MITSUBISHI <INTELLIGENT POWER MODULES> PM50RL1C060 FLAT-BASE TYPE INSULATED PACKAGE PM50RL1C060 FEATURE Inverter + Brake + Drive & Protection IC a) Adopting new 5th generation Full-Gate CSTBTTM chip b) The over-temperature protection which detects the chip surface temperature of CSTBTTM is adopted. c) Error output signal is possible from all each protection upper and lower arm of IPM. • 3φ 50A, 600V Current-sense and temperature sense IGBT type inverter • Monolithic gate drive & protection logic • Detection, protection & status indication circuits for, shortcircuit, over-temperature & under-voltage (P-FO available from upper arm devices) • UL Recognized APPLICATION General purpose inverter, servo drives and other motor controls PACKAGE OUTLINES Dimensions in mm 90 14.6 80 222 10 222 10 10 6.7 222222 0.5 222 10 0.3 19- 5 5 9 13 20.5 1 0.5 25 23 50 2-φ4.3 B P N U V W 2 12 12 12 14.2 12 25 Terminal code : Control terminal L A B E L 16.5 12 13 10 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. VUPC UFO UP VUP1 VVPC VFO VP VVP1 VWPC WFO 11. 12. 13. 14. 15. 16. 17. 18. 19. WP VWP1 VNC VN1 Br UN VN WN Fo May 2009 1 MITSUBISHI <INTELLIGENT POWER MODULES> PM50RL1C060 FLAT-BASE TYPE INSULATED PACKAGE INTERNAL FUNCTIONS BLOCK DIAGRAM Br Fo VNC WN VN1 WP VWP1 VWPC WFO UN VN 1.5k Gnd In Gnd 1.5k Fo Vcc Si Out VP VVPC OT Gnd In Gnd Fo Vcc Si Out OT Gnd In Gnd Fo Vcc Si Out B OT Gnd In Gnd Fo Vcc Si Out OT N Gnd In Gnd UP VUPC VUP1 UFO 1.5k Fo Vcc Si Out VVP1 VFO OT Gnd In Gnd W V 1.5k Fo Vcc Si Out Gnd In OT Gnd Fo Vcc Si Out U OT P MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted) INVERTER PART Symbol VCES ±IC ±ICP PC Tj Parameter Collector-Emitter Voltage Collector Current Collector Current (Peak) Collector Dissipation Junction Temperature Condition VD = 15V, VCIN = 15V TC = 25°C TC = 25°C TC = 25°C (Note-1) (Note-1) Ratings 600 50 100 168 –20 ~ +150 Unit V A A W °C Ratings 600 50 100 168 50 600 –20 ~ +150 Unit V A A W A V °C Ratings Unit 20 V 20 V 20 V 20 mA *: TC measurement point is just under the chip. BRAKE PART Symbol VCES IC ICP PC IF VR(DC) Tj Parameter Collector-Emitter Voltage Collector Current Collector Current (Peak) Collector Dissipation FWDi Forward Current FWDi Rated DC Reverse Voltage Junction Temperature Condition VD = 15V, VCIN = 15V TC = 25°C TC = 25°C TC = 25°C TC = 25°C TC = 25°C (Note-1) (Note-1) CONTROL PART Symbol Parameter VD Supply Voltage VCIN Input Voltage VFO Fault Output Supply Voltage IFO Fault Output Current Condition Applied between : VUP1-VUPC, VVP1-VVPC VWP1-VWPC, VN1-VNC Applied between : UP-VUPC, VP-VVPC, WP-VWPC UN • VN • WN • Br-VNC Applied between : UFO-VUPC, VFO-VVPC, WFO-VWPC FO-VNC Sink current at UFO, VFO, WFO, FO terminals May 2009 2 MITSUBISHI <INTELLIGENT POWER MODULES> PM50RL1C060 FLAT-BASE TYPE INSULATED PACKAGE