MITSUBISHI PM50RL1C060

MITSUBISHI <INTELLIGENT POWER MODULES>
PM50RL1C060
FLAT-BASE TYPE
INSULATED PACKAGE
PM50RL1C060
FEATURE
Inverter + Brake + Drive & Protection IC
a) Adopting new 5th generation Full-Gate CSTBTTM chip
b) The over-temperature protection which detects the chip surface temperature of CSTBTTM is adopted.
c) Error output signal is possible from all each protection upper and lower arm of IPM.
• 3φ 50A, 600V Current-sense and temperature sense
IGBT type inverter
• Monolithic gate drive & protection logic
• Detection, protection & status indication circuits for, shortcircuit, over-temperature & under-voltage (P-FO available
from upper arm devices)
• UL Recognized
APPLICATION
General purpose inverter, servo drives and other motor controls
PACKAGE OUTLINES
Dimensions in mm
90
14.6
80
222
10
222
10
10
6.7
222222
0.5
222
10
0.3
19-
5
5
9
13
20.5
1
0.5
25
23
50
2-φ4.3
B
P
N
U
V
W
2
12
12
12
14.2
12
25
Terminal code : Control terminal
L A B E L
16.5
12
13
10
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
VUPC
UFO
UP
VUP1
VVPC
VFO
VP
VVP1
VWPC
WFO
11.
12.
13.
14.
15.
16.
17.
18.
19.
WP
VWP1
VNC
VN1
Br
UN
VN
WN
Fo
May 2009
1
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50RL1C060
FLAT-BASE TYPE
INSULATED PACKAGE
INTERNAL FUNCTIONS BLOCK DIAGRAM
Br Fo
VNC WN
VN1
WP
VWP1
VWPC WFO
UN
VN
1.5k
Gnd In
Gnd
1.5k
Fo Vcc
Si Out
VP
VVPC
OT
Gnd In
Gnd
Fo Vcc
Si Out
OT
Gnd In
Gnd
Fo Vcc
Si Out
B
OT
Gnd In
Gnd
Fo Vcc
Si Out
OT
N
Gnd In
Gnd
UP
VUPC
VUP1
UFO
1.5k
Fo Vcc
Si Out
VVP1
VFO
OT
Gnd In
Gnd
W
V
1.5k
Fo Vcc
Si Out
Gnd In
OT
Gnd
Fo Vcc
Si Out
U
OT
P
MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol
VCES
±IC
±ICP
PC
Tj
Parameter
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
Junction Temperature
Condition
VD = 15V, VCIN = 15V
TC = 25°C
TC = 25°C
TC = 25°C
(Note-1)
(Note-1)
Ratings
600
50
100
168
–20 ~ +150
Unit
V
A
A
W
°C
Ratings
600
50
100
168
50
600
–20 ~ +150
Unit
V
A
A
W
A
V
°C
Ratings
Unit
20
V
20
V
20
V
20
mA
*: TC measurement point is just under the chip.
BRAKE PART
Symbol
VCES
IC
ICP
PC
IF
VR(DC)
Tj
Parameter
Collector-Emitter Voltage
Collector Current
Collector Current (Peak)
Collector Dissipation
FWDi Forward Current
FWDi Rated DC Reverse Voltage
Junction Temperature
Condition
VD = 15V, VCIN = 15V
TC = 25°C
TC = 25°C
TC = 25°C
TC = 25°C
TC = 25°C
(Note-1)
(Note-1)
CONTROL PART
Symbol
Parameter
VD
Supply Voltage
VCIN
Input Voltage
VFO
Fault Output Supply Voltage
IFO
Fault Output Current
Condition
Applied between : VUP1-VUPC, VVP1-VVPC
VWP1-VWPC, VN1-VNC
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN • Br-VNC
Applied between : UFO-VUPC, VFO-VVPC, WFO-VWPC
FO-VNC
Sink current at UFO, VFO, WFO, FO terminals
May 2009
2
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50RL1C060
FLAT-BASE TYPE
INSULATED PACKAGE
TOTAL SYSTEM
Parameter
Supply Voltage Protected by
VCC(PROT)
SC
VCC(surge) Supply Voltage (Surge)
Storage Temperature
Tstg
Isolation Voltage
Viso
Symbol
Ratings
Condition
VD = 13.5 ~ 16.5V
Inverter Part, Tj = +125°C Start
Applied between : P-N, Surge value
60Hz, Sinusoidal, Charged part to Base, AC 1 min.
