R1224N SERIES PWM/VFM step-down DC/DC Converter NO.EA-096-061102 OUTLINE The R1224N Series are CMOS-based PWM step-down DC/DC Converter controllers with low supply current. Each of these ICs consists of an oscillator, a PWM control circuit, a reference voltage unit, an error amplifier, a phase compensation circuit, a soft-start circuit, a protection circuit, a PWM/VFM alternative circuit, a chip enable circuit, resistors for output voltage detect, and input voltage detect circuit. A low ripple, high efficiency step-down DC/DC converter can be easily composed of this IC with only several external components, or a power-transistor, an inductor, a diode and capacitors. Output Voltage is fixed or can be adjusted with external resistors (Adjustable types are without PWM/VFM alternative circuit). With a PWM/VFM alternative circuit, when the load current is small, the operation is automatically switching into the VFM oscillator from PWM oscillator. Therefore, the efficiency at small load current is improved. Several types of the R1224Nxxx, which are without a PWM/VFM alternative circuit, are also available. If the term of maximum duty cycle keeps on a certain time, the embedded protection circuit works. The protection circuit is Reset-type protection circuit, and it works to restart the operation with soft-start and repeat this operation until maximum duty cycle condition is released. When the cause of large load current or something else is removed, the operation is automatically released and returns to normal operation. Further, built-in UVLO function works when the input voltage is equal or less than UVLO threshold, it makes this IC be standby and suppresses the consumption current and avoid an unstable operation. FEATURES • Supply Current ................................................................ Typ. 20µA (R1224Nxx2E/F/M/L, R1224N102M) Typ. 30µA (R1224Nxx2G, R1224N102G) Typ. 40µA (R1224Nxx2H, R1224N102H) • Standby Current .............................................................. Typ. 0µA • Input Voltage Range ....................................................... 2.3V~18.5V • Output Voltage Range..................................................... 1.2V to 6.0V (R1224Nxx2x) 1.0V to VIN (R1224N102x) • Output Voltage Accuracy................................................. ±2.0% • Oscillator Frequency ....................................................... Typ. 180kHz (R1224Nxx2M, R1224N102M) Typ. 300kHz (R1224Nxx2E/G, R1224N102G) Typ. 500kHz (R1224Nxx2F/H, R1224N102H) • Efficiency......................................................................... Typ. 90% • Low Temperature-Drift Coefficient of Output Voltage...... Typ. ±100ppm/°C • Package .......................................................................... SOT-23-5 • Built-in Soft-start Function............................................... Typ. 10ms • Built-in Current Limit Circuit APPLICATIONS • Power source for hand-held communication equipment, cameras, video instruments such as VCRs, camcorders. • Power source for battery-powered equipment. • Power source for household electrical appliances. 1 R1224N BLOCK DIAGRAM *Fixed Output Voltage Type VIN 5 EXT 4 OSC 3 VOUT 1 CE 3 VFB 1 CE Amp Vref PWM/VFM CONTROL Soft Start Chip Enable Protection Vref UVLO 2 GND *Adjustable Output Voltage Type VIN 5 EXT 4 OSC Amp Vref Soft Start Protection UVLO 2 GND 2 Chip Enable Vref R1224N SELECTION GUIDE In the R1224N Series, the output voltage, the oscillator frequency, the optional function, and the taping type for the ICs can be selected at the user's request. The selection can be made with designating the part number as shown below; R1224Nxx2x-xx-x ←Part Number ↑ ↑ ↑↑ ↑ ↑ a b cd e f Code a b c d e f Contents Designation of Package Type; N: SOT-23-5 Setting Output Voltage (VOUT): Stepwise setting with a step of 0.1V in the range of 1.2V to 6.0V is possible. Adjustable type; a=10 means Reference Voltage=1.0V Optional Function is G/H/M. 2: fixed Designation of Optional Function E : 300kHz, with a PWM/VFM alternative circuit F : 500kHz, with a PWM/VFM alternative circuit G : 300kHz, without a PWM/VFM alternative circuit H : 500kHz, without a PWM/VFM alternative circuit L : 180kHz, with a PWM/VFM alternative circuit M :180kHz, without a PWM/VFM alternative circuit Designation of Taping Type; (Refer to Taping Specification)"TR" is prescribed as a standard. Designation of Composition of pin plating -F: Lead free plating 3 R1224N PIN CONFIGURATIO • SOT-23-5 5 4 (mark side) 1 2 3 PIN DESCRIPTION Pin No Symbol 1 CE 2 GND 3 VOUT (VFB) 4 EXT 5 VIN Pin Description Chip Enable Pin (“H” Active) Ground Pin Pin for Monitoring Output Voltage (Feedback Voltage) External Transistor Drive Pin (CMOS Output) Power Supply Pin ABSOLUTE MAXIMUM RATINGS Symbol Item Rating Unit 20 V VIN VIN Supply Voltage VEXT EXT Pin Output Voltage −0.3 to VIN+0.3 V VCE CE Pin Input Voltage −0.3 to VIN+0.3 V VOUT VOUT/VFB Pin Input Voltage −0.3 to VIN+0.3 V IEXT EXT Pin Inductor Drive Output Current ± 50 A PD Power Dissipation (SOT-23-5)* 420 mW Topt Operating Temperature Range −40 to +85 °C Tstg Storage Temperature Range −55 to +125 °C * ) For Power Dissipation, please refer to PACKAGE INFORMATION to be described. 