RFP25N06, RF1S25N06, RF1S25N06SM Data Sheet January 2002 25A, 60V, 0.047 Ohm, N-Channel Power MOSFETs Features • 25A, 60V These N-Channel power MOSFETs are manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, and relay drivers. These transistors can be operated directly from integrated circuits. Formerly developmental type TA09771. Ordering Information PART NUMBER PACKAGE • rDS(ON) = 0.047Ω • Temperature Compensating PSPICE® Model • Peak Current vs Pulse Width Curve • UIS Rating Curve • 175oC Operating Temperature • Related Literature - TB334, “Guidelines for Soldering Surface Mount Components to PC Boards” Symbol BRAND D RFP25N06 TO-220AB RFP25N06 RF1S25N06 TO-262AA F1S25N06 RF1S25N06SM TO-263AB F1S25N06 G NOTE: When ordering use the entire part number. Add the suffix, 9A, to obtain the TO-263AB variant in tape and reel, e.g. RF1S25N06SM9A. S Packaging JEDEC TO- 220AB DRAIN (FLANGE) JEDEC TO-263AB SOURCE DRAIN GATE GATE DRAIN (FLANGE) SOURCE JEDEC TO-262AA DRAIN (FLANGE) ©2002 Fairchild Semiconductor Corporation SOURCE DRAIN GATE RFP25N06, RF1S25N06, RF1S25N06SM Rev. C RFP25N06, RF1S25N06, RF1S25N06SMS Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Continuous Drain Current (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Single Pulse Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Linear Derating Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . TJ, TSTG Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . TL Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Tpkg RFP25N06, RF1S25N06, RF1S25N06SM 60 60 ±20 25 (Figure 5) (Figure 6) 72 0.48 -55 to 175 UNITS V V V A W W/oC oC oC oC 300 260 CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. TJ = 25oC to 150oC. Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 11) 60 - - V Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V - - 1 µA - - 50 µA VGS = ±20V - - ±100 nA ID = 25A, VGS = 10V (Figure 9) - - 0.047 Ω VDD = 30V, ID = 12.5A RL = 2.4Ω, VGS = 10V RGS = 10Ω (Figure 13) - - 60 ns - 14 - ns - 30 - ns td(OFF) - 45 - ns tf - 22 - ns tOFF - - 100 ns - - 80 nC - - 45 nC - - 3 nC - 975 - pF - 330 - pF - 95 - pF Zero Gate Voltage Drain Current IDSS TC = 25oC TC = 150oC VDS = 60V VGS = 0V Gate to Source Leakage Current Drain to Source On Resistance IGSS rDS(ON) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge Qg(TOT) VGS = 0 to 20V Gate Charge at 10V Qg(10) VGS = 0 to 10V Threshold Gate Charge Qg(TH) VGS = 0 to 2V Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA VDD = 48V, ID = 25A, RL = 1.92Ω Ig(REF) = 0.75mA (Figure 13) VDS = 25V, VGS = 0V f = 1MHz (Figure 12) - - 2.083 oC/W - - 62 oC/W MIN TYP MAX UNITS ISD = 25A - - 1.5 V ISD = 25A, dISD/dt = 100A/µs - - 125 ns (Figure 3) Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time ©2002 Fairchild Semiconductor Corporation SYMBOL VSD trr TEST CONDITIONS RFP25N06, RF1S25N06, RF1S25N06SM Rev. C RFP25N06, RF1S25N06, RF1S25N06SM Unless Otherwise Specified 1.2 30 1.0 25 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER Typical Performance Curves 0.8 0.6 0.4 20 15 10 0.2 5 0 0 50 125 75 100 TC , CASE TEMPERATURE (oC) 25 0 25 175 150 FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE 50 75 100 125 TC, CASE TEMPERATURE (oC) 150 175 FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 THERMAL IMPEDANCE ZθJC, NORMALIZED 1 0.5 0.2 0.1 0.1 PDM 0.05 t1 t2 0.02 0.01 SINGLE PULSE 0.01 10-5 10-4 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC 10-2 10-1 10-3 t1 , RECTANGULAR PULSE DURATION (s) 100 101 FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE 200 TC = 25oC TJ = MAX RATED SINGLE PULSE 200 IDM, PEAK CURRENT (A) ID, DRAIN CURRENT (A) 100 VGS = 20V FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT CAPABILITY AS FOLLOWS: VGS = 10V 100 100µs 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1ms 10ms 100ms DC 1 10 1 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 4. FORWARD BIAS SAFE OPERATING AREA ©2002 Fairchild Semiconductor Corporation 100 175 – T C I = I 25 ------------------------ 150 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10 -5 10 10-4 10-3 10-2 10-1 t, PULSE WIDTH (s) TC = 25oC 100 101 FIGURE 5. PEAK CURRENT CAPABILITY RFP25N06, RF1S25N06, RF1S25N06SM Rev. C RFP25N06, RF1S25N06, RF1S25N06SM Typical Performance Curves Unless Otherwise Specified (Continued) 100 VGS = 20V VGS = 10V VGS = 8V 60 STARTING TJ = 25oC ID, DRAIN CURRENT (A) IAS, AVALANCHE CURRENT (A) 70 10 STARTING TJ = 150oC If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS-VDD) +1] 1 0.01 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC 50 40 VGS = 7V 30 VGS = 6V 20 10 1 0.1 tAV, TIME IN AVALANCHE (µs) 0 10 VGS = 4.5V VGS = 5V 2 4 6 VDS, DRAIN TO SOURCE VOLTAGE (V) 0 8 NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 7. SATURATION CHARACTERISTICS 2.5 70 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 60 ID, DRAIN CURRENT (A) 25oC NORMALIZED DRAIN TO SOURCE ON RESISTANCE -55oC VDD = 15V 50 175oC 40 30 20 10 0 0 2 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) 2.0 1.5 1.0 0.5 0 -80 10 FIGURE 8. TRANSFER CHARACTERISTICS 1.0 0.5 200 FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE ©2002 Fairchild Semiconductor Corporation 200 ID = 250µA BREAKDOWN VOLTAGE NORMALIZED DRAIN TO SOURCE NORMALIZED GATE THRESHOLD VOLTAGE 1.5 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 2.0 VGS = VDS ID = 250µA -40 -40 FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 2.0 0 -80 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VGS = 10V, ID = 25A 1.5 1.0 0.5 0 -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE RFP25N06, RF1S25N06, RF1S25N06SM Rev. C RFP25N06, RF1S25N06, RF1S25N06SM Unless Otherwise Specified (Continued) VGS = 0V, f = 1MHz CISS = CGS + CGD CRSS = CGD COSS = CDS + CGD CISS 1200 VDS , DRAIN TO SOURCE VOLTAGE (V) C, CAPACITANCE (pF) 10 60 1600 800 COSS 400 CRSS VDD = BVDSS VDD = BVDSS 45 7.5 5.0 30 0.75 BVDSS 0.50 BVDSS 0.25 BVDSS 15 0 0 I g ( REF ) 0 0 5 10 15 20 VDS, DRAIN TO SOURCE VOLTAGE (V) 2.5 RL = 2.4Ω Ig(REF) = 0.75mA VGS = 10V VGS , GATE TO SOURCE VOLTAGE (V) Typical Performance Curves 20 -------------------I g ( ACT ) 25 t, TIME (µs) I g ( REF ) 80 -------------------I g ( ACT ) NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 13. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY WAVEFORMS tON tOFF td(ON) VDS td(OFF) tf tr VDS 90% 90% RL VGS + DUT RGS VGS - VDD 90% VGS 0 FIGURE 16. SWITCHING TIME TEST CIRCUIT ©2002 Fairchild Semiconductor Corporation 10% 10% 0 10% 50% 50% PULSE WIDTH FIGURE 17. RESISTIVE SWITCHING WAVEFORMS RFP25N06, RF1S25N06, RF1S25N06SM Rev. C RFP25N06, RF1S25N06, RF1S25N06SM Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 20V VGS Qg(10) + VDD DUT Ig(REF) VGS = 10V VGS - VGS = 2V 0 Qg(TH) Ig(REF) 0 FIGURE 18. GATE CHARGE TEST CIRCUIT ©2002 Fairchild Semiconductor Corporation FIGURE 19. GATE CHARGE WAVEFORM RFP25N06, RF1S25N06, RF1S25N06SM Rev. C RFP25N06, RF1S25N06, RF1S25N06SM PSPICE Electrical Model .SUBCKT RFP25N06 2 1 3 ; rev 8/19/94 CA 12 8 1.83e-9 CB 15 14 1.98e-9 CIN 6 8 9.7e-10 DPLCAP RSCL1 + 51 5 ESCL 51 50 ESG + IT 8 17 1 GATE 9 1 LGATE 20 EVTO + 18 6 8 VTO - + 21 6 S1A S1B S2A S2B MOS2 + DBODY - MOS1 RIN CIN 8 S1A 12 11 17 EBREAK 18 16 8 RGATE DBREAK RDRAIN MOS1 16 6 8 8 MOSMOD M = 0.99 MOS2 16 21 8 8 MOSMOD M = 0.01 RBREAK 17 18 RBKMOD 1 RDRAIN 50 16 RDSMOD 1.1e-3 RGATE 9 20 2.88 RIN 6 8 1e9 RSCL1 5 51 RSCLMOD 1e-6 RSCL2 5 50 1e3 RSOURCE 8 7 RDSMOD 20.3e-3 RVTO 18 19 RVTOMOD 1 DRAIN 2 LDRAIN RSCL2 EBREAK 11 7 17 18 65.9 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1 LDRAIN 2 5 1e-9 LGATE 1 9 4.92e-9 LSOURCE 3 7 4.5e-9 5 10 DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DPLCAP 10 5 DPLCAPMOD RSOURCE 7 LSOURCE 3 SOURCE S2A 14 13 13 8 S1B RBREAK 15 17 18 S2B 13 CA RVTO CB + EGS - 6 8 + EDS - 14 IT 19 VBAT + 5 8 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD VBAT 8 19 DC 1 VTO 21 6 0.764 ESCL 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)*1e6/108,6))} .MODEL DBDMOD D (IS = 2.32e-13 RS = 5.72e-3 TRS1 = 2.56e-3 TRS2 = -5.13e-6 CJO = 1.18e-9 TT = 5.62e-8) .MODEL DBKMOD D (RS = 2.00e-1 TRS1 = 3.33e-4 TRS2 = 2.68e-6) .MODEL DPLCAPMOD D (CJO = 6.55e-10 IS = 1e-30 N = 10) .MODEL MOSMOD NMOS (VTO = 3.89 KP = 15.03 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL RBKMOD RES (TC1 = 1.04e-3 TC2 = -1.04e-6) .MODEL RDSMOD RES (TC1 = 5.85e-3 TC2 = 1.77e-5) .MODEL RSCLMOD RES (TC1 = 2.0e-3 TC2 = 1.5e-6) .MODEL RVTOMOD RES (TC1 = -5.35e-3 TC2 = -3.77e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5.04 VOFF= -3.04) .MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.04 VOFF= -5.04) .MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.02 VOFF= 1.98) .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 1.98 VOFF= -3.02) .ENDS NOTE: For further discussion of the PSPICE model consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global Temperature Options; written by William J. Hepp and C. Frank Wheatley. ©2002 Fairchild Semiconductor Corporation RFP25N06, RF1S25N06, RF1S25N06SM Rev. C TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ EcoSPARK™ E2CMOSTM EnSignaTM FACT™ FACT Quiet Series™ FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ OPTOLOGIC™ OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER SMART START™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET VCX™ STAR*POWER is used under license DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life systems which, (a) are intended for surgical implant into support device or system whose failure to perform can the body, or (b) support or sustain life, or (c) whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system, or to affect its safety or with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. H4