Unit
400
V
500
–40 ~ +125
2500
V
°C
Vrms
THERMAL RESISTANCES
Symbol
Condition
Parameter
Rth(j-c)Q
Rth(j-c)F
Rth(j-c)Q
Rth(j-c)F
Junction to case Thermal
Resistances
Rth(c-f)
Contact Thermal Resistance
Inverter IGBT part (per 1 element)
Inverter FWDi part (per 1 element)
Brake IGBT part
Brake FWDi upper part
Case to fin, (per 1 module)
Thermal grease applied
(Note-1)
(Note-1)
(Note-1)
(Note-1)
(Note-1)
Min.
—
—
—
—
Limits
Typ.
—
—
—
—
Max.
0.74
1.28
0.74
1.28
—
—
0.085
Unit
°C/W
* If you use this value, Rth(f-a) should be measured just under the chips.
(Note-1) TC (under the chip) measurement point is below.
arm
axis
X
Y
UP
IGBT FWDi
49.0
49.0
–3.3
2.8
VP
IGBT FWDi
35.0
35.0
2.8
–3.3
(0,0)
WP
IGBT FWDi
21.0
21.0
2.8
–3.3
(unit : mm)
UN
IGBT FWDi
42.0
42.0
–7.3
–1.2
VN
IGBT FWDi
28.0
28.0
–7.3
–1.2
WN
IGBT FWDi
14.0
14.0
–5.3
0.8
BR
IGBT
Di
64.0
68.2
3.9
–4.6
Bottom view
LABEL SIDE
ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted)
INVERTER PART
Symbol
VCE(sat)
VEC
ton
trr
tc(on)
toff
tc(off)
ICES
Condition
Parameter
Collector-Emitter Saturation
Voltage
FWDi Forward Voltage
VD = 15V, IC = 50A
VCIN = 0V, Pulsed
(Fig. 1)
–IC = 50A, VD = 15V, VCIN = 15V
Switching Time
VD = 15V, VCIN = 0V↔15V
VCC = 300V, IC = 50A
Tj = 125°C
Inductive Load
Collector-Emitter Cutoff
Current
VCE = VCES, VD = 15V
Tj = 25°C
Tj = 125°C
(Fig. 2)
(Fig. 3,4)
(Fig. 5)
Tj = 25°C
Tj = 125°C
Min.
—
—
—
0.3
—
—
—
—
—
—
Limits
Typ.
1.75
1.75
1.7
0.8
0.4
0.4
1.0
0.3
—
—
Max.
2.35
2.35
2.8
2.0
0.8
1.0
2.3
1.0
1
10
Unit
V
V
µs
mA
May 2009
3
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50RL1C060
FLAT-BASE TYPE
INSULATED PACKAGE
BRAKE PART
Symbol
VCE(sat)
VFM
ICES
Condition
Parameter
Collector-Emitter Saturation
Voltage
Forward Voltage
Collector-Emitter Cutoff
Current
VD = 15V, IC = 50A
VCIN = 0V, Pulsed
IF = 50A
(Fig. 1)
VCE = VCES, VD = 15V
(Fig. 5)
Tj = 25°C
Tj = 125°C
Tj = 25°C
Tj = 125°C
Min.
—
—
—
—
—
Limits
Typ.
1.75
1.75
1.7
—
—
Max.
2.35
2.35
2.8
1
10
Min.
—
—
1.2
1.7
100
100
Limits
Typ.
8
2
1.5
2.0
—
—
Max.
16
4
1.8
2.3
—
—
Unit
V
V
mA
CONTROL PART
Symbol
Parameter
Condition
VN1-VNC
V*P1-V*PC
ID
Circuit Current
VD = 15V, VCIN = 15V
Vth(ON)
Vth(OFF)
Input ON Threshold Voltage
Input OFF Threshold Voltage
SC
Short Circuit Trip Level
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN • Br-VNC
Inverter part
–20 ≤ Tj ≤ 125°C, VD = 15V (Fig. 3,6)
Brake part
toff(SC)
Short Circuit Current Delay
Time
VD = 15V
Over Temperature Protection
Detect Temperature of IGBT chip
Supply Circuit Under-Voltage
Protection
–20 ≤ Tj ≤ 125°C
Fault Output Current
VD = 15V, VCIN = 15V
(Note-2)
Minimum Fault Output Pulse
Width
VD = 15V
(Note-2)
OT
OT(hys)
UV
UVr
IFO(H)
IFO(L)
tFO
(Fig. 3,6)
Trip level
Hysteresis
Trip level
Reset level
Unit
mA
V
A
—
0.2
—
µs
135
—
11.5
—
—
—
—
20
12.0
12.5
—
10
—
—
12.5
—
0.01
15
°C
1.0
1.8
—
V
mA
ms
(Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to
protect it.