TOTAL SYSTEM Parameter Supply Voltage Protected by VCC(PROT) SC VCC(surge) Supply Voltage (Surge) Storage Temperature Tstg Isolation Voltage Viso Symbol Ratings Condition VD = 13.5 ~ 16.5V Inverter Part, Tj = +125°C Start Applied between : P-N, Surge value 60Hz, Sinusoidal, Charged part to Base, AC 1 min. Unit 400 V 500 –40 ~ +125 2500 V °C Vrms THERMAL RESISTANCES Symbol Condition Parameter Rth(j-c)Q Rth(j-c)F Rth(j-c)Q Rth(j-c)F Junction to case Thermal Resistances Rth(c-f) Contact Thermal Resistance Inverter IGBT part (per 1 element) Inverter FWDi part (per 1 element) Brake IGBT part Brake FWDi upper part Case to fin, (per 1 module) Thermal grease applied (Note-1) (Note-1) (Note-1) (Note-1) (Note-1) Min. — — — — Limits Typ. — — — — Max. 0.74 1.28 0.74 1.28 — — 0.085 Unit °C/W * If you use this value, Rth(f-a) should be measured just under the chips. (Note-1) TC (under the chip) measurement point is below. arm axis X Y UP IGBT FWDi 49.0 49.0 –3.3 2.8 VP IGBT FWDi 35.0 35.0 2.8 –3.3 (0,0) WP IGBT FWDi 21.0 21.0 2.8 –3.3 (unit : mm) UN IGBT FWDi 42.0 42.0 –7.3 –1.2 VN IGBT FWDi 28.0 28.0 –7.3 –1.2 WN IGBT FWDi 14.0 14.0 –5.3 0.8 BR IGBT Di 64.0 68.2 3.9 –4.6 Bottom view LABEL SIDE ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted) INVERTER PART Symbol VCE(sat) VEC ton trr tc(on) toff tc(off) ICES Condition Parameter Collector-Emitter Saturation Voltage FWDi Forward Voltage VD = 15V, IC = 50A VCIN = 0V, Pulsed (Fig. 1) –IC = 50A, VD = 15V, VCIN = 15V Switching Time VD = 15V, VCIN = 0V↔15V VCC = 300V, IC = 50A Tj = 125°C Inductive Load Collector-Emitter Cutoff Current VCE = VCES, VD = 15V Tj = 25°C Tj = 125°C (Fig. 2) (Fig. 3,4) (Fig. 5) Tj = 25°C Tj = 125°C Min. — — — 0.3 — — — — — — Limits Typ. 1.75 1.75 1.7 0.8 0.4 0.4 1.0 0.3 — — Max. 2.35 2.35 2.8 2.0 0.8 1.0 2.3 1.0 1 10 Unit V V µs mA May 2009 3 MITSUBISHI <INTELLIGENT POWER MODULES> PM50RL1C060 FLAT-BASE TYPE INSULATED PACKAGE BRAKE PART Symbol VCE(sat) VFM ICES Condition Parameter Collector-Emitter Saturation Voltage Forward Voltage Collector-Emitter Cutoff Current VD = 15V, IC = 50A VCIN = 0V, Pulsed IF = 50A (Fig. 1) VCE = VCES, VD = 15V (Fig. 5) Tj = 25°C Tj = 125°C Tj = 25°C Tj = 125°C Min. — — — — — Limits Typ. 1.75 1.75 1.7 — — Max. 2.35 2.35 2.8 1 10 Min. — — 1.2 1.7 100 100 Limits Typ. 8 2 1.5 2.0 — — Max. 16 4 1.8 2.3 — — Unit V V mA CONTROL PART Symbol Parameter Condition VN1-VNC V*P1-V*PC ID Circuit Current VD = 15V, VCIN = 15V Vth(ON) Vth(OFF) Input ON Threshold Voltage Input OFF Threshold Voltage SC Short Circuit Trip Level Applied between : UP-VUPC, VP-VVPC, WP-VWPC UN • VN • WN • Br-VNC Inverter part –20 ≤ Tj ≤ 125°C, VD = 15V (Fig. 3,6) Brake part toff(SC) Short Circuit Current Delay Time VD = 15V Over Temperature Protection Detect Temperature of IGBT chip Supply Circuit Under-Voltage