGRAM
TYPICAL APPLICATION CIRCUIT
Figure 1. 8~450V Powered Driver for Two
White Power LEDs
1. Chip size: X=1.88mm, Y=1.54mm
(without scribe line width).
2. Scribe line width: X=80µm, Y=80µm
3. Pad size: 100µm x 100µm
4. Substrate to GND
5. Wafer thickness: 460µm
P.2
PJ9910
WIDE INPUT RANGE
POWER LED DRIVER
PAD LOCATION
Pad
Pad Name
X (μm)
Y (μm)
1
VIN
-887.5
110
2
CS
0
0
3
GND
255.5
0
4
GND
395.5
0
5
GATE
587.0
544.5
6
PWM_D
556.5
1259.5
7
VDD
375.5
1290
8
VDD
235.5
1290
9
LD
-1012.5
1260.5
10
ROSC
-1012.5
1044.5
DIE PHOTO
P.3
PJ9910
WIDE INPUT RANGE
POWER LED DRIVER
ELECTRICAL CHARACTERISTICS (TA=25℃, unless otherwise noted.
Symbol
VINDC
IINsd
Description
Input DC supply voltage range
Min Typ
8.0
Shut-Down mode supply current
Max Unit
450
0.5
1
V
Condition
DC input voltage
mA Pin PWM_D to
GND, VIN=8V
VDD
Internally regulated voltage
7.0
7.5
8.0
V
VIN=8-450V,
IDD(ext)=0, pin Gate
open
VDDmax Maximal pin VDD voltage
13.5
V
When an external
voltage applied to
pin VDD
IDD(ext)
VDD current available for external
circuitry
UVLO VDD undervoltage lockout threshold
1.0
6.45
ΔUVLO VDD undervoltage lockout hysteresis
6.7
6.95
500
mA VIN=8-100V
V
VIN rising
mV VIN falling
VEN(lo)
Pin PWM_D input low voltage
1.0
V
VIN=8-450V
VEN(hi)
Pin PWM_D input high voltage
2.4
V
VIN=8-450V
RLN
Pin PWM_D pull-down resistance
50
100
150
kΩ VEN=5V
VCS(hi)
Current sense pull-in threshold voltage
225
250
275
mV ﹫ TA=-40 ℃
to
+85℃
VGATE(hi) GATE high output voltage
VDD0.3
VDD
V
IOUT=-10mA
VGATE(lo) GATE low output voltage
0
0.3
V
IOUT=10mA
fosc
Oscillator frequency
20
25
30
kHz ROSC=1.00MΩ
80
100
120
kHz ROSC=223kΩ
DmaxHT Maximum Oscillator PWM duty cycle
100
% FPWMhf=25kHz, at
GATE, CS to GND
VLD
Linear Dimming pin voltage range
0
250
mV ﹫ TA=<85 ℃ ,
VIN=12V
P.4
PJ9910
WIDE INPUT RANGE
POWER LED DRIVER
TBLANK Current sense blanking interval
150
215
280
ns VCS=0.55VLD,
VLD=VDD
tDELAY
Delay from CS trip to GATE lo
300
ns VIN=12V,
VLD=0.15V, VCS=0
to
0.22V
after
TBLANK
tRISE
GATE output rise time
30
50
ns CGATE=500pF, 10%
to 90% VGATE
tFALL
GATE output fall time
30
50
ns CGATE=500pF, 90%
to 10% VGATE
Note: Also limited by package power dissipation limit, whichever is lower.
8 SOIC PACKAGE
PIN DESCRIPTION
Application Note
Buck-based LED Drivers
Fundamental Buck Converter topology is an
excellent choice for LED drivers in off-line (as
well as low-voltage) applications as it can
produce a constant LED current at very high
efficiencies and low cost. A
peak-current-controlled buck converter can give
reasonable LED current variation over a wide
range of input and LED voltages and needs little
effort in feedback control design. Coupled with
the fact that these converters can be easily
designed to operate at above 90% efficiency, the
buck-based driver becomes an unbeatable
solution to drive High Brightness LEDs.