MECHANICAL RATINGS AND CHARACTERISTICS
Symbol
—
—
Condition
Parameter
Mounting torque
Weight
Mounting part
screw : M4
—
Min.
1.4
—
Limits
Typ.
1.65
135
Max.
1.9
—
Unit
N•m
g
RECOMMENDED CONDITIONS FOR USE
Symbol
VCC
Parameter
Supply Voltage
VD
Control Supply Voltage
VCIN(ON)
VCIN(OFF)
fPWM
Input ON Voltage
Input OFF Voltage
PWM Input Frequency
Arm Shoot-through Blocking
Time
tdead
Condition
Applied across P-N terminals
Applied between : VUP1-VUPC, VVP1-VVPC
VWP1-VWPC, VN1-VNC
(Note-3)
Applied between : UP-VUPC, VP-VVPC, WP-VWPC
UN • VN • WN • Br-VNC
Using Application Circuit of Fig. 8
For IPM’s each input signals
Recommended value
≤ 400
Unit
V
15.0 ± 1.5
V
(Fig. 7)
≤ 0.8
≥ 9.0
≤ 20
kHz
≥ 2.0
µs
V
(Note-3) With ripple satisfying the following conditions: dv/dt swing ≤ ±5V/µs, Variation ≤ 2V peak to peak
≤ ± 5V/µs
≤ 2V
15V
GND
May 2009
4
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50RL1C060
FLAT-BASE TYPE
INSULATED PACKAGE
PRECAUTIONS FOR TESTING
1. Before applying any control supply voltage (VD), the input terminals should be pulled up by resistors, etc. to their corresponding supply voltage and each input signal should be kept off state.
After this, the specified ON and OFF level setting for each input signal should be done.
2. When performing “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above VCES rating of the device.
(These test should not be done by using a curve tracer or its equivalent.)
P, (U,V,W,B)
IN
Fo
VCIN
P, (U,V,W,B)
Ic
V
IN
Fo
VCIN
–Ic
V
(15V)
(0V)
U,V,W,B, (N)
VD (all)
U,V,W,B, (N)
VD (all)
Fig. 1 VCE(sat) Test
Fig. 2 VEC, (VFM) Test
a) Lower Arm Switching
P
Fo
VCIN
(15V)
trr
Signal input
(Upper Arm)
CS
Ic
Irr
Vcc
Fo
Signal input
(Lower Arm)
VCIN
VCE
U,V,W
90%
90%
N
VD (all)
b) Upper Arm Switching
Ic
10%
10%
tc(on)
P
10%
10%
tc(off)
Fo
Signal input
(Upper Arm)
VCIN
VCIN
U,V,W
CS
VCIN
(15V)
Vcc
td(on)
tr
tf
td(off)
Fo
Signal input
(Lower Arm)
(ton = td(on) + tr)
(toff = td(off) + tf)
N
Ic
VD (all)
Fig. 3 Switching time and SC test circuit
Fig. 4 Switching time test waveform
VCIN
Short Circuit Current
P, (U,V,W,B)
A
VCIN
(15V)
Constant Current
IN
Fo
SC Trip
Pulse VCE
Ic
VD (all)
U,V,W,B, (N)
Fo
toff(SC)
Fig. 5 ICES Test
Fig. 6 SC test waveform
IPM’ input signal VCIN
(Upper Arm)
0V
2V
1.5V
0V
IPM’ input signal VCIN
(Lower Arm)
2V
1.5V
1.5V
tdead
2V
tdead
t
t
tdead
1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value
Fig. 7 Dead time measurement point example
May 2009
5
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50RL1C060
FLAT-BASE TYPE
INSULATED PACKAGE
P
20k
≥10µ
VUP1
→
VD
UFo
IF
1.5k
OT
OUT
Vcc
Fo
UP
In
VUPC
+
–
Si
U
GND GND
≥0.1µ
VVP1
VFo
VD
1.5k
Fo
VP
Si
In
VVPC
V
GND GND
VWP1
WFo
OT
OUT
Vcc
1.5k
OT
OUT
Vcc
Fo
VD
WP
Si
In
VWPC
W
GND GND
20k
→
OUT
Si
Fo
UN
In
GND GND
≥0.1µ
20k
→
OT
Vcc
≥10µ
IF
M
N
OT
Vcc
≥10µ
IF
OUT
Si
Fo
VN
In
GND GND
≥0.1µ
20k
→
VD
In
GND GND
VNC
4.7k
→
IF
Fo
OUT
Si
Fo
In
1.5k
B
OT
Vcc
Br
1k
OUT
Si
Fo
WN
≥0.1µ
OT
Vcc
≥10µ
IF
5V
VN1
GND GND
: Interface which is the same as the U-phase
Fig. 8 Application Example Circuit
NOTES FOR STABLE AND SAFE OPERATION ;
Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the
stray capacity between the input and output wirings of opto-coupler.
Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
Fast switching opto-couplers: tPLH, tPHL ≤ 0.8µs, Use High CMR type.
Slow switching opto-coupler: CTR > 100%
Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the
power supply.
Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N
terminal.
Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line
and improve noise immunity of the system.
•
•
•
•
•
•
•
May 2009
6
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50RL1C060
FLAT-BASE TYPE
INSULATED PACKAGE
PERFORMANCE CURVES
(Inverter Part)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(TYPICAL)
COLLECTOR CURRENT IC (A)
60
Tj = 25°C
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
OUTPUT CHARACTERISTICS
(TYPICAL)
15V
VD = 17V
50
40
30
13V
20
10
0
0
0.5
1.0
1.5
2.0
2.0
1.6
1.4
1.2
1.0
0.8
0.6
0.4
Tj = 25°C
Tj = 125°C
0.2
0
2.5
VD = 15V
1.8
10
0
2.2
2.0
1.8
1.6
1.4
1.0
12
SWITCHING TIME ton, toff (µs)
COLLECTOR RECOVERY CURRENT –IC (A)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. VD) CHARACTERISTICS
(TYPICAL)
2.4
IC = 50A
Tj = 25°C
Tj = 125°C
1.2
14
13
15
16
17
30
40
50
60
COLLECTOR CURRENT IC (A)
18
DIODE FORWARD CHARACTERISTICS
(TYPICAL)
102
7
5
4
3
VD = 15V
2
101
7
5
4
3
2
100
–0.5
0
0.5
1.0
Tj = 25°C
Tj = 125°C
1.5
2.0
CONTROL VOLTAGE VD (V)
EMITTER-COLLECTOR VOLTAGE VEC (V)
SWITCHING TIME (ton, toff) CHARACTERISTICS
(TYPICAL)
101
SWITCHING TIME (tc(on), tc(off)) CHARACTERISTICS
(TYPICAL)
100
SWITCHING TIME tc(on), tc(off) (µs)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
COLLECTOR-EMITTER VOLTAGE VCE (V)
20
7
5
4
3
2
toff
100
7
5
4
3
ton
2
10–1 0
10
2
3 4 5 7 101
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
2 3 4 5 7 102
7
5
4
3
2
tc(on)
10–1
7
5
4
3
tc(off)
VCC = 300V
VD = 15V
Tj = 25°C
Tj = 125°C
Inductive load
2
10–2 0
10
COLLECTOR CURRENT IC (A)
tc(off)
2
3 4 5 7 101
2
3 4 5 7 102
COLLECTOR CURRENT IC (A)
May 2009
7
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50RL1C060
1.0
Eoff
0.5
0
0
10
20
30
40
50
DIODE REVERSE RECOVERY CHARACTERISTICS
(TYPICAL)
0.8
40
VCC = 300V
0.7 VD = 15V
35
Tj = 25°C
Tj = 125°C
0.6
30
Inductive load
Irr 25
0.5
0.4
20
0.3
15
trr
0.1
0
60
10
0.2
0
10
20
30
40
50
5
0
60
COLLECTOR REVERSE CURRENT –IC (A)
SWITCHING RECOVERY LOSS CHARACTERISTICS
(TYPICAL)
1.2
VCC = 300V
VD = 15V
1.0
Tj = 25°C
Tj = 125°C
0.8 Inductive load
ID VS. fc CHARACTERISTICS
(TYPICAL)
30
N-side
ID (mA)
20
0.6
15