Protection –20 ≤ Tj ≤ 125°C Fault Output Current VD = 15V, VCIN = 15V (Note-2) Minimum Fault Output Pulse Width VD = 15V (Note-2) OT OT(hys) UV UVr IFO(H) IFO(L) tFO (Fig. 3,6) Trip level Hysteresis Trip level Reset level Unit mA V A — 0.2 — µs 135 — 11.5 — — — — 20 12.0 12.5 — 10 — — 12.5 — 0.01 15 °C 1.0 1.8 — V mA ms (Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to protect it. MECHANICAL RATINGS AND CHARACTERISTICS Symbol — — Condition Parameter Mounting torque Weight Mounting part screw : M4 — Min. 1.4 — Limits Typ. 1.65 135 Max. 1.9 — Unit N•m g RECOMMENDED CONDITIONS FOR USE Symbol VCC Parameter Supply Voltage VD Control Supply Voltage VCIN(ON) VCIN(OFF) fPWM Input ON Voltage Input OFF Voltage PWM Input Frequency Arm Shoot-through Blocking Time tdead Condition Applied across P-N terminals Applied between : VUP1-VUPC, VVP1-VVPC VWP1-VWPC, VN1-VNC (Note-3) Applied between : UP-VUPC, VP-VVPC, WP-VWPC UN • VN • WN • Br-VNC Using Application Circuit of Fig. 8 For IPM’s each input signals Recommended value ≤ 400 Unit V 15.0 ± 1.5 V (Fig. 7) ≤ 0.8 ≥ 9.0 ≤ 20 kHz ≥ 2.0 µs V (Note-3) With ripple satisfying the following conditions: dv/dt swing ≤ ±5V/µs, Variation ≤ 2V peak to peak ≤ ± 5V/µs ≤ 2V 15V GND May 2009 4 MITSUBISHI <INTELLIGENT POWER MODULES> PM50RL1C060 FLAT-BASE TYPE INSULATED PACKAGE PRECAUTIONS FOR TESTING 1. Before applying any control supply voltage (VD), the input terminals should be pulled up by resistors, etc. to their corresponding supply voltage and each input signal should be kept off state. After this, the specified ON and OFF level setting for each input signal should be done. 2. When performing “SC” tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above VCES rating of the device. (These test should not be done by using a curve tracer or its equivalent.) P, (U,V,W,B) IN Fo VCIN P, (U,V,W,B) Ic V IN Fo VCIN –Ic V (15V) (0V) U,V,W,B, (N) VD (all) U,V,W,B, (N) VD (all) Fig. 1 VCE(sat) Test Fig. 2 VEC, (VFM) Test a) Lower Arm Switching P Fo VCIN (15V) trr Signal input (Upper Arm) CS Ic Irr Vcc Fo Signal input (Lower Arm) VCIN VCE U,V,W 90% 90% N VD (all) b) Upper Arm Switching Ic 10% 10% tc(on) P 10% 10% tc(off) Fo Signal input (Upper Arm) VCIN VCIN U,V,W CS VCIN (15V) Vcc td(on) tr tf td(off) Fo Signal input (Lower Arm) (ton = td(on) + tr) (toff = td(off) + tf) N Ic VD (all) Fig. 3 Switching time and SC test circuit Fig. 4 Switching time test waveform VCIN Short Circuit Current P, (U,V,W,B) A VCIN (15V) Constant Current IN Fo SC Trip Pulse VCE Ic VD (all) U,V,W,B, (N) Fo toff(SC) Fig. 5 ICES Test Fig. 6 SC test waveform IPM’ input signal VCIN (Upper Arm) 0V 2V 1.5V 0V IPM’ input signal VCIN (Lower Arm) 2V 1.5V 1.5V tdead 2V tdead t t tdead 1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value Fig. 7 Dead time measurement point example