The IC PJ9910C provides a low-cost, low
component count solution to implement the
continuous mode buck converter. IC PJ9910C has
two current sense threshold voltages – an
internally set 250mV and an external voltage at
the LD pin. The actual threshold voltage will be
the lower of the internal 250mV and the voltage
at the LD pin.
The low sense voltage allows the use of low
current sense resistor values. IC PJ9910C operates
down to 8V input, which is required for some low
input voltage applications, and can take a
maximum of 450V input, which makes it ideal for
off-line applications. It also has an internal
regulator that supplies power to the IC from the
input voltage, eliminating the need for an external
low voltage power supply. It is capable of driving
the external FET directly, without the need for
additional driver circuitry. Linear or PWM dimming
can also be easily implemented using the IC
PJ9910C.
This Application Note discusses the design of a
buck-based LED driver using the IC PJ9910C with
the help of an off-line application example. The
same procedure can be used to design LED
drivers with any other lower voltage AC or DC
input; 12V for example.
Circuit Diagram
Step1: Switching Frequency and resistor (R1)
The switching frequency determines the size of the
inductor L1 and size or type of input filter capacitor
C1. A larger switching frequency will result in a
smaller inductor, but will increase the switching
losses in the circuit. For off-line applications, typical
switching frequencies should be in range
20-150kHz. The higher the input voltage range (for
example in Europe 230VAC), the lower the
frequency should be to avoid extensive capacitive
losses in the converter. For North America AC line
a frequency of fs=100kHz is a good compromise.
From the datasheet, the oscillator resistor needed
to achieve this is 228kΩ.
Step2: Choose the Input Diode Bridge (D1)
The voltage rating of the diode bridge will depend
loss dissipation during normal operation of the
converter, and must be minimized. A good rule of
thumb is that the thermistor should limit the inrush
current to not more than five times the steady state
current as given by equation (2), assuming
maximum voltage is applied. The required cold
resistance is:
This gives us a 200Ω resistance at 25℃. Choose
a thermistor with a resistance around 200Ω and
rms current greater than 0.2A for that application.
Step3: Choose the Input Capacitors (C1 and C2)
The first design criterion to meet is that the
maximum LED string voltage should be less than
on the maximum value of the input voltage. The
half the minimum input voltage to avoid having to
current rating will depend on the maximum average implement a special loop compensation technique.
current drawn by the converter.
For this example, the minimum rectified voltage
should be:
The hold-up and input filter capacitor required at
The 1.5 factor in equation (1) a 50% safety margin the diode bridge output have to be calculated at the
is more than enough. For this design, choose a
minimum AC input voltage. The minimum capacitor
400V, 1A diode bridge.
value can be calculated as:
Placing a thermistor (or resistor) in series with input
bridge rectifier will effectively limit the inrush
current to input bulk capacitor C1 during the initial
start-up of the converter. Except this useful action In this example, C1≧ 26.45μF.
during very short time interval, such a series
element creates a unnecessary power
Note: Equation (5) yields a conservative estimate
to for the least amount of capacitance required. It
means that the capacitor filter will normally care
large ripple content. Some electrolytic capacitors
may not be able to withstand such ripple current
and minimum value of C1 capacitor may not be
met, forcing the design to use larger value
capacitor. In the case where the allowable ripple at
the input of the buck converter is large, the
capacitor C1 can be reduced significantly. See the
Appendix for a more accurate calculation of the
required capacitor value.
lifetime. Then, the inductor L1 can be computed at
rectified value of the nominal input voltage as:
In this example, L1 = 2.9mH
The peak current rating of the inductor will be:
The voltage rating of the capacitor should be more The rms current through the inductor will be the
same as the average current for the chosen 30%
than the peak input voltage with 10-12% safety
ripple.
margin.
Right inductor for this application is an off-the-shelf
2.7mH, 0.54A(peak), 0.33A(rms) inductor.
