PJ9910 Preliminary LED 恒流驱动控制 IC PJ9910 概述 特性 PJ9910 是一款高效率,稳定可靠的高亮度 LED 灯恒流驱动控制 IC,内置高精度比较器, off-time 控制电路,恒流驱动等电路,特别适合 大功率,多个高亮度 LED 灯串恒流驱动。 y 可编程的 LED 驱动电流,编程范围为几毫 安到 1 安培 y 高效率:优于 90% y 宽输入电压范围:2.5V~400V y 高工作频率:最大 2.5MHz y 工作频率可调:10KHz~2.5MHz y 驱动 LED 灯功能强:LED 灯串可从 1 个到 几百个 LED 高亮度灯 y 亮度可 PWM 可调:通过 EN 端,调节 LED 灯亮度 PJ9910 采用固定 off-time 控制工作方式,其工 作频率可高达 2.5MHz,可使外部电感和滤波电 高、体积减少,效率提高。off-time 最小时间, 可通过外部电阻和电感进行设置,工作频率可 根据用户要求而改变。在 EN 端加 PWM 信号, 可调节 LED 灯的亮度。 通过调节外置的电阻,能控制高亮度 LED 灯的 驱动电流,使 LED 灯亮度达到预期恒定亮度, 流过高亮度 LED 灯的电流可从几毫安到 1 安培 变化。 订货信息 应用范围 y 220V 交流供电 LED 照明灯 y RGB 大显示屏 LED 灯 y 220V 交流供电 LED 日光灯 y 平板显示器 LED 背光灯 y 交通警示 LED 灯 y 恒流充电器控制 y 通用恒流源 封装 1 of 9 PJ9910 Preliminary 典型应用电路图 L VIN Bandgap VDD TOFF Offtime S Q DRV R Zener Diode 2.5V5.5V EN + 250mV CS RDC(option) GND RCS 图1 管脚排列 管脚序号 管脚名称 功能描述 1 VSS 电源地 2 EN 芯片使能端 3 NC 空脚 4 GND 电源地 5 DRV 外部 MOS 驱动脚 6 CS 输出电流检测 7 TOFF 关断时间设置 8 VDD 电源正端 2 of 9 PJ9910 Preliminary 最大额定参数值 参数类型 符号 描述 典型值 单位 电压 Vmax VDD 脚最大电压 8 V Vmin-max EN 脚、CS 脚和 FB 脚电压范围 -0.3-VDD+0.3 V Tmin-max 工作温度 -20-85 o C Tstorage 存储温度 -40-165 o C VESD ESD 抗静电能力(人体模式) 2000 V 温度 ESD 抗静电 电气特性 参数 符号 测试条件 最小 电源电压 VDD 2.5 CS 脚反馈电压 VCS 240 工作电流 典型 最大 单位 6.5 V 250 260 mV IDD 0.5 1 mA 关断时间 (Toff 脚悬空) TOFF0 620 待机电流 IDDQ EN 脚逻辑高电平 VENH EN 脚逻辑低电平 VENL DR 脚电平上升时间 TRISE DRV 脚电平下降时间 TFALL ns 1 2.0 uA V 0.8 V DRV 脚接 500pF 电容 50 ns DRV 脚接 500pF 电容 50 ns 3 of 9 PJ9910 App Notes(Step Down) 应用指引 一 、 市 电 交 流 220V 供 电 LED 灯 照 明 应 用 高 亮 度 大 功 率 LED 灯 , 由 于 相 同 亮 度 的 情 况 下 , 比 白 炽 灯 省 电 约 80%, 得 到 了 广泛的交流供电照明应用,大有逐渐替代既耗电、发热、寿命短的白炽灯的趋势。 PJ9910 特 别 适 合 110V/220V 交 流 供 电 的 照 明 ,典 型 应 用 如 图 2 所 示 ,220V 交 流 电 通 过 整 流 桥 整 流 后 , 可 获 得 约 400V 的 直 流 电 压 。 由 于 PJ9910 VDD 供 电 为 5.1 V, 所 以 要 通 过 一 个 电 阻 和 一 个 稳 压 管 给 IC 供 电 。 在 MOSFET 控 制 电 压 为 高 电 平 时 , MOSFET 功 率 开 关 管 导 通 , 电 感 L 储 存 能 量 , 当 控 制 电 压 为 低 电 平 时 , MOSFET 关 断 , 储 能 电 感 通 过 肖 特 基 二 极 管 释 放 能 量 , 从 而 点 亮 LED 灯 串 。 电路参数选择: 1) LED 平 均 电 流 在 图 1 工 作 在 连 续 工 作 模 式 下 , LED 的 平 均 电 流 IL 如 图 2 示 。 T TON ILMAX IL ΔIL TOFF iL(t) 图 2 I L M A X 是 通 过 LED 灯 的 最 大 电 流 。 2)工作频率确定 工作频率由接在 TOFF 脚的 ROSC 和 COSC 来设定,ROSC 接到 VDD 端,ROSC 阻值越小,频率越高,COSC 越大,工作频率越低。 工作频率的高低,是根据实际使用情况决定的。工作频率越高,电感可以越小,电感的成 本越低。 LED 灯 驱 动 的 占 空 比 为 D=Vout/ Vin。 TON 为 MOSFET 管接通时间,TOFF 为 MOSFET 管断 开时间(休 止 期 )。休 止 期 计 算 公 式 如 下 : TOFF = 0.51 • 100 K Ω • ROFF • (COFF + 10 pF ) ROFF + 100 K Ω 如 TOFF 脚不接电阻电容,则 TOFF = 0.51 • 100 K Ω • 10 pF = 510ns 4 of 9 App Notes(Step Down) 电路工作频率计 算 公 式 如 下 : F = PJ9910 1 1− D = T TOFF 如 TOFF 脚接 1000P 电容, TOFF=51ms, D=0.1, 则电路工作频率 F 约为 20KHz。 3)电感 L 选择 电 感 L 的 选 用 原 则 是 确 保 流 过 电 感 的 电 流 变 化 值 ,远 小 于 通 过 电 感 的 最 大 电 流 值。在正常工作中,电感处于一个充电放电的状态,当输入电压和输出电压的压 差较大时,加大电感的值,当压差小时,可以用较小的电感。 为 了 减 少 流 过 电 感 的 电 流 波 动 ,电 路 应 工 作 在 连 续 工 作 模 式 。在 连 续 工 作 模 式 下 , ΔIL 最 小 。 在 休 止 期 , 流 过 LED 灯 的 ΔIL 计 算 如 下 : ∆I L = VOUT • TOFF L 为 了 使 流 过 LED 灯 电 流 波 动 小 于 ΔIL,电感值应满足: L≥ VOUT • TOFF ∆IL 一般取值在几百微享到十几毫享,视实际应用而定。 4)RCS 阻 值 确 定 RCS 阻 值 不 同 , 就 可 设 置 通 过 LED 的 驱 动 电 流 , R C S 越 小 , 输 出 电 流 越 大 。 R C S 的选择公式如下: RCS = 250mV IL + 0.5∆IL I L 为 通 过 LED 灯 的 平 均 电 流 ; 通 常 , 波 动 电 流 ΔIL 应 小 于 I L 的 十 分 之 一 。 