4 R1224N ELECTRICAL CHARACTERISTICS • R1224Nxx2X (X=E/F/G/H/L/M) except R1224N102X Symbol VIN Item Conditions Operating Input Voltage Topt=25°C Min. Typ. 2.3 Max. Unit 18.5 V VSET ×1.02 V VOUT Step-down Output Voltage VIN=VCE=VSET+1.5V, IOUT=−100mA When VSET < = 1.5V, VIN=VCE=3.0V ∆VOUT/ ∆Topt Step-down Output Voltage Temperature Coefficient −40°C < = Topt < = 85°C Oscillator Frequency VIN=VCE=VSET+1.5V, IOUT=−100mA When VSET < = 1.5, VIN=VCE=3.0V L/M Version E/G Version F/H Version Oscillator Frequency Temperature Coefficient −40°C < = Topt < = 85°C ±0.2 IDD1 Supply Current 1 VIN=VCE=VOUT=18.5V E/F/L/M Version G version H version 20 30 40 50 60 80 µA Istandby Standby Current VIN=18.5V, VCE=0V, VOUT=0V 0.0 0.5 µA IEXTH EXT “H” Output Current VIN=8V, VEXT=7.9V, VOUT=8V, VCE=8V −17 −10 mA IEXTL EXT “L” Output Current VIN=8V, VEXT=0.1V, VOUT=0V, VCE=8V ICEH CE “H” Input Current VIN=VCE=VOUT=18.5V ICEL CE “L” Input Current VIN=VOUT=18.5V, VCE=0V −0.5 VCEH CE “H” Input Voltage VIN=8V, VOUT=0V 1.5 VCEL CE “L” Input Voltage VIN=8V, VOUT=0V Maxdty Oscillator Maximum Duty Cycle VFMdty VFM Duty Cycle E/F/L Version VUVLO1 UVLO Voltage VIN=VCE=2.5V to 1.5V, VOUT=0V VUVLO2 UVLO Release Voltage VIN=VCE=1.5V to 2.5V, VOUT=0V tstart Delay Time by Soft-Start function VIN=VSET+1.5V, IOUT=−10mA VCE=0V→VSET+1.5V tprot Delay Time for protection circuit VIN=VCE=VSET+1.5V VOUT=VSET+1.5V→0V fosc ∆fosc/ ∆Topt VSET ×0.98 VSET ±100 144 240 400 20 180 300 500 ppm/°C 216 360 600 %/°C 30 0.0 mA 0.5 µA µA 0.0 V 0.3 100 V % 35 1.8 kHz % 2.0 2.2 V VUVLO1 +0.1 2.3 V 5 10 20 ms 5 15 30 ms 5 R1224N • R1224N102X (X=G/H/M) Symbol Conditions Min. Typ. Unit 18.5 V 1.02 V Operating Input Voltage VFB Feedback Voltage VIN=VCE=3.5V, IFB=−100mA Feedback Voltage Temperature Coefficient −40°C < = Topt < = 85°C Oscillator Frequency VIN=VCE=3.5V, IFB=−100mA M Version G Version H Version Oscillator Frequency Temperature Coefficient −40°C < = Topt < = 85°C IDD1 Supply Current 1 VIN=VCE=VFB=18.5V M Version G Version H Version 20 30 40 50 60 80 µA Istandby Standby Current VIN=18.5V, VCE=0V, VFB=0V 0.0 0.5 µA IEXTH EXT “H” Output Current VIN=8V, VEXT=7.9V, VFB=8V, VCE=8V −17 −10 mA IEXTL EXT “L” Output Current VIN=8V, VEXT=0.1V, VFB=0V, VCE=8V ICEH CE “H” Input Current VIN=VCE=VFB=18.5V ICEL CE “L” Input Current VIN=VFB=18.5V, VCE=0V −0.5 VCEH CE “H” Input Voltage VIN=8V, VFB=0V 1.5 VCEL CE “L” Input Voltage VIN=8V, VFB=0V fosc ∆fosc/ ∆Topt 2.3 Max. VIN ∆VFB/ ∆Topt 6 Item Topt=25°C Maxdty Oscillator Maximum Duty Cycle VUVLO1 UVLO Voltage VIN=VCE=2.5V to 1.5V, VFB=0V VUVLO2 UVLO Release Voltage VIN=VCE=1.5V to 2.5V, VFB=0V tstart Delay Time by Soft-Start function VIN=2.5V, IFB=−10mA VCE=0V→2.5V tprot Delay Time for protection circuit VIN=VCE=2.5V VFB=2.5V→0V 0.98 1.00 ±100 144 240 400 180 300 500 ppm/°C 216 360 600 ±0.2 20 %/°C 30 0.0 mA 0.5 µA µA 0.0 V 0.3 100 1.8 kHz V % 2.0 2.2 V VUVLO1 +0.1 2.3 V 5 10 20 ms 5 15 30 ms R1224N TYPICAL APPLICATION AND APPLICATION HINTS (1) Fixed Output Voltage Type (R1224Nxx2E/F/G/H/L/M except xx=10) L PMOS C1 4 R1 5 EXT VIN VOUT 3 R1224N 1 CE C3 SD GND C2 LOAD 2 CE CONTROL PMOS: HAT1044M (Hitachi) SD1 : RB063L-30 (Rohm) C1 : 10µF (Ceramic Type) R1 : 10Ω L : CR105-270MC (Sumida, 27µH) C3 : 47µF (Tantalum Type) C2 : 0.1µF (Ceramic Type) (2) Adjustable Output Type (R1224N102G/H/M) Example: Output Voltage=3.2V L PMOS C1 C4 R4 4 R1 5 VIN EXT R3 VFB 3 R1224N 1 CE C2 GND 2 C3 SD R2 LOAD CE CONTROL PMOS: HAT1044M (Hitachi) L : CR105-270MC (Sumida, 27µH) SD1 : RB063L-30 (Rohm) C3 : 47µF (Tantalum Type) C1 : 10µF (Ceramic Type) C2 : 0.1µF (Ceramic Type) C4: 1000pF (Ceramic Type) R1 : 10Ω, R2=22kΩ, R3=2.7kΩ, R4=33kΩ 7 R1224N When you use these ICs, consider the following issues; ⋅As shown in the block diagram, a parasitic diode is formed in each terminal, each of these diodes is not formed for load current, therefore do not use it in such a way. When you control the CE pin by another power supply, do not make its “H” level more than the voltage level of VIN pin. ⋅Set external components as close as possible to the IC and minimize the connection between the components and the IC. In particular, a capacitor should be connected to VOUT pin with the minimum connection. Make sufficient ground and reinforce supplying. A large switching current could flow through the connection of power supply, an inductor and the connection of VOUT. If the impedance of the connection of power supply is high, the voltage level of power supply of the IC fluctuates with the switching current. This may cause unstable operation of the IC. ⋅Protection circuit may work if the maximum duty cycle continue for the time defined in the electrical characteristics. Once after stopping the output voltage, output will restart with soft-start operation. If the difference between input voltage and output voltage is small, the protection circuit may work. ⋅Use capacitors with a capacity of 22µF or more for VOUT pin, and with good high frequency characteristics such as tantalum capacitors. We recommend you to use output capacitors with an allowable voltage at least twice as much as setting output voltage. This is because there may be a case where a spike-shaped high voltage is generated by an inductor when an external transistor is on and off. ⋅Choose an inductor that has sufficiently small D.C. resistance and large allowable current and is hard to reach magnetic saturation. And if the value of inductance of an inductor is extremely small, the ILX may exceed the absolute maximum rating at the maximum loading. Use an inductor with appropriate inductance. ⋅Use a diode of a Schottky type with high switching speed, and also pay attention to its current capacity. ⋅Do not use this IC under the condition with VIN voltage at equal or less than minimum operating voltage. ⋅When the threshold level of an external power MOSFET is rather low and the drive-ability of voltage supplier is small, if the output pin is short circuit, input voltage may be equal or less than UVLO detector threshold. In this case, the devise is reset with UVLO function that is different from the reset-protection function caused by maximum duty cycle. ⋅With the PWM/VFM alternative circuit, when the on duty cycle of switching is 35% or less, the R1224N alters from PWM mode to VFM