ETC S-817B50AY-B

Rev.2.3
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
The S-817 is an ultra compact 3-pin positive voltage
regulator developed using CMOS technology. Housing into
a miniaturized 2.0 x 2.1 mm SC-82AB package, the S-817
offers key advantages for small, portable applications.
The S-817 allows many types of output capacitors including
ceramic capacitors and ensures highly-stable operations at
light load as low as 1µA.
„ Applications
„ Features
y Low current consumption
y Power source for
y
y
y
y Power source for
y
y
y
y
Operating current: Typ. 1.2 µA, Max. 2.5 µA
Output voltage: 1.1 to 6.0 V(0.1 V step)
Output voltage accuracy: ±2.0 %
Output current;
Note
50 mA capable (3.0 V output product, VIN=5 V)
Note
75 mA capable (5.0 V output product, VIN=7 V)
Dropout voltage
Typ. 160 mV (VOUT = 5.0 V, IOUT = 10 mA)
Low ESR capacitor (e.g., a ceramic capacitor of
0.1 µF or more) can be used as an output capacitor.
Short circuit protection for: Series A
Excellent Line Regulation: Stable operation at light
load of 1 µA
battery-powered devices
personal communication devices
y Power source for home electric/electronic
appliances
„ Packages
y
y
y
y
SOT-23-5
(PKG drawing code : MP005-A)
4-pin SC-82AB PKG drawing code : NP004-A)
3-pin SOT-89-3 PKG drawing code : UP003-A)
PKG drawing code : Y003-A)
TO-92
Note)
Power dissipation of the package should be taken into
account when the output current is large.
„ Block Diagram
Note 1
VIN
VOUT
Note 2
Reference
Short circuit
protection
voltage
VSS
Note 1 Parasitic diode
Note 2 Series A only
Figure 1 Block Diagram
Seiko Instruments Inc.
1
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
Rev.2.3
„ Selection Guide
Product Name
S-817x xx Axx - xxx - T2
IC orientation for tape specifications
Product code
Package code
NB: SC-82AB
MC: SOT-23-5
UA:SOT-89-3
Y:TO-92
Output voltage x 10
Short circuit protection: Yes = A
No = B
Output
Voltage
1.1 V ± 2.0%
1.2 V ± 2.0%
1.3 V ± 2.0%
1.4 V ± 2.0%
1.5 V ± 2.0%
1.6 V ± 2.0%
1.7 V ± 2.0%
1.8 V ± 2.0%
1.9 V ± 2.0%
2.0 V ± 2.0%
2.1 V ± 2.0%
2.2 V ± 2.0%
2.4 V ± 2.0%
2.5 V ± 2.0%
2.7 V ± 2.0%
2.8 V ± 2.0%
2.9 V ± 2.0%
3.0 V ± 2.0%
3.2 V ± 2.0%
3.3 V ± 2.0%
3.4 V ± 2.0%
3.5 V ± 2.0%
3.6 V ± 2.0%
3.7 V ± 2.0%
3.8 V ± 2.0%
4.0 V ± 2.0%
4.2 V ± 2.0%
4.3 V ± 2.0%
4.5 V ± 2.0%
4.8 V ± 2.0%
5.0 V ± 2.0%
5.2 V ± 2.0%
5.3 V ± 2.0%
5.6 V ± 2.0%
6.0 V ± 2.0%
SC-82AB
S-817A11ANB-CUA-T2
S-817A12ANB-CUB-T2
S-817A13ANB-CUC-T2
S-817A14ANB-CUD-T2
S-817A15ANB-CUE-T2


S-817A18ANB-CUH-T2
S-817A19ANB-CUI-T2
S-817A20ANB-CUJ-T2
S-817A21ANB-CUK-T2
S-817A22ANB-CUL-T2
S-817A24ANB-CUN-T2
S-817A25ANB-CUO-T2
S-817A27ANB-CUQ-T2
S-817A28ANB-CUR-T2