例 如 : I L = 350mA, ΔIL= 17.5mA, 则 R C S =0.68Ω 5) MOSFET 管 的 选 用 在 220V 交 流 供 电 情 况 下 , 首 先 要 考 虑 MOSFET 的 耐 压 , 一 般 要 求 MOSFET 的 耐 压 高 于 600V。 其 次 , 根 据 驱 动 LED 灯 电 流 的 大 小 , 选 择 MOSFET 的 I D S 最 大 电 流。 一 般 情 况 下 , 应 选 用 MOSFET 的 I D S 最 大 电 流 是 LED 灯 驱 动 电 流 的 5 倍 以 上 。 另 外 MOSFET 的 内 阻 要 小 ; R D S 应 小 于 0.5 欧 以 下 , R D S 越 小 , 损 耗 在 MOSFET 管 上 的功率越小,电路的变换效率就越高。 为 了 降 低 对 MOSFET 管 的 要 求 , 可 选 用 图 3 应 用 电 路 图 。 6)LED 灯亮度调节 LED 灯的亮度调节,可由以下二种方法: 第一种方法是通过改变 RCS 的电阻,RCS 的电阻越小,LED 灯的亮度越高,RCS 电阻越大,亮 度越小。 第二种方法是在 EN 端加 PWM 信号调光,PWM 信号可由 CPU 产生,也可由其它脉冲信号 5 of 9 Preliminary PJ9910 产生,PWM 信号可控制通过 LED 灯的电流从 0 变到正常电流状态,即可使 LED 灯从暗变为正常 亮度。PWM 占空比越大,亮度越亮。利用 PWM 控制 LED 的亮度,非常方便和灵活,是最常用的 调光方法,PWM 的频率可从几十 Hz 到几千 KHz。 7)EN 使能端子 在 EN 端接(低电平)地时,PJ9910 处于休眠状态,此时,工作电流小于 10uA,自耗电 非常小,当 EN 端为高电平时,PJ9910 处于工作状态,此时空载工作电流约为 200uA。 EN 端可接受 PWM 信号调光信号,完成调光功能。 6 of 9 Preliminary PJ9910 典型应用设计 典型应用1: 市电交流220V供电,驱动45串、6并、20mA白光LED灯,输出总电流120mA,使用在LED 日光灯照明,应用电路如图3。改变R4可以改变输出电流大小。 图3 7 of 9 Preliminary PJ9910 典型应用 2: 市电交流 220V 供电,驱动 12 颗 1W 白光 LED 灯,使用在 LED 洗墙灯装饰,应用电路如 图 4。 图4 8 of 9 Preliminary PJ9910 封装信息 9 of 9 PJ9910 P.1 WIDE INPUT RANGE POWER LED DRIVER FEATURES z z z z >90% Efficiency 8V to 450V input range Constant-current LED driver Applications from a few mA to more than 1A output z LED string from one to hundreds of diodes z PWM Low-Frequency Dimming via Enable pin z Input Voltage Surge ratings up to 450V APPLICATIONS z DC/DC LED driver z Automotive z Lighting DESCRIPTION The PJ9910 is a PWM high-efficiency LED driver control IC. It allows efficient operation of High Brightness (HB) LEDs from voltage sources ranging from 8Vdc up to 450Vdc. The PJ9910 controls an external MOSFET at fixed switching frequency up to 300 kHz. The frequency can be programmed using a single resistor. The LED string is driven at constant current rather than constant voltage, thus providing constant light output and enhanced reliability. The output current can be programmed between a few milliamperes and up to more than 1A. PAD DIAGRAM TYPICAL APPLICATION CIRCUIT Figure 1. 8~450V Powered Driver for Two White Power LEDs 1. Chip size: X=1.88mm, Y=1.54mm (without scribe line width). 2. Scribe line width: X=80µm, Y=80µm 3. Pad size: 100µm x 100µm 4. Substrate to GND 5. Wafer thickness: 460µm P.2 PJ9910 WIDE INPUT RANGE POWER LED DRIVER PAD LOCATION Pad Pad Name X (μm) Y (μm) 1 VIN -887.5 110 2 CS 0 0 3 GND 255.5 0 4 GND 395.5 0 5 GATE 587.0 544.5 6 PWM_D 556.5 1259.5 7 VDD 375.5 1290 8 VDD 235.5 1290 9 LD -1012.5 1260.5 10 ROSC -1012.5 1044.5 DIE PHOTO P.3 PJ9910 WIDE INPUT RANGE POWER LED DRIVER ELECTRICAL CHARACTERISTICS (TA=25℃, unless otherwise noted. Symbol VINDC IINsd Description Input DC supply voltage range Min Typ 8.0 Shut-Down mode supply current Max Unit 450 0.5 1 V Condition DC input voltage mA Pin PWM_D to GND, VIN=8V VDD Internally regulated voltage 7.0 7.5 8.0 V VIN=8-450V, IDD(ext)=0, pin Gate open VDDmax Maximal pin VDD voltage 13.5 V When an external voltage applied to pin VDD IDD(ext) VDD current available for external circuitry UVLO VDD undervoltage lockout threshold 