mode (Pulse skip mode). The purpose of this circuit is raising the efficiency with a light load by skipping the frequency and suppressing the consumption current. However, the ratio of output voltage against input voltage is 35% or less, (ex. VIN>8.6V and VOUT=3.0V) even if the large current may be loaded, the IC keeps its VFM mode. As a result, frequency might be decreased, and oscillation waveform might be unstable. These phenomena are the typical characteristics of the IC with PWM/VFM alternative circuit. ÌThe performance of power source circuits using these ICs extremely depends upon the peripheral circuits. Pay attention in the selection of the peripheral circuits. In particular, design the peripheral circuits in a way that the values such as voltage, current, and power of each component, PCB patterns and the IC do not exceed their respected rated values. 8 R1224N How to Adjust Output Voltage and about Phase Compensation As for Adjustable Output type, feedback pin (VFB) voltage is controlled to maintain 1.0V. Output Voltage, VOUT is as following equation: VOUT: R2+R4=VFB: R2 VOUT=VFB×(R2+R4)/R2 Thus, with changing the value of R2 and R4, output voltage can be set in the specified range. In the DC/DC converter, with the load current and external components such as L and C, phase might be behind 180 degree. In this case, the phase margin of the system will be less and stability will be worse. To prevent this, phase margin should be secured with proceeding the phase. A pole is formed with external components L and C3. Fpole ~ 1/2π L × C3 A zero (signal back to zero) is formed with R4 and C4. ≅Fzero~1/(2π×R4×C4) For example, if L=27µH, C3=47µF, the cut off frequency of the pole is approximately 4.5kHz. To make the cut off frequency of the pole as much as 4.5kHz, set R4=33kΩ and C4=1000pF. If VOUT is set at 2.5V, R2=22kΩ is appropriate. R3 prevents feedback of the noise to VFB pin, about 2.7kΩ is appropriate value. L PMOS C1 C4 R4 4 R1 5 VIN EXT R3 VFB 3 R1224N 1 CE C2 GND 2 C3 SD R2 LOAD CE CONTROL 9 R1224N OPERATION of step-down DC/DC converter and Output Current The step-down DC/DC converter charges energy in the inductor when Lx transistor is ON, and discharges the energy from the inductor when Lx transistor is OFF and controls with less energy loss, so that a lower output voltage than the input voltage is obtained. The operation will be explained with reference to the following diagrams: <Basic Circuits> <Current through L> i1 IL ILmax IOUT VIN Lx Tr SD VOUT L ILmin topen i2 CL GND ton toff T=1/fosc Step 1: Lx Tr. turns on and current IL (=i1) flows, and energy is charged into CL. At this moment, IL increases from ILmin. (=0) to reach ILmax. in proportion to the on-time period (ton) of Lx Tr. Step 2: When Lx Tr. turns off, Schottky diode (SD) turns on in order that L maintains IL at ILmax, and current IL (=i2) flows. Step 3: IL decreases gradually and reaches ILmin. after a time period of topen, and SD turns off, provided that in the continuous mode, next cycle starts before IL becomes to 0 because toff time is not enough. In this case, IL value is from this ILmin (>0). In the case of PWM control system, the output voltage is maintained by controlling the on-time period (ton), with the oscillator frequency (fosc) being maintained constant. Discontinuous Conduction Mode and Continuous Conduction Mode The maximum value (ILmax) and the minimum value (ILmin) current which flow through the inductor is the same as those when Lx Tr. is ON and when it is OFF. The difference between ILmax and ILmin, which is represented by ∆I; ∆I=ILmax-ILmin=VOUT×topen/L=(VIN-VOUT)×ton/L ................................... Equation 1 wherein, T=1/fosc=ton+toff duty (%)=ton/T×100=ton×fosc×100 topen < = toff In Equation 1, VOUT×topen/L and (VIN-VOUT)×ton/L are respectively shown the change of the current at ON, and the change of the current at OFF. When the output current (IOUT) is relatively small, topen<toff as illustrated in the above diagram. In this case, the energy is charged in the inductor during the time period of ton and is discharged in its entirely during the time period of toff, therefore ILmin becomes to zero (ILmin=0). When Iout is gradually increased, eventually, topen becomes to toff (topen=toff), and when IOUT is further increased, ILmin becomes larger than zero (ILmin>0). The former mode is referred to as the discontinuous mode and the latter mode is referred to as continuous mode. 10 R1224N In the continuous mode, when Equation 1 is solved for ton and assumed that the solution is tonc, tonc=T×VOUT/VIN ..................................................................................... Equation 2 When ton<tonc, the mode is the discontinuous mode, and when ton=tonc, the mode is the continuous mode. OUTPUT CURRENT AND SELECTION OF EXTERNAL COMPONENTS When Lx Tr. is ON: (Wherein, Ripple Current P-P value is described as IRP, ON resistance of Lx Tr. is described as Rp the direct current of the inductor is described as RL.) VIN=VOUT+(Rp+RL)×IOUT+L×IRP/ton .................................................Equation 3 When Lx Tr. is OFF: L×IRP/toff=VF+VOUT+RL×IOUT ............................................................ Equation 4 Put Equation 4 to Equation 3 and solve for ON duty, ton/(toff+ton)=DON, DON=(VOUT+VF+RL×IOUT)/(VIN+VF−Rp×IOUT) ......................................Equation 5 Ripple Current is as follows; IRP=(VIN−VOUT−Rp×IOUT−RL×IOUT)×DON/f/L........................................Equation 6 Wherein, peak current that flows through L, Lx Tr., and SD is as follows; ILmax=IOUT+IRP/2............................................................................ Equation 7 Consider ILmax, condition of input and output and select external components. Ì The above explanation is directed to the calculation in an ideal case in continuous mode. 11 R1224N External Components 1. Inductor Select an inductor that peak current does not exceed ILmax. If larger current than allowable current flows, magnetic saturation occurs and make transform efficiency worse. When the load current is definite, the smaller value of L, the larger the ripple current. Provided that the allowable current is large in that case and DC current is small, therefore, for large output current, efficiency is better than using an inductor with a large value of L and vice versa. 2. Diode Use a diode with low VF (Schottky type is recommended.) and high switching speed. Reverse voltage rating should be more than VIN and current rating should be equal or more than ILmax. 3. Capacitors As for CIN, use a capacitor with low ESR (Equivalent Series Resistance) and a capacity of at least 10µF for stable operation. COUT can reduce ripple of Output Voltage, therefore 47µF or more value of tantalum type capacitor is recommended. 4. Lx Transistor Pch Power MOSFET is required for this IC. Its breakdown voltage between gate and source should be a few V higher than Input Voltage. In the case of Input Voltage is low, to turn on MOSFET completely, to use a MOSFET with low threshold voltage is effective. If a large load current is necessary for your application and important, choose a MOSFET with low ON resistance for good efficiency. If a small load current is mainly necessary for your application, choose a MOSFET with low gate capacity for good efficiency. Maximum continuous drain current of MOSFET should be larger than peak current, ILmax. 12 R1224N TIMING CHART VOUT Set Output Voltage VIN UVLO Voltage Input Voltage Rising Time UVLO Reset VOUT Set Output Voltage CE Protection Circuit Delay Time VOUT Set Output Voltage EXT Reset Protection VOUT VOUT Set Output Voltage Stable Operation Soft Start Stable Operation Soft Start Soft Start Stable Operation Soft Start The timing chart shown above describes the changing process of input voltage rising, stable operating, operating with large current, stable operating, input voltage falling, input voltage recovering, and stable operating. First, until when the input voltage (VIN) reaches UVLO voltage, the circuit inside keeps the condition of pre-standby. Second, after VIN becomes beyond the UVLO threshold, soft-start operation starts, when the soft-start operation finishes, the operation becomes stable. If too large current flows through the circuit because of short or other reasons, EXT signal ignores that during the delay time of protection circuit. (The current value depends on the circuit.) After the delay time passes, reset protection works, or EXT signal will be “H”, then output will turn off, then soft-start operation starts. After the soft-start operation, EXT signal will be “L”, but if the large current is still flowing, after the delay time of protection circuit passes, reset protection circuit will work again, the operation will be continuously repeated unless the cause of large current flowing is not removed. Once the cause of the large current flowing is removed, within the delay time, the operation will be back to the stable one. If the timing for release the large current is in the protection process, the operation will be back to the normal one after the soft-start operation. If the VIN becomes lower than the set VOUT, that situation is same as large current condition, so protection circuit may be ready to work, therefore, after the delay time of protection circuit, EXT will be “H”. Further, if the VIN is lower than UVLO voltage, the circuit inside will be stopped by UVLO function. After that, if VIN rises, until when the VIN reaches UVLO voltage, the circuit inside keeps the condition of spre-standby. Then after VIN becomes beyond the UVLO threshold, soft-start operation starts, when the soft-start operation finishes, the operation becomes stable. 13 R1224N TEST CIRCUITS Output Voltage, Oscillator Frequency, CE “H” Input Voltage, CE “L” Input Voltage, Soft-start time L1 PMOS D1 EXT 4 Oscilloscope 2 GND VIN 5 R1224N OUT 3 V (VFB) C2 CE 1 C1 V Supply Current 1 Standby Current A VIN 5 2 GND 2 GND R1224N OUT 3 V (VFB) EXT “H” Output Current R1224N VOUT 3 (V FB) 4 EXT A OUT 3 V (VFB) CE 1 PMOS : HAT1044M (Hitachi) SD1 : RB491D (Rohm) C1 : 47µF (Tantalum Type) 14 4 EXT Oscilloscope R1224N R1224N CE 1 Output Delay Time for Protection Circuit VIN 5 2 GND 2 GND VIN 5 VOUT 3 (V FB) CE 1 CE “H” Input Current, CE “L” Input Current CE 1 EXT “L” Output Current VIN 5 2 GND A R1224N OUT 3 V (VFB) CE 1 4 EXT A VIN 5 2 GND OUT 3 V (VFB) A L : CD104-270MC (Sumida, 27µH) C2 : 47µF (Tantalum Type) VIN 5 R1224N CE 1 C2 R1224N TYPICAL CHARACTERISTICS 1)Output Voltage vs. Output Current (*Note) R1224N182E L=10µH R1224N182F 1.830 1.810 1.790 VIN3.3V 1.770 1.750 0.1 VIN5V 1 10 100 1000 1.830 1.810 1.790 VIN3.3V 1.770 1.750 0.1 10000 Output Current lOUT(mA) R1224N182G L=10µH Output Voltage VOUT(V) Output Voltage VOUT(V) 10 R1224N182H 100 1000 10000 L=10µH 1.810 1.790 VIN3.3V VIN5V 1.770 VIN12V 1 10 100 1000 1.830 1.810 1.790 R1224N182L VIN5V VIN12V 1.750 0.1 10000 VIN3.3V 1.770 Output Current lOUT(mA) 1 10 100 1000 10000 Output Current lOUT(mA) L=27µH R1224N182M L=27µH 1.850 Output Voltage VOUT(V) 1.850 Output Voltage VOUT(V) 1 1.850 1.830 1.830 1.810 1.790 VIN3.3V 1.770 1.750 0.1 VIN5V Output Current IOUT(mA) 1.850 1.750 0.1 L=10µH 1.850 Output Voltage VOUT(V) Output Voltage VOUT(V) 1.850 VIN5V 1 10 100 1000 Output Current lOUT(mA) 10000 1.830 1.810 1.790 VIN3.3V VIN5V 1.770 VIN12V 1.750 0.1 1 10 100 1000 10000 Output Current lOUT(mA) 15 R1224N L=10µH R1224N332F 3.400 3.38 3.380 Output Voltage VOUT(V) Output Voltage