May 2009 5 MITSUBISHI <INTELLIGENT POWER MODULES> PM50RL1C060 FLAT-BASE TYPE INSULATED PACKAGE P 20k ≥10µ VUP1 → VD UFo IF 1.5k OT OUT Vcc Fo UP In VUPC + – Si U GND GND ≥0.1µ VVP1 VFo VD 1.5k Fo VP Si In VVPC V GND GND VWP1 WFo OT OUT Vcc 1.5k OT OUT Vcc Fo VD WP Si In VWPC W GND GND 20k → OUT Si Fo UN In GND GND ≥0.1µ 20k → OT Vcc ≥10µ IF M N OT Vcc ≥10µ IF OUT Si Fo VN In GND GND ≥0.1µ 20k → VD In GND GND VNC 4.7k → IF Fo OUT Si Fo In 1.5k B OT Vcc Br 1k OUT Si Fo WN ≥0.1µ OT Vcc ≥10µ IF 5V VN1 GND GND : Interface which is the same as the U-phase Fig. 8 Application Example Circuit NOTES FOR STABLE AND SAFE OPERATION ; Design the PCB pattern to minimize wiring length between opto-coupler and IPM’s input terminal, and also to minimize the stray capacity between the input and output wirings of opto-coupler. Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler. Fast switching opto-couplers: tPLH, tPHL ≤ 0.8µs, Use High CMR type. Slow switching opto-coupler: CTR > 100% Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the power supply. Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N terminal. Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line and improve noise immunity of the system. • • • • • • • May 2009 6 MITSUBISHI <INTELLIGENT POWER MODULES> PM50RL1C060 FLAT-BASE TYPE INSULATED PACKAGE PERFORMANCE CURVES (Inverter Part) COLLECTOR-EMITTER SATURATION VOLTAGE (VS. Ic) CHARACTERISTICS (TYPICAL) COLLECTOR CURRENT IC (A) 60 Tj = 25°C COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) OUTPUT CHARACTERISTICS (TYPICAL) 15V VD = 17V 50 40 30 13V 20 10 0 0 0.5 1.0 1.5 2.0 2.0 1.6 1.4 1.2 1.0 0.8 0.6 0.4 Tj = 25°C Tj = 125°C 0.2 0 2.5 VD = 15V 1.8 10 0 2.2 2.0 1.8 1.6 1.4 1.0 12 SWITCHING TIME ton, toff (µs) COLLECTOR RECOVERY CURRENT –IC (A) COLLECTOR-EMITTER SATURATION VOLTAGE (VS. VD) CHARACTERISTICS (TYPICAL) 2.4 IC = 50A Tj = 25°C Tj = 125°C 1.2 14 13 15 16 17 30 40 50 60 COLLECTOR CURRENT IC (A) 18 DIODE FORWARD CHARACTERISTICS (TYPICAL) 102 7 5 4 3 VD = 15V 2 101 7 5 4 3 2 100 –0.5 0 0.5 1.0 Tj = 25°C Tj = 125°C 1.5 2.0 CONTROL VOLTAGE VD (V) EMITTER-COLLECTOR VOLTAGE VEC (V) SWITCHING TIME (ton, toff) CHARACTERISTICS (TYPICAL) 101 SWITCHING TIME (tc(on), tc(off)) CHARACTERISTICS (TYPICAL) 100 SWITCHING TIME tc(on), tc(off) (µs) COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) COLLECTOR-EMITTER VOLTAGE VCE (V) 20 7 5 4 3 2 toff 100 7 5 4 3 ton 2 10–1 0 10 2 3 4 5 7 101 VCC = 300V VD = 15V Tj = 25°C Tj = 125°C Inductive load 2 3 4 5 7 102 7 5 4 3 2 tc(on) 10–1 7 5 4 3 tc(off) VCC = 300V VD = 15V Tj = 25°C Tj = 125°C Inductive load 2 10–2 0 10 COLLECTOR CURRENT IC (A) tc(off) 2 3 4 5 7 101 2 3 4 5 7 102 COLLECTOR CURRENT IC (A) May 2009 7 MITSUBISHI <INTELLIGENT POWER MODULES> PM50RL1C060 1.0 Eoff 0.5 0 0 10 20 30 40 50 DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL) 0.8 40 VCC = 300V 0.7 VD = 15V 35 Tj = 25°C Tj = 125°C 0.6 30 Inductive load Irr 25 0.5 0.4 20 0.3 15 trr 0.1 0 60 10 0.2 0 10 20 30 40 50 5 0 60 COLLECTOR REVERSE CURRENT –IC (A) SWITCHING RECOVERY LOSS CHARACTERISTICS (TYPICAL) 1.2 VCC = 300V VD = 15V 1.0 Tj = 25°C Tj = 125°C 0.8 Inductive load ID VS. fc CHARACTERISTICS (TYPICAL) 30 N-side ID (mA) 20 0.6 15 0.4 10 0.2 5 P-side 0 0 10 20 30 40 50 0 60 0 5 10 15 20 25 COLLECTOR REVERSE CURRENT –IC (A) fc (kHz) UV TRIP LEVEL VS. Tj CHARACTERISTICS (TYPICAL) 20 UVt 18 UVr 16 SC TRIP LEVEL VS. Tj CHARACTERISTICS (TYPICAL) 2.0 VD = 15V 1.8 14 UVt /UVr (V) VD = 15V Tj = 25°C Tj = 125°C 25 SC (SC of Tj = 25°C is normalized 1) SWITCHING LOSS Err (mJ/pulse) COLLECTOR CURRENT IC (A) REVERSE RECOVERY CURRENT lrr (A) SWITCHING LOSS CHARACTERISTICS (TYPICAL) 2.0 VCC = 300V VD = 15V Tj = 25°C Eon Tj = 125°C 1.5 Inductive load REVERSE RECOVERY TIME trr (µs) SWITCHING LOSS Eon, Eoff (mJ/pulse) FLAT-BASE TYPE INSULATED PACKAGE 12 10 8 6 4 2 0 –50 0 50 100 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 –50 150 0 50 100 150 Tj (°C) Tj (°C) May 2009 8 MITSUBISHI <INTELLIGENT POWER MODULES> PM50RL1C060 FLAT-BASE TYPE INSULATED PACKAGE (Brake Part) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (TYPICAL) OUTPUT CHARACTERISTICS (TYPICAL) 60 7 5 3 2 Tj = 25°C COLLECTOR CURRENT IC (A) NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth(j-c) 100 10–1 7 5 3 2 10–2 Single Pulse 7 5 IGBT part; 3 Per unit base = Rth(j-c)Q = 0.74°C/ W 2 FWDi part; Per unit base = Rth(j-c)F = 1.28°C/ W 10–3 –5 10 2 3 5 710–4 2 3 5 710–32 3 5 710–2 2 3 5 710–12 3 5 7100 2 3 5 7101 COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) 1.4 1.2 1.0 0.8 0.6 0.4 Tj = 25°C Tj = 125°C 0.2 0 10 20 30 40 50 20 10 0 0.5 1.0 1.5 2.0 2.2 2.0 1.8 1.6 1.4 IC = 50A Tj = 25°C Tj = 125°C 1.2 13 14 15 16 17 COLLECTOR CURRENT IC (A) CONTROL VOLTAGE VD (V) DIODE FORWARD CHARACTERISTICS (TYPICAL) TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (TYPICAL) 102 2 101 7 5 4 3 2 100 Tj = 25°C Tj = 125°C 0 0.5 18 100 VD = 15V 7 5 4 3 2.5 COLLECTOR-EMITTER SATURATION VOLTAGE (VS. VD) CHARACTERISTICS (TYPICAL) 2.4 1.0 12 60 NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth(j-c) COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) 1.6 0 COLLECTOR RECOVERY CURRENT –IC (A) VD = 15V 1.8 13V 30 COLLECTOR-EMITTER VOLTAGE VCE (V) COLLECTOR-EMITTER SATURATION VOLTAGE (VS. Ic) CHARACTERISTICS (TYPICAL) 2.0 40 0 TIME t (sec) 15V VD = 17V 50 1.0 1.5 2.0 EMITTER-COLLECTOR VOLTAGE VEC (V) 7 5 3 2 10–1 7 5 3 2 10–2 Single Pulse 7 5 IGBT part; 3 Per unit base = Rth(j-c)Q = 0.74°C/ W 2 FWDi part; Per unit base = Rth(j-c)F = 1.28°C/ W 10–3 –5 10 2 3 5 710–4 2 3 5 710–32 3 5 710–2 2 3 5 710–12 3 5 7100 2 3 5 7101 TIME t (sec) May 2009 9