1.0 6.45 ΔUVLO VDD undervoltage lockout hysteresis 6.7 6.95 500 mA VIN=8-100V V VIN rising mV VIN falling VEN(lo) Pin PWM_D input low voltage 1.0 V VIN=8-450V VEN(hi) Pin PWM_D input high voltage 2.4 V VIN=8-450V RLN Pin PWM_D pull-down resistance 50 100 150 kΩ VEN=5V VCS(hi) Current sense pull-in threshold voltage 225 250 275 mV ﹫ TA=-40 ℃ to +85℃ VGATE(hi) GATE high output voltage VDD0.3 VDD V IOUT=-10mA VGATE(lo) GATE low output voltage 0 0.3 V IOUT=10mA fosc Oscillator frequency 20 25 30 kHz ROSC=1.00MΩ 80 100 120 kHz ROSC=223kΩ DmaxHT Maximum Oscillator PWM duty cycle 100 % FPWMhf=25kHz, at GATE, CS to GND VLD Linear Dimming pin voltage range 0 250 mV ﹫ TA=<85 ℃ , VIN=12V P.4 PJ9910 WIDE INPUT RANGE POWER LED DRIVER TBLANK Current sense blanking interval 150 215 280 ns VCS=0.55VLD, VLD=VDD tDELAY Delay from CS trip to GATE lo 300 ns VIN=12V, VLD=0.15V, VCS=0 to 0.22V after TBLANK tRISE GATE output rise time 30 50 ns CGATE=500pF, 10% to 90% VGATE tFALL GATE output fall time 30 50 ns CGATE=500pF, 90% to 10% VGATE Note: Also limited by package power dissipation limit, whichever is lower. 8 SOIC PACKAGE PIN DESCRIPTION Application Note Buck-based LED Drivers Fundamental Buck Converter topology is an excellent choice for LED drivers in off-line (as well as low-voltage) applications as it can produce a constant LED current at very high efficiencies and low cost. A peak-current-controlled buck converter can give reasonable LED current variation over a wide range of input and LED voltages and needs little effort in feedback control design. Coupled with the fact that these converters can be easily designed to operate at above 90% efficiency, the buck-based driver becomes an unbeatable solution to drive High Brightness LEDs. The IC PJ9910C provides a low-cost, low component count solution to implement the continuous mode buck converter. IC PJ9910C has two current sense threshold voltages – an internally set 250mV and an external voltage at the LD pin. The actual threshold voltage will be the lower of the internal 250mV and the voltage at the LD pin. The low sense voltage allows the use of low current sense resistor values. IC PJ9910C operates down to 8V input, which is required for some low input voltage applications, and can take a maximum of 450V input, which makes it ideal for off-line applications. It also has an internal regulator that supplies power to the IC from the input voltage, eliminating the need for an external low voltage power supply. It is capable of driving the external FET directly, without the need for additional driver circuitry. Linear or PWM dimming can also be easily implemented using the IC PJ9910C. This Application Note discusses the design of a buck-based LED driver using the IC PJ9910C with the help of an off-line application example. The same procedure can be used to design LED drivers with any other lower voltage AC or DC input; 12V for example. Circuit Diagram Step1: Switching Frequency and resistor (R1) The switching frequency determines the size of the inductor L1 and size or type of input