VOUT(V) R1224N332E 3.40 3.36 3.34 3.32 3.30 3.28 3.26 VIN4.8V 3.24 VIN7V 3.22 3.20 0.1 3.360 3.340 3.320 3.300 3.280 3.260 VIN4.8V 3.240 VIN7V 3.220 1 10 100 1000 3.200 0.1 10000 Output Current lOUT(mA) R1224N332G L=10µH Output Voltage VOUT(V) Output Voltage VOUT(V) 3.360 1000 10000 3.340 3.320 3.300 3.280 VIN4.8V 3.260 VIN12V 3.240 VIN15V 1 10 100 1000 3.34 3.33 3.32 3.31 3.30 0.1 10000 Output Current lOUT(mA) 1 10 100 1000 10000 Output Current lOUT(mA) R1224N332G (VIN=16V) R1224N332H 3.35 L=10µH Output Voltage VOUT(V) 3.400 3.34 3.33 3.32 3.31 3.380 3.360 3.340 3.320 3.300 3.280 VIN4.8V 3.260 VIN12V 3.240 VIN15V 3.220 1 10 100 1000 Output Current lOUT(mA) 16 100 R1224N332G (VIN=10V) 3.380 3.30 0.1 10 3.35 3.220 Output Voltage VOUT(V) 1 Output Current lOUT(mA) 3.400 3.200 0.1 L=10µH 10000 3.200 0.1 1 10 100 1000 Output Current lOUT(mA) 10000 R1224N L=27µH R1224N332M 3.400 3.380 3.380 Output Voltage VOUT(V) Output Voltage VOUT(V) R1224N332L 3.400 3.360 3.340 3.320 3.300 3.280 3.260 VIN4.8V 3.240 VIN7V 3.220 3.360 3.340 3.320 3.300 3.280 VIN4.8V 3.260 VIN12V 3.240 VIN15V 3.220 3.200 0.1 1 10 100 1000 3.200 0.1 10000 Output Current lOUT(mA) R1224N332M (VIN=5V) 10 100 1000 10000 R1224N332M (VIN=10V) 3.35 Output Voltage VOUT(V) Output Voltage VOUT(V) 1 Output Current lOUT(mA) 3.35 3.34 3.33 3.32 3.31 3.30 3.34 3.33 3.32 3.31 3.30 0 1 2 3 4 5 1 0 Output Current lOUT(A) 2 3 4 5 Output Current lOUT(A) R1224N332M (VIN=18V) R1224N502E L=10µH 5.100 Output Voltage VOUT(V) 3.35 Output Voltage VOUT(V) L=27µH 3.34 3.33 3.32 3.31 5.080 5.060 VIN6.5V 5.040 VIN10V 5.020 5.000 4.980 4.960 4.940 4.920 3.30 4.900 0 1 2 3 Output Current lOUT(A) 4 0.1 1 10 100 1000 10000 Output Current lOUT(mA) 17 R1224N L=10µH R1224N502G 5.100 5.080 5.080 Output Voltage VOUT(V) Output Voltage VOUT(V) R1224N502F 5.100 5.060 5.040 5.020 5.000 4.980 4.960 VIN6.5V 4.940 VIN10V 5.040 VIN12V 5.020 VIN15V 5.000 4.980 4.960 4.940 4.920 4.900 0.1 4.900 0.1 10 100 1000 10000 Output Current lOUT(mA) R1224N502G (VIN=10V) Output Voltage VOUT(V) Output Voltage VOUT(V) 5.03 5.02 5.01 1 10 R1224N502H 100 1000 1000 10000 5.04 5.03 5.02 5.01 5.00 0.1 10000 L=10µH 5.100 5.080 5.080 5.060 5.040 5.020 5.000 VIN6.5V 4.960 VIN12V 4.940 VIN15V 4.920 1 10 10 R1224N502L 5.100 4.980 1 100 1000 10000 Output Current lOUT(mA) Output Voltage VOUT(V) Output Voltage VOUT(V) 100 R1224N502G (VIN=16V) Output Current lOUT(mA) L=27µH 5.060 5.040 5.020 5.000 4.980 4.960 VIN6.5V 4.940 VIN10V 4.920 100 1000 Output Current lOUT(mA) 18 10 5.05 5.04 4.900 0.1 1 Output Current lOUT(mA) 5.05 5.00 0.1 VIN6.5V 5.060 4.920 1 L=10µH 10000 4.900 0.1 1 10 100 1000 Output Current lOUT(mA) 10000 R1224N R1224N502M L=27µH Output Voltage VOUT(V) 5.100 5.080 *Note: Typical characteristics 1) are obtained with using the following components; PMOS : IRF7406 (IR) L : CDRH127-100MC (Sumida: 10µH) SD : RB083L-20 (Rohm) C1 : 25SC47 (Sanyo/OS-con: 47µF/25V)×2 C2 : 0.1µF (Ceramic Type) C3 : 10SA220 (Sanyo/OS-con: 220µF/10V) R1 : 10Ω VIN6.5V 5.060 5.040 VIN12V 5.020 VIN15V 5.000 4.980 4.960 4.940 4.920 4.900 0.1 1 10 100 1000 10000 Output Current lOUT(mA) 2) Efficiency vs. Output Current (*Note) 100 90 80 70 60 50 40 30 20 10 0 0.1 CDRH127-10µH R1224N182F (VIN=5.0V) Efficiency η(%) Efficiency η(%) R1224N182F (VIN=3.3V) 1 10 100 1000 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 Output Current lOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 1 CDRH127-10µH 10 100 1000 Output Current lOUT(mA) 10 100 1000 10000 Output Current lOUT(mA) R1224N182G (VIN=5.0V) Efficiency η(%) Efficiency η(%) R1224N182G (VIN=3.3V) 1 CDRH127-10µH 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 CDRH127-10µH 100 1000 10000 Output Current lOUT(mA) 19 R1224N 100 90 80 70 60 50 40 30 20 10 0 0.1 CDRH127-10µH R1224N182H (VIN=3.3V) Efficiency η(%) Efficiency η(%) R1224N182G (VIN=12V) 1 10 100 1000 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 Output Current lOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 CDRH127-10µH 100 1000 R1224N182H (VIN=12V) 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 Output Current lOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 1 CDRH127-27µH 10 100 1000 Output Current lOUT(mA) 20 100 1000 10000 1 10 CDRH127-10µH 100 1000 10000 Output Current lOUT(mA) R1224N182L (VIN=5.0V) Efficiency η(%) Efficiency η(%) R1224N182L (VIN=3.3V) 10 Output Current lOUT(mA) Efficiency η(%) Efficiency η(%) R1224N182H (VIN=5.0V) 1 CDRH127-10µH 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 CDRH127-27µH 100 1000 Output Current lOUT(mA) 10000 R1224N 100 90 80 70 60 50 40 30 20 10 0 0.1 CDRH127-27µH R1224N182M (VIN=5.0V) Efficiency η(%) Efficiency η(%) R1224N182M (VIN=3.3V) 1 10 100 1000 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 Output Current lOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 CDRH127-27µH 100 1000 R1224N332E (VIN=7.0V) 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 Output Current lOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 1 CDRH127-10µH 10 100 1000 Output Current lOUT(mA) 100 1000 10000 1 10 CDRH127-10µH 100 1000 10000 Output Current lOUT(mA) R1224N332F (VIN=7.0V) Efficiency η(%) Efficiency η(%) R1224N332E (VIN=4.8V) 10 Output Current lOUT(mA) Efficiency η(%) Efficiency η(%) R1224N182M (VIN=12V) 1 CDRH127-27µH 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 CDRH127-10µH 100 1000 10000 Output Current lOUT(mA) 21 R1224N 100 90 80 70 60 50 40 30 20 10 0 0.1 CDRH127-10µH R1224N332G (VIN=12V) Efficiency η(%) Efficiency η(%) R1224N332F (VIN=4.8V) 1 10 100 1000 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 Output Current lOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 CDRH127-10µH 100 1000 10000 10 100 1000 Efficiency η(%) 22 1 10 R1224N332G (VIN=15V) Efficiency η(%) 