0.4
10
0.2
5
P-side
0
0
10
20
30
40
50
0
60
0
5
10
15
20
25
COLLECTOR REVERSE CURRENT –IC (A)
fc (kHz)
UV TRIP LEVEL VS. Tj CHARACTERISTICS
(TYPICAL)
20
UVt
18
UVr
16
SC TRIP LEVEL VS. Tj CHARACTERISTICS
(TYPICAL)
2.0
VD = 15V
1.8
14
UVt /UVr (V)
VD = 15V
Tj = 25°C
Tj = 125°C
25
SC
(SC of Tj = 25°C is normalized 1)
SWITCHING LOSS Err (mJ/pulse)
COLLECTOR CURRENT IC (A)
REVERSE RECOVERY CURRENT lrr (A)
SWITCHING LOSS CHARACTERISTICS
(TYPICAL)
2.0
VCC = 300V
VD = 15V
Tj = 25°C
Eon
Tj = 125°C
1.5
Inductive load
REVERSE RECOVERY TIME trr (µs)
SWITCHING LOSS Eon, Eoff (mJ/pulse)
FLAT-BASE TYPE
INSULATED PACKAGE
12
10
8
6
4
2
0
–50
0
50
100
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0
–50
150
0
50
100
150
Tj (°C)
Tj (°C)
May 2009
8
MITSUBISHI <INTELLIGENT POWER MODULES>
PM50RL1C060
FLAT-BASE TYPE
INSULATED PACKAGE
(Brake Part)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(TYPICAL)
OUTPUT CHARACTERISTICS
(TYPICAL)
60
7
5
3
2
Tj = 25°C
COLLECTOR CURRENT IC (A)
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j-c)
100
10–1
7
5
3
2
10–2 Single Pulse
7
5 IGBT part;
3 Per unit base = Rth(j-c)Q = 0.74°C/ W
2 FWDi part;
Per unit base = Rth(j-c)F = 1.28°C/ W
10–3 –5
10 2 3 5 710–4 2 3 5 710–32 3 5 710–2 2 3 5 710–12 3 5 7100 2 3 5 7101
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
1.4
1.2
1.0
0.8
0.6
0.4
Tj = 25°C
Tj = 125°C
0.2
0
10
20
30
40
50
20
10
0
0.5
1.0
1.5
2.0
2.2
2.0
1.8
1.6
1.4
IC = 50A
Tj = 25°C
Tj = 125°C
1.2
13
14
15
16
17
COLLECTOR CURRENT IC (A)
CONTROL VOLTAGE VD (V)
DIODE FORWARD CHARACTERISTICS
(TYPICAL)
TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(TYPICAL)
102
2
101
7
5
4
3
2
100
Tj = 25°C
Tj = 125°C
0
0.5
18
100
VD = 15V
7
5
4
3
2.5
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. VD) CHARACTERISTICS
(TYPICAL)
2.4
1.0
12
60
NORMALIZED TRANSIENT
THERMAL IMPEDANCE Zth(j-c)
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
1.6
0
COLLECTOR RECOVERY CURRENT –IC (A)
VD = 15V
1.8
13V
30
COLLECTOR-EMITTER VOLTAGE VCE (V)
COLLECTOR-EMITTER SATURATION
VOLTAGE (VS. Ic) CHARACTERISTICS
(TYPICAL)
2.0
40
0
TIME t (sec)
15V
VD = 17V
50
1.0
1.5
2.0
EMITTER-COLLECTOR VOLTAGE VEC (V)
7
5
3
2
10–1
7
5
3
2
10–2 Single Pulse
7
5 IGBT part;
3 Per unit base = Rth(j-c)Q = 0.74°C/ W
2 FWDi part;
Per unit base = Rth(j-c)F = 1.28°C/ W
10–3 –5
10 2 3 5 710–4 2 3 5 710–32 3 5 710–2 2 3 5 710–12 3 5 7100 2 3 5 7101
TIME t (sec)
May 2009
9