filter capacitor C1. A larger switching frequency will result in a smaller inductor, but will increase the switching losses in the circuit. For off-line applications, typical switching frequencies should be in range 20-150kHz. The higher the input voltage range (for example in Europe 230VAC), the lower the frequency should be to avoid extensive capacitive losses in the converter. For North America AC line a frequency of fs=100kHz is a good compromise. From the datasheet, the oscillator resistor needed to achieve this is 228kΩ. Step2: Choose the Input Diode Bridge (D1) The voltage rating of the diode bridge will depend loss dissipation during normal operation of the converter, and must be minimized. A good rule of thumb is that the thermistor should limit the inrush current to not more than five times the steady state current as given by equation (2), assuming maximum voltage is applied. The required cold resistance is: This gives us a 200Ω resistance at 25℃. Choose a thermistor with a resistance around 200Ω and rms current greater than 0.2A for that application. Step3: Choose the Input Capacitors (C1 and C2) The first design criterion to meet is that the maximum LED string voltage should be less than on the maximum value of the input voltage. The half the minimum input voltage to avoid having to current rating will depend on the maximum average implement a special loop compensation technique. current drawn by the converter. For this example, the minimum rectified voltage should be: The hold-up and input filter capacitor required at The 1.5 factor in equation (1) a 50% safety margin the diode bridge output have to be calculated at the is more than enough. For this design, choose a minimum AC input voltage. The minimum capacitor 400V, 1A diode bridge. value can be calculated as: Placing a thermistor (or resistor) in series with input bridge rectifier will effectively limit the inrush current to input bulk capacitor C1 during the initial start-up of the converter. Except this useful action In this example, C1≧ 26.45μF. during very short time interval, such a series element creates a unnecessary power Note: Equation (5) yields a conservative estimate to for the least amount of capacitance required. It means that the capacitor filter will normally care large ripple content. Some electrolytic capacitors may not be able to withstand such ripple current and minimum value of C1 capacitor may not be met, forcing the design to use larger value capacitor. In the case where the allowable ripple at the input of the buck converter is large, the capacitor C1 can be reduced significantly. See the Appendix for a more accurate calculation of the required capacitor value. lifetime. Then, the inductor L1 can be computed at rectified value of the nominal input voltage as: In this example, L1 = 2.9mH The peak current rating of the inductor will be: The voltage rating of the capacitor should be more The rms current through the inductor will be the same as the average current for the chosen 30% than the peak input voltage with 10-12% safety