1 1000 10000 100 1000 10000 Output Current lOUT(mA) R1224N332G (VIN=16V) Output Current lOUT(mA) 100 R1224N332G (VIN=10V) 100 90 80 70 60 50 40 30 20 10 0 0.1 Output Current lOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 10 Output Current lOUT(mA) Efficiency η(%) Efficiency η(%) R1224N332G (VIN=4.8V) 1 CDRH127-10µH 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 CDRH127-10µH 100 1000 Output Current lOUT(mA) 10000 R1224N 100 90 80 70 60 50 40 30 20 10 0 0.1 CDRH127-10µH R1224N332H (VIN=4.8V) Efficiency η(%) Efficiency η(%) R1224N332H (VIN=12V) 1 10 100 1000 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 Output Current lOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 CDRH127-10µH 100 1000 R1224N332L (VIN=7.0V) 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 Output Current lOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 CDRH127-27µH 1 10 100 1000 Output Current lOUT(mA) 100 1000 10000 1 10 CDRH127-27µH 100 1000 10000 Output Current lOUT(mA) R1224N332M (VIN=12V) Efficiency η(%) Efficiency η(%) R1224N332L (VIN=4.8V) 10 Output Current lOUT(mA) Efficiency η(%) Efficiency η(%) R1224N332H (VIN=15V) 1 CDRH127-10µH 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 CDRH127-27µH 100 1000 10000 Output Current lOUT(mA) 23 R1224N 100 90 80 70 60 50 40 30 20 10 0 0.1 CDRH127-27µH R1224N332M (VIN=5V) Efficiency η(%) Efficiency η(%) R1224N332M (VIN=4.8V) 1 10 100 1000 100 98 96 94 92 90 88 86 84 82 80 10000 0 1 1 2 3 4 5 0 CDRH127-27µH 1 10 100 1000 Output Current lOUT(mA) 24 5 1 2 3 4 Output Current lOUT(A) R1224N502E (VIN=6.5V) Efficiency η(%) Efficiency η(%) 100 90 80 70 60 50 40 30 20 10 0 0.1 4 100 98 96 94 92 90 88 86 84 82 80 Output Current lOUT(A) R1224N332M (VIN=15V) 3 R1224N332M (VIN=18V) Efficiency η(%) Efficiency η(%) R1224N332M (VIN=10V) 100 98 96 94 92 90 88 86 84 82 80 0 2 Output Current lOUT(A) Output Current lOUT(mA) 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 CDRH127-10µH 100 1000 Output Current lOUT(mA) 10000 R1224N 100 90 80 70 60 50 40 30 20 10 0 0.1 CDRH127-10µH R1224N502F (VIN=6.5V) Efficiency η(%) Efficiency η(%) R1224N502E (VIN=10V) 1 10 100 1000 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 Output Current lOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 CDRH127-10µH 100 1000 10000 10 100 1000 Efficiency η(%) 1 10 R1224N502G (VIN=6.5V) Efficiency η(%) 1 1000 10000 100 1000 10000 Output Current lOUT(mA) R1224N502G (VIN=16V) Output Current lOUT(mA) 100 R1224N502G (VIN=10V) 100 90 80 70 60 50 40 30 20 10 0 0.1 Output Current lOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 10 Output Current lOUT(mA) Efficiency η(%) Efficiency η(%) R1224N502F (VIN=10V) 1 CDRH127-10µH 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 CDRH127-10µH 100 1000 10000 Output Current lOUT(mA) 25 R1224N 100 90 80 70 60 50 40 30 20 10 0 0.1 CDRH127-10µH R1224N502G (VIN=15V) Efficiency η(%) Efficiency η(%) R1224N502G (VIN=12V) 1 10 100 1000 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 Output Current lOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 CDRH127-10µH 100 1000 R1224N502H (VIN=12V) 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 Output Current lOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 1 CDRH127-10µH 10 100 1000 Output Current lOUT(mA) 26 100 1000 10000 1 10 CDRH127-10µH 100 1000 10000 Output Current lOUT(mA) R1224N502L (VIN=6.5V) Efficiency η(%) Efficiency η(%) R1224N502H (VIN=15V) 10 Output Current lOUT(mA) Efficiency η(%) Efficiency η(%) R1224N502H (VIN=6.5V) 1 CDRH127-10µH 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 CDRH127-27µH 100 1000 Output Current lOUT(mA) 10000 R1224N 100 90 80 70 60 50 40 30 20 10 0 0.1 CDRH127-27µH R1224N502M (VIN=6.5V) Efficiency η(%) Efficiency η(%) R1224N502L (VIN=10V) 1 10 100 1000 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 Output Current lOUT(mA) 100 90 80 70 60 50 40 30 20 10 0 0.1 1 CDRH127-27µH 10 100 1000 Output Current lOUT(mA) 10 100 1000 10000 Output Current lOUT(mA) R1224N502M (VIN=15V) Efficiency η(%) Efficiency η(%) R1224N502M (VIN=12V) 1 CDRH127-27µH 10000 100 90 80 70 60 50 40 30 20 10 0 0.1 1 10 CDRH127-27µH 100 1000 10000 Output Current lOUT(mA) *Note: Typical characteristics 2) are obtained with using the following components; PMOS : IRF7406 (IR) L : CDRH127-100MC (Sumida: 10µH) C2 : 0.1µF (Ceramic Type) SD : RB083L-20 (Rohm) C3 : 10SA220 (Sanyo/OS-con: 220µF/10V) C1 : 25SC47 (Sanyo/OS-con: 47µF/25V)×2 R1 : 10Ω 27 R1224N 3) Ripple Voltage vs. Output Current R1224N182E L=10µH R1224N182F 60 VIN3.3V 50 VIN5V 40 30 20 10 0 0.1 1 10 100 1000 60 VIN3.3V 50 30 20 10 0 0.1 10000 R1224N182G L=10µH R1224N182H VIN3.3V 50 VIN5V Ripple Voltage Vrpp(mV) Ripple Voltage Vrpp(mV) 60 VIN12V 40 30 20 10 1 10 100 1000 60 VIN3.3V 50 VIN5V 100 1000 10000 L=10µH R1224N182L VIN12V 40 30 20 10 0 0.1 10000 1 10 100 1000 10000 Output Current IOUT(mA) L=27µH R1224N182M 70 L=27µH 70 Ripple Voltage Vrpp(mV) Ripple Voltage Vrpp(mV) 10 70 Output Current IOUT(mA) 60 VIN3.3V 50 VIN5V 40 30 20 10 1 10 100 1000 Output Current IOUT(mA) 28 1 Output Current IOUT(mA) 70 0 0.1 VIN5V 40 Output Current IOUT(mA) 0 0.1 L=10µH 70 Ripple Voltage Vrpp(mV) Ripple Voltage Vrpp(mV) 70 10000 60 VIN3.3V 50 VIN5V VIN12V 40 30 20 10 0 0.1 1 10 100 1000 Output Current IOUT(mA) 10000 R1224N R1224N332E L=10µH R1224N332F 60 VIN4.8V 50 VIN7V 40 30 20 10 0 0.1 1 10 100 1000 60 VIN4.8V 50 30 20 10 0 0.1 10000 R1224N332G L=10µH R1224N332H 60 VIN4.8V 50 VIN12V Ripple Voltage Vrpp(mV) Ripple Voltage Vrpp(mV) 10 100 1000 10000 L=10µH 70 VIN15V 40 30 20 10 1 10 100 1000 60 VIN4.8V 50 VIN12V 30 20 10 0 0.1 10000 R1224N332L VIN15V 40 Output Current lOUT(mA) 1 10 100 1000 10000 Output Current lOUT(mA) L=27µH R1224N332M 70 L=27µH 70 Ripple Voltage