Choose a 250V, 33μF electrolyte capacitor.
Such electrolytic capacitors have a sizable ESR
component. The larger ESR of these capacitors
makes it inappropriate to absorb the high
frequency ripple current generated by the buck
Step5: Choose the FET (Q1) and Diode (D2)
The peak voltage seen by the FET is equal to the
maximum input voltage. Using a 50% safety rating,
converter. Thus, adding a small MLCC capacitor in The maximum rms current through the FET
depends on the maximum duty cycle, which is 50%
parallel with the electrolytic capacitor is a good
option to absorb the high frequency ripple current. by design. Hence, the current rating of the FET is:
The required high frequency capacitance can be
computed as:
In this design example, the high frequency
capacitance required is about 250V, 22μF.
Step4: Choose the Inductor (L1)
The inductor value depends on the ripple current in
the LEDs. Assume a +/- 15% ripple (a total of 30%)
in the LED current, an aggressive assumption
would go up to +/- 30% to reduce the size of the
inductor more than twice at the price of reduced
efficiency and , possibly, reduced LED
output power, by making a right transistor choice.
In choosing MOSFET transistors for such LED
drivers, going bigger does not mean getting better,
just the opposite. Using TO-220 transistor
500/4A/2W instead of SOT-223 transistor
300V/0.5A/6W does not more harm than good,
reducing overall efficiency by several percent.
Typically a FET with about 3 times the current is
chosen to minimize the resistive losses in the
switch.
For this application choose a 300V, <1A MOSFET,
such as a BSP130 from Philips. Actual MOSFET
type should be determined by the transistor
permitted power dissipation on printed board. For
example, a BSP130 SOT-223 package limits the
dissipation to less than a Watt at 50+ Celsius, even
if the MOSFET peak current capability is 1.5A. A
good rule of thumb is to limit overall MOSFET
power dissipation to not more than 3-5% of total
Design for DC/DC Applications
The same procedure can be used for DC/DC
applications. The only modifications are that the
input diode bridge and input hold-up capacitor are
not required. A small input capacitance to absorb
high frequency ripple current is all that is required.
The capacitance can be computed using
equation(7).
The peak voltage rating of the diode is the same as
the FET. Hence,
Appendix
The more accurate equations for computing the
required capacitance values are:
The average current through the diode is:
Choose a 300V, 1A ultra-fast diode.
Step6: Choose the Sense Resistor
The sense resistor value is given by:
(R2)
For the example in this application note, the actual
minimum capacitance required from the above
equations is 19μF (as compared to 26μF from
if the internal voltage threshold is being used.
equation(5)).
Otherwise, substitute the voltage at the LD pin
instead of the 0.25V in equation(14).
For this design, R2= 0.55Ω. Also calculate the
resistor power dissipation:
A 0.1W resistor is good for this application.
Note: Capacitor C3 is a bypass capacitor. A typical
value of 1.0 to 2.2μF, 16V is recommended.
1
2
4
3
D
D
V+
LED+
3mH
C1
10uF/250V
C5
0.1uF/275VAC
C11
102
1000V
2
L2
15mH
3
P2
T1
15mH
RV1
275VAC
C12
102
1000V
V-
C10
102
1000V
RT1
275VAC
BD1
MB6S
D8
SF26
R3
1M
D7
M7
LED
LED
...