ripple. margin. Right inductor for this application is an off-the-shelf 2.7mH, 0.54A(peak), 0.33A(rms) inductor. Choose a 250V, 33μF electrolyte capacitor. Such electrolytic capacitors have a sizable ESR component. The larger ESR of these capacitors makes it inappropriate to absorb the high frequency ripple current generated by the buck Step5: Choose the FET (Q1) and Diode (D2) The peak voltage seen by the FET is equal to the maximum input voltage. Using a 50% safety rating, converter. Thus, adding a small MLCC capacitor in The maximum rms current through the FET depends on the maximum duty cycle, which is 50% parallel with the electrolytic capacitor is a good option to absorb the high frequency ripple current. by design. Hence, the current rating of the FET is: The required high frequency capacitance can be computed as: In this design example, the high frequency capacitance required is about 250V, 22μF. Step4: Choose the Inductor (L1) The inductor value depends on the ripple current in the LEDs. Assume a +/- 15% ripple (a total of 30%) in the LED current, an aggressive assumption would go up to +/- 30% to reduce the size of the inductor more than twice at the price of reduced efficiency and , possibly, reduced LED output power, by making a right transistor choice. In choosing MOSFET transistors for such LED drivers, going bigger does not mean getting better, just the opposite. Using TO-220 transistor 500/4A/2W instead of SOT-223 transistor 300V/0.5A/6W does not more harm than good, reducing overall efficiency by several percent. Typically a FET with about 3 times the current is chosen to minimize the resistive losses in the switch. For this application choose a 300V, <1A MOSFET, such as a BSP130 from Philips. Actual MOSFET type should be determined by the transistor permitted power dissipation on printed board. For example, a BSP130 SOT-223 package limits the dissipation to less than a Watt at 50+ Celsius, even if the MOSFET peak current capability is 1.5A. A good rule of thumb is to limit overall MOSFET power dissipation to not more than 3-5% of total Design for DC/DC Applications The same procedure can be used for DC/DC applications. The only modifications are that the input diode bridge and input hold-up capacitor are not required. A small input capacitance to absorb high frequency ripple current is all that is required. The capacitance can be computed using equation(7). The peak voltage rating of the diode is the same as the FET. Hence, Appendix The more accurate equations for computing the required capacitance values are: The average current through the diode is: Choose a 300V, 1A ultra-fast diode. Step6: Choose the Sense Resistor The sense resistor value is given by: (R2) For the example in this application note, the actual minimum capacitance required from the above equations is 19μF (as compared to 26μF from if the internal voltage threshold is being used. equation(5)). Otherwise, substitute the voltage at the LD pin instead of the 0.25V in equation(14). For this design, R2= 0.55Ω. Also calculate the resistor power dissipation: A 0.1W resistor is good for this application. Note: Capacitor C3 is a bypass capacitor. A typical value of 1.0 to 2.2μF, 16V is recommended. 