Vrpp(mV) Ripple Voltage Vrpp(mV) 1 Output Current IOUT(mA) 70 60 VIN4.8V 50 VIN7V 40 30 20 10 0 0.1 VIN7V 40 Output Current IOUT(mA) 0 0.1 L=10µH 70 Ripple Voltage Vrpp(mV) Ripple Voltage Vrpp(mV) 70 1 10 100 1000 Output Current lOUT(mA) 10000 60 VIN4.8V 50 VIN12V VIN15V 40 30 20 10 0 0.1 1 10 100 1000 10000 Output Current lOUT(mA) 29 R1224N R1224N502E L=10µH R1224N502F 60 VIN6.5V 50 VIN10V 40 30 20 10 0 0.1 1 10 100 1000 60 VIN6.5V 50 30 20 10 0 0.1 10000 R1224N502G L=10µH R1224N502H VIN6.5V 50 VIN12V Ripple Voltage Vrpp(mV) Ripple Voltage Vrpp(mV) 60 VIN15V 40 30 20 10 1 10 100 1000 60 VIN6.5V 50 VIN12V 100 1000 10000 L=10µH R1224N502L VIN15V 40 30 20 10 0 0.1 10000 1 10 100 1000 10000 Output Current IOUT(mA) L=27µH R1224N502M L=27µH 70 Ripple Voltage Vrpp(mV) 70 Ripple Voltage Vrpp(mV) 10 70 Output Current IOUT(mA) 60 VIN6.5V 50 VIN10V 40 30 20 10 1 10 100 1000 Output Current IOUT(mA) 30 1 Output Current lOUT(mA) 70 0 0.1 VIN10V 40 Output Current lOUT(mA) 0 0.1 L=10µH 70 Ripple Voltage Vrpp(mV) Ripple Voltage Vrpp(mV) 70 10000 60 VIN6.5V 50 VIN12V VIN15V 40 30 20 10 0 0.1 1 10 100 1000 Output Current IOUT(mA) 10000 R1224N 4) Output Voltage vs. Input Voltage L=10µH R1224N182F 2.00 1.95 1.95 Output Voltage VOUT(V) Output Voltage VOUT(V) R1224N182E 2.00 1.90 1.85 1.80 1.75 1.70 1mA 500mA 1.65 1.60 1.90 1.85 1.80 1.75 1.70 1mA 500mA 1.65 1.60 0 5 10 15 20 0 Input Voltage VIN(V) L=10µH 2.00 1.95 1.95 1.90 1.85 1.80 1.75 -1mA -500mA 1.65 10 R1224N182H 2.00 1.70 5 15 20 Input Voltage VIN(V) Output Voltage VOUT(V) Output Voltage VOUT(V) R1224N182G 1.60 L=10µH 1.90 1.85 1.80 1.75 1.70 -1mA -500mA 1.65 1.60 0 5 10 15 20 0 Input Voltage VIN(V) R1224N182L L=27µH 2.00 1.95 1.95 1.90 1.85 1.80 1.75 1mA 500mA 1.65 10 R1224N182M 2.00 1.70 5 15 20 Input Voltage VIN(V) Output Voltage VOUT(V) Output Voltage VOUT(V) L=10µH 1.60 L=27µH 1.90 1.85 1.80 1.75 1.70 1mA 500mA 1.65 1.60 0 5 10 15 Input Voltage VIN(V) 20 0 5 10 15 20 Input Voltage VIN(V) 31 R1224N L=10µH R1224N332F 3.40 3.38 3.38 Output Voltage VOUT(V) Output Voltage VOUT(V) R1224N332E 3.40 3.36 3.34 3.32 3.30 3.28 3.26 1mA 500mA 3.24 3.22 3.20 3.36 3.34 3.32 3.30 3.28 3.26 1mA 500mA 3.24 3.22 3.20 0 5 10 15 20 0 Input Voltage VIN(V) L=10µH 3.40 3.38 3.38 3.36 3.34 3.32 3.30 3.28 3.26 -1mA -500mA 3.22 3.20 15 20 L=10µH 3.36 3.34 3.32 3.30 3.28 3.26 -1mA -500mA 3.24 3.22 3.20 0 5 10 15 20 0 Input Voltage VIN(V) R1224N332L L=27µH 3.40 3.38 3.38 3.36 3.34 3.32 3.30 3.28 3.26 1mA 500mA 3.22 10 R1224N332M 3.40 3.24 5 15 20 Input Voltage VIN(V) Output Voltage VOUT(V) Output Voltage VOUT(V) 10 R1224N332H 3.40 3.24 5 Input Voltage VIN(V) Output Voltage VOUT(V) Output Voltage VOUT(V) R1224N332G 3.20 L=27µH 3.36 3.34 3.32 3.30 3.28 3.26 1mA 500mA 3.24 3.22 3.20 0 5 10 15 Input Voltage VIN(V) 32 L=10µH 20 0 5 10 15 Input Voltage VIN(V) 20 R1224N L=10µH R1224N502F 5.20 5.15 5.15 Output Voltage VOUT(V) Output Voltage VOUT(V) R1224N502E 5.20 5.10 5.05 5.00 4.95 4.90 1mA 500mA 4.85 4.80 5.10 5.05 5.00 4.95 4.90 1mA 500mA 4.85 4.80 0 5 10 15 20 0 Input Voltage VIN(V) R1224N502G L=10µH 10 15 20 R1224N502H L=10µH 5.20 5.15 -1mA -500mA 5.10 Output Voltage VOUT(V) Output Voltage VOUT(V) 5 Input Voltage VIN(V) 5.20 5.05 5.00 4.95 4.90 4.85 5.15 5.10 5.05 5.00 4.95 4.90 -1mA -500mA 4.85 4.80 4.80 0 5 10 15 0 20 R1224N502L L=27µH 5.15 5.15 Output Voltage VOUT(V) 5.20 5.10 5.05 5.00 4.95 1mA 500mA 4.85 10 R1224N502M 5.20 4.90 5 15 20 Input Voltage VIN(V) Input Voltage VIN(V) Output Voltage VOUT(V) L=10µH 4.80 L=27µH 5.10 5.05 5.00 4.95 4.90 1mA 500mA 4.85 4.80 0 5 10 15 Input Voltage VIN(V) 20 0 5 10 15 20 Input Voltage VIN(V) 33 R1224N 5) Output Voltage vs. Temperature R1224N332E R1224N122F 1.210 Output Voltage VOUT(V) Output Voltage VOUT(V) 3.33 3.32 3.31 3.30 3.29 3.28 3.27 -40 -15 10 35 60 1.205 1.200 1.195 1.190 -40 85 Temperature Topt(˚C) R1224N602L 35 60 85 R1224N102G 1.010 Output Voltage VOUT(V) Output Voltage VOUT(V) 10 Temperature Topt(˚C) 6.10 6.05 6.00 5.95 5.90 -40 -15 -15 10 35 60 1.005 1.000 0.995 0.990 -40 85 Temperature Topt(˚C) -15 10 35 60 85 Temperature Topt(˚C) 6) Oscillator Frequency vs. Temperature R1224N102H Oscillator Frequency fosc(kHz) Oscillator Frequency fosc(kHz) R1224N102G 360 330 300 270 240 -40 -15 10 35 60 Temperature Topt(˚C) 34 85 600 550 500 450 400 -40 -15 10 35 60 Temperature Topt(˚C) 85 R1224N Oscillator Frequency fosc(kHz) R1224N102M 216 198 180 162 144 -40 -15 10 35 60 85 Temperature Topt(˚C) 7) Supply Current vs. Temperature R1224N332E R1224N602L 25 Supply Current1 Iss1(µA) Supply Current1 Iss1(µA) 25 20 15 10 5 0 -40 -15 10 35 60 20 15 10 5 0 -40 85 Temperature Topt(˚C) R1224N602F 35 60 85 R1224N102G 40 Supply Current1 Iss1(µA) Supply Current1 Iss1(µA) 10 Temperature Topt(˚C) 25 20 15 10 5 0 -40 -15 -15 10 35 60 Temperature Topt(˚C) 85 30 20 10 0 -40 -15 10 35 60 85 Temperature Topt(˚C) 35 R1224N R1224N102H R1224N102M 40 Supply Current1 Iss1(µA) Supply Current1 Iss1(µA) 60 50 40 30 20 10 0 -40 -15 10 35 60 30 20 10 0 -40 85 Temperature Topt(˚C) -15 10 35 60 Temperature Topt(˚C) 8) Soft-start time vs. Temperature R1224N102G Soft-start time Tsoft(ms) 15 10 5 -40 -15 10 35 60 85 Temperature Topt(˚C) 9) Delay Time for Protection vs. Temperature Delay Time for Protection Tprot(ms) R1224N332E 30 25 20 15 10 -40 -15 10 35 Temperature Topt(˚C) 36 60 85 85 R1224N 10) EXT “H” Output Current vs. Temperature EXT "H" Output Current IEXTH(mA) R1224N332E -10 -15 -20 -25 -40 -15 10 35 60 85 Temperature Topt(˚C) 11) EXT “L” Output Current vs. Temperature EXT "L" Output Current IEXTL(mA) R1224N332E 50 40 30 20 -40 -15 10 35 60 85 Temperature Topt(˚C) 12) Load Transient Response R1224N332G L=10µH VIN=4.8V 3.50 2000 3.40 1800 3.45 1800 3.30 3.20 1600 1400 3.40 3.35 1600 1400 3.10 1200 3.30 1200 3.00 1000 3.25 1000 