4
1R/1W
1
FUSE1
AC
AC
L1
AC
P1
D5
M7
AC
Vin=110/220VAC
D6
M7
DZ2
12V
C3
22uF/50V
C9
102
LED-
C2
10uF/250V
25串4并I=240ma
Q1
PJ2N60
C
C
D9
SS14
R4
2K
U1 PJ9910S
1
2
3
C8
104
C4
22uF/50V
DZ1
5.1V
4
VSS
VDD
EN
TOFF
NC
GND
CS
DRV
B
8
7
C7
470pF
6
Q2
PJM3400
5
B
R6
82K
R7
3 R 1%
C6
2pF
R8
3R 1%
R5
3R 1%
R9
3 R 1%
VR1
100R
项目1驱动电路.Sch
A
A
1
2
3
4
PJ9910S PCBA BOM
Part
Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
Part Type
PCB
IC
Bridge
MOSFET
MOSFET
Doide
Doide
Doide
Zenor
Zenor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Variable Resistor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Capacitor
Common Coil
Inductor
Line
RV
DESCRIPTION
PJ9910S驱动电路板 V0.0.PCB,236mm x 20mm x 1.2mm FR-4
PJ9910S,LED Driver IC
MB6S,600V 500mA
PJ2N60,600V 2A
PJM3400,30V 5A
1N4007(M7),1000V 1A
SF26,400V 2A
SS14(1N5819),40V 1A
C12V,12V 1/2W
C5V1,5.1V 1/2W
1 ohm,1W
1M ohm,1/8W
1.2K ohm,1/8W
3 ohm,1/8W
1 ohm,1/8W
82K ohm,1/8W
100 ohm,Variable Resistor
10uF/250V ,E-cap
1uF/50V,E-cap
47uF/16V,E-cap
0.1uF/275VAC,MKX/MKP X2
2pF, Ceramic Capacitor
470pF, Ceramic Capacitor
0.1uF, Ceramic Capacitor
20mH/800mA,10x6x5
2.5mH/1000mA,10x16
Line ,L=8.5mm,d=0.5mm
5D471,470V,D=5mm
Footprint
Ref
N/A
SOP8
SOIC-4
TO-252
SOT-23
DO-214AC
D0-15
DO-214AC
MLL34
SOD-123
AXIAL-0.5
0805
0805
0805
0805
0805
VR-5
CD110
CD11
CD11
RAD-0.4
0805
0805
0805
10x16
10x16
N/A
RAD-0.2
PCB
U1
BD1
Q1
Q2
D5 D6 D7
D8
D9
DZ2
DZ1
FUSE1
R3
R4
R5 R9
R8
R6
VR
C1 C2
C3
C4
C5 C10
C6
C7
C8 C9
T1
L1
L2
RV1
Quantity Unit
1
1
1
1
1
3
1
1
1
1
1
1
1
2
1
1
1
2
1
1
2
1
1
2
1
1
1
1
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
PCS
Ref Unit
Price(RMB)
3.00
3.80
1.00
2.00
0.60
0.40
0.50
0.20
0.15
0.15
0.15
0.02
0.02
0.02
0.02
0.02
0.60
0.90
0.30
0.30
0.35
0.02
0.02
0.02
1.50
0.90
0.05
0.50
29
RT
Line ,L=5.0mm,d=0.5mm
N/A
L2
1
Total:
35
PCS
0.05
17.56
First release
REV:0.0
Vendor info
Vendor contact info
PJ
PJ
Fairchild Semiconductor
PJ
PJ
Phiphs
Leshan Radio Company
YueJing Hi-tech Company
Leshan Radio Company
YueJing Hi-tech Company
Fenghua Advanced Technology (holding)
Fenghua Advanced Technology (holding)
Fenghua Advanced Technology (holding)
Fenghua Advanced Technology (holding)
Fenghua Advanced Technology (holding)
Fenghua Advanced Technology (holding)
Fenghua Advanced Technology (holding)
Rubycon
Rubycon
Rubycon
SHENZHEN SURONG CAPACITORS CO.,LTD
Fenghua Advanced Technology (holding)
Fenghua Advanced Technology (holding)
Fenghua Advanced Technology (holding)
Miden Electronics Ltd.
Miden Electronics Ltd.
N/A
WEI DE CHANG Elect Ltd.
Co.,
Co.,
Co.,
Co.,
Co.,
Co.,
Co.,
Ltd
Ltd
Ltd
Ltd
Ltd
Ltd
Ltd
Co., Ltd
Co., Ltd
Co., Ltd
0755-83674428
0755-83674428
N/A
0755-83674428
0755-83674428
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A