1 2 4 3 D D V+ LED+ 3mH C1 10uF/250V C5 0.1uF/275VAC C11 102 1000V 2 L2 15mH 3 P2 T1 15mH RV1 275VAC C12 102 1000V V- C10 102 1000V RT1 275VAC BD1 MB6S D8 SF26 R3 1M D7 M7 LED LED ... 4 1R/1W 1 FUSE1 AC AC L1 AC P1 D5 M7 AC Vin=110/220VAC D6 M7 DZ2 12V C3 22uF/50V C9 102 LED- C2 10uF/250V 25串4并I=240ma Q1 PJ2N60 C C D9 SS14 R4 2K U1 PJ9910S 1 2 3 C8 104 C4 22uF/50V DZ1 5.1V 4 VSS VDD EN TOFF NC GND CS DRV B 8 7 C7 470pF 6 Q2 PJM3400 5 B R6 82K R7 3 R 1% C6 2pF R8 3R 1% R5 3R 1% R9 3 R 1% VR1 100R 项目1驱动电路.Sch A A 1 2 3 4 PJ9910S PCBA BOM Part Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Part Type PCB IC Bridge MOSFET MOSFET Doide Doide Doide Zenor Zenor Resistor Resistor Resistor Resistor Resistor Resistor Variable Resistor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Capacitor Common Coil Inductor Line RV DESCRIPTION PJ9910S驱动电路板 V0.0.PCB,236mm x 20mm x 1.2mm FR-4 PJ9910S,LED Driver IC MB6S,600V 500mA PJ2N60,600V 2A PJM3400,30V 5A 1N4007(M7),1000V 1A SF26,400V 2A SS14(1N5819),40V 1A C12V,12V 1/2W C5V1,5.1V 1/2W 1 ohm,1W 1M ohm,1/8W 1.2K ohm,1/8W 3 ohm,1/8W 1 ohm,1/8W 82K ohm,1/8W 100 ohm,Variable Resistor 10uF/250V ,E-cap 1uF/50V,E-cap 47uF/16V,E-cap 0.1uF/275VAC,MKX/MKP X2 2pF, Ceramic Capacitor 470pF, Ceramic Capacitor 0.1uF, Ceramic Capacitor 20mH/800mA,10x6x5 2.5mH/1000mA,10x16 Line ,L=8.5mm,d=0.5mm 5D471,470V,D=5mm Footprint Ref N/A SOP8 SOIC-4 TO-252 SOT-23 DO-214AC D0-15 DO-214AC MLL34 SOD-123 AXIAL-0.5 0805 0805 0805 0805 0805 VR-5 CD110 CD11 CD11 RAD-0.4 0805 0805 0805 10x16 10x16 N/A RAD-0.2 PCB U1 BD1 Q1 Q2 D5 D6 D7 D8 D9 DZ2 DZ1 FUSE1 R3 R4 R5 R9 R8 R6 VR C1 C2 C3 C4 C5 C10 C6 C7 C8 C9 T1 L1 L2 RV1 Quantity Unit 1 1 1 1 1 3 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 1 1 PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS PCS Ref Unit Price(RMB) 3.00 3.80 1.00 2.00 0.60 0.40 0.50 0.20 0.15 0.15 0.15 0.02 0.02 0.02 0.02 0.02 0.60 0.90 0.30 0.30 0.35 0.02 0.02 0.02 1.50 0.90 0.05 0.50 29 RT Line ,L=5.0mm,d=0.5mm N/A L2 1 Total: 35 PCS 0.05 17.56 First release REV:0.0 Vendor info Vendor contact info PJ PJ Fairchild Semiconductor PJ PJ Phiphs Leshan Radio Company YueJing Hi-tech Company Leshan Radio Company YueJing Hi-tech Company Fenghua Advanced Technology (holding) Fenghua Advanced Technology (holding) Fenghua Advanced Technology (holding) Fenghua Advanced Technology (holding) Fenghua Advanced Technology (holding) Fenghua Advanced Technology (holding) Fenghua Advanced Technology (holding) Rubycon Rubycon Rubycon SHENZHEN SURONG CAPACITORS CO.,LTD Fenghua Advanced Technology (holding) Fenghua Advanced Technology (holding) Fenghua Advanced Technology (holding) Miden Electronics Ltd. Miden Electronics Ltd. N/A WEI DE CHANG Elect Ltd. Co., Co., Co., Co., Co., Co., Co., Ltd Ltd Ltd Ltd Ltd Ltd Ltd Co., Ltd Co., Ltd Co., Ltd 0755-83674428 0755-83674428 N/A 0755-83674428 0755-83674428 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A