2.90 2.80 800 600 3.20 3.15 800 600 2.70 400 3.10 400 2.60 2.50 200 0 1E-04 2E-04 3E-04 4E-04 -0 -0 0 Time(sec) Output Voltage VOUT(V) 2000 3.05 3.00 -0.04 -0.02 0 0.02 0.04 0.06 200 0 0.08 Output Current IOUT(mA) L=10µH VIN=4.8V Output Current IOUT(mA) Output Voltage VOUT(V) R1224N332G 3.50 Time(sec) 37 R1224N R1224N332G 2000 3.40 1800 3.45 1800 3.30 3.20 1600 1400 3.40 3.35 1600 1400 3.10 1200 3.30 1200 3.00 1000 3.25 1000 2.90 2.80 800 600 3.20 3.15 800 600 2.70 400 3.10 400 Output Voltage VOUT(V) 3.50 2.60 200 2.50 0 -0.0002 -0.0001 0.0000 0.0001 0.0002 0.0003 0.0004 3.05 3.00 -0.04 -0.02 0 0.06 L=10µH VIN=4.8V R1224N332H L=10µH VIN=4.8V 2000 3.50 2000 3.40 1800 3.45 1800 3.30 3.20 1600 1400 3.40 3.35 1600 1400 3.10 1200 3.30 1200 3.00 1000 3.25 1000 2.90 2.80 800 600 3.20 3.15 800 600 2.70 400 3.10 400 200 0 1E-04 2E-04 3E-04 4E-04 3.05 3.00 -0.04 -0.02 0 Time(sec) R1224N332H 0.02 0.04 0.06 200 0 0.08 Time(sec) L=10µH VIN=10V R1224N332H L=10µH VIN=10V 3.50 2000 3.40 1800 3.40 1800 3.30 3.20 1600 1400 3.30 3.20 1600 1400 3.10 1200 3.10 1200 3.00 1000 3.00 1000 2.90 2.80 800 600 2.90 2.80 800 600 2.70 400 2.70 400 2.60 2.50 -2E-04 -1E-04 0 200 0 1E-04 2E-04 3E-04 4E-04 Time(sec) Output Voltage VOUT(V) 2000 Output Current IOUT(mA) 3.50 2.60 2.50 -2E-04 -1E-04 0 200 0 0.0001 0.0002 0.0003 0.0004 Time(sec) Output Current IOUT(mA) 0 Output Voltage VOUT(V) 3.50 2.60 2.50 -2E-04 -1E-04 Output Voltage VOUT(V) 0.04 Time(sec) Output Current IOUT(mA) Output Voltage VOUT(V) R1224N332H 0.02 200 0 0.08 Output Current IOUT(mA) Time(sec) 38 L=10µH VIN=10V 2000 Output Current IOUT(mA) L=10µH VIN=10V Output Current IOUT(mA) Output Voltage VOUT(V) R1224N332G 3.50 R1224N R1224N332M 2000 3.40 1800 3.45 1800 3.30 3.20 1600 1400 3.40 3.35 1600 1400 3.10 1200 3.30 1200 3.00 1000 3.25 1000 2.90 2.80 800 600 3.20 3.15 800 600 2.70 400 3.10 400 200 0 0.0001 0.0002 0.0003 0.0004 3.05 3.00 -0.04 -0.02 0 Time(sec) R1224N332M 0.02 0.04 0.06 200 0 0.08 Time(sec) L=27µH VIN=10V R1224N332M L=27µH VIN=10V 3.50 2000 3.40 1800 3.45 1800 3.30 3.20 1600 1400 3.40 3.35 1600 1400 3.10 1200 3.30 1200 3.00 1000 3.25 1000 2.90 2.80 800 600 3.20 3.15 800 600 2.70 400 3.10 400 2.60 2.50 -2E-04 -1E-04 0 200 0 1E-04 2E-04 3E-04 4E-04 Output Voltage VOUT(V) 2000 Output Current IOUT(mA) 3.50 3.05 3.00 -0.04 -0.02 Time(sec) 0 0.02 0.04 0.06 200 0 0.08 Output Current IOUT(mA) 0 Output Voltage VOUT(V) 3.50 2.60 2.50 -2E-04 -1E-04 Output Voltage VOUT(V) L=27µH VIN=4.8V 2000 Output Current IOUT(mA) L=27µH VIN=4.8V Output Current IOUT(mA) Output Voltage VOUT(V) R1224N332M 3.50 Time(sec) 12) UVLO Voltage vs. Temperature R1224N332E UVLO Voltage VUVLO(V) 2.20 2.15 2.10 2.05 2.00 1.95 1.90 -40 -15 10 35 60 85 Temperature Topt(˚C) 39 PACKAGE INFORMATION • PE-SOT-23-5-0610 SOT-23-5 (SC-74A) Unit: mm PACKAGE DIMENSIONS 2.9±0.2 +0.2 1.1 −0.1 1.9±0.2 (0.95) (0.95) 2 0 to 0.1 3 +0.1 0.15 −0.05 0.4±0.1 0.2 Min. 1 2.8±0.3 4 +0.2 1.6 −0.1 5 0.8±0.1 3.2 3.5±0.05 2.0±0.05 8.0±0.3 4.0±0.1 +0.1 φ1.5 0 0.3±0.1 1.75±0.1 TAPING SPECIFICATION 3.3 4.0±0.1 2.0Max. ∅1.1±0.1 TR User Direction of Feed TAPING REEL DIMENSIONS REUSE REEL (EIAJ-RRM-08Bc) (1reel=3000pcs) 2±0.5 21±0.8 ∅60 +1 0 ∅180 0 −1.5 ∅ 13±0.2 11.4±1.0 9.0±0.3 PACKAGE INFORMATION PE-SOT-23-5-0610 POWER DISSIPATION (SOT-23-5) This specification is at mounted on board. Power Dissipation (PD) depends on conditions of mounting on board. This specification is based on the measurement at the condition below: (Power Dissipation (SOT-23-5) is substitution of SOT-23-6.) Measurement Conditions Standard Land Pattern Environment Mounting on Board (Wind velocity=0m/s) Board Material Glass cloth epoxy plactic (Double sided) Board Dimensions 40mm × 40mm × 1.6mm Copper Ratio Top side : Approx. 50% , Back side : Approx. 50% Through-hole φ0.5mm × 44pcs Measurement Result (Topt=25°C,Tjmax=125°C) Standard Land Pattern Free Air Power Dissipation 420mW 250mW Thermal Resistance θja=(125−25°C)/0.42W=263°C/W 400°C/W 500 40 On Board 420 400 Free Air 300 250 40 Power Dissipation PD(mW) 600 200 100 0 0 25 50 75 85 100 Ambient Temperature (°C) 125 150 Power Dissipation Measurement Board Pattern IC Mount Area Unit : mm RECOMMENDED LAND PATTERN 0.7 MAX. 1.0 2.4 0.95 0.95 1.9 (Unit: mm) MARK INFORMATION ME-R1224N-0612 R1224N SERIES MARK SPECIFICATION • SOT-23-5 (SC-74A) 1 • 2 3 4 1 , 2 4 , 5 , 3 : Product Code (refer to Part Number vs. Product Code) : Lot Number 5 Part Number vs. Product Code Part Number Product Code 1 2 3 R1224N102G G 1 0 R1224N122G G 1 2 R1224N152G G 1 R1224N182G G R1224N252G G R1224N302G Part Number Product Code 1 2 3 R1224N102H H 1 0 R1224N122H H 1 2 5 R1224N132H H 1 1 8 R1224N152H H 2 5 R1224N182H H G 3 0 R1224N252H R1224N332G G 3 3 R1224N362G G 3 6 R1224N402G G 4 R1224N502G G R1224N552G R1224N602G Part Number Product Code 1 2 3 R1224N102M M 1 0 R1224N122M M 1 2 3 R1224N152M M 1 5 1 5 R1224N182M M 1 8 1 8 R1224N252M M 2 5 H 2 5 R1224N302M M 3 0 R1224N302H H 3 0 R1224N312M M 3 1 R1224N332H H 3 3 R1224N332M M 3 3 0 R1224N362H H 3 6 R1224N502M M 5 0 5 0 R1224N402H H 4 0 R1224N552M M 5 5 G 5 5 R1224N462H H 4 6 R1224N602M M 6 0 G 6 0 R1224N472H H 4 7 R1224N122 L L 1 2 R1224N122E E 1 2 R1224N502H H 5 0 R1224N152 L L 1 5 R1224N152E E 1 5 R1224N552H H 5 5 R1224N182 L L 1 8 R1224N182E E 1 8 R1224N602H H 6 0 R1224N252 L L 2 5 R1224N222E E 2 2 R1224N122F F 1 2 R1224N302 L L 3 0 R1224N252E E 2 5 R1224N152F F 1 5 R1224N312 L L 3 1 R1224N262E E 2 6 R1224N182F F 1 8 R1224N332 L L 3 3 R1224N272E E 2 7 R1224N252F F 2 5 R1224N502 L L 5 0 R1224N302E E 3 0 R1224N262F F 2 6 R1224N552 L L 5 5 R1224N332E E 3 3 R1224N302F F 3 0 R1224N602 L L 6 0 R1224N502E E 5 0 R1224N322F F 3 2 R1224N552E E 5 5 R1224N332F F 3 3 R1224N602E E 6 0 R1224N362F F 3 6 R1224N502F F 5 0 R1224N552F F 5 5 R1224N602F F 6 0