S-817A30ANB-CUT-T2
S-817A32ANB-CUV-T2
S-817A33ANB-CUW-T2

S-817A35ANB-CUY-T2
S-817A36ANB-CUZ-T2


S-817A40ANB-CVD-T2
S-817A42ANB-CVF-T2
S-817A43ANB-CVG-T2
S-817A45ANB-CVI-T2
S-817A48ANB-CVL-T2
S-817A50ANB-CVN-T2


S-817A56ANB-CVT-T2

Table 1 Selection Guide
SOT-23-5
S-817B11AMC-CWA-T2

S-817B13AMC-CWC-T2

S-817B15AMC-CWE-T2

S-817B17AMC-CWG-T2
S-817B18AMC-CWH-T2

S-817B20AMC-CWJ-T2

S-817B22AMC-CWL-T2

S-817B25AMC-CWO-T2

S-817B28AMC-CWR-T2

S-817B30AMC-CWT-T2

S-817B33AMC-CWW-T2

S-817B35AMC-CWY-T2

S-817B37AMC-CXA-T2
S-817B38AMC-CXB-T2
S-817B40AMC-CXD-T2
S-817B42AMC-CXF-T2



S-817B50AMC-CXN-T2




SOT-89-3
TO-92
S-817B11AUA-CWA-T2



S-817B15AUA-CWE-T2
S-817B16AUA-CWF-T2

S-817B18AUA-CWH-T2
S-817B19AUA-CWI-T2
S-817B20AUA-CWJ-T2



S-817B25AUA-CWO-T2
S-817B27AUA-CWQ-T2


S-817B30AUA-CWT-T2

S-817B33AUA-CWW-T2

S-817B35AUA-CWY-T2
S-817B36AUA-CWZ-T2
S-817B37AUA-CXA-T2
S-817B38AUA-CXB-T2
S-817B40AUA-CXD-T2

S-817B43AUA-CXG-T2
S-817B45AUA-CXI-T2

S-817B50AUA-CXN-T2
S-817B52AUA-CXP-T2
S-817B53AUA-CXQ-T2
S-817B56AUA-CXT-T2
S-817B60AUA-CXX-T2
S-817B11AY-X



S-817B15AY-X








S-817B25AY-X



S-817B30AY-X

S-817B33AY-X



S-817B37AY-X

S-817B40AY-X




S-817B50AY-X
S-817B52AY-X


S-817B60AY-X
Note:
Contact SII sales office for products with output voltage not specified above.
X changes according to the packing form in TO-92. Standard forms are B; Bulk and Z; Zigzag (tape and ammo).
If tape and reel (T) is needed, please contact SII sales office.
2
Seiko Instruments Inc.
Rev.2.3
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
„ Pin Configuration
Table 2 Pin Assignment
For details of package, refer to the attached drawing.
5
4
Pin No.
Symbol
Description
1
VSS
GND pin
Input voltage pin
2
VIN
SOT-23-5
3
VOUT
Top view
4
N.C.
No connection
5
N.C.
No connection
2
1
3
Note
Figure 2 SOT-23-5
Output voltage pin
Note
Note
N.C. pin is electrically open. N.C. pin can be connected to
VIN or VSS.
Table 3 Pin Assignment
4
3
Pin No.
Symbol
SC-82AB
1
VSS
GND pin
Top view
2
VIN
Input voltage pin
3
VOUT
4
N.C.
2
1
Figure 3 SC-82AB
Note
Description
Output voltage pin
No connection
Note
N.C. pin is electrically open. N.C. pin can be connected to
VIN or VSS.
Table 4 Pin Assignment
SOT-89-3
Top view
1
2
Pin No.
Symbol
Description
1
VSS
GND pin
2
VIN
Input voltage pin
3
VOUT
Output voltage pin
3
Figure 4 SOT-89-3
Table 5 Pin Assignment
TO-92
Bottom view
1
2
Pin No.
Symbol
Description
1
VSS
GND pin
2
VIN
Input voltage pin
3
VOUT
Output voltage pin
3
Figure 5 TO-92
Seiko Instruments Inc.
3
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
Rev.2.3
„ Absolute Maximum Ratings
Table 6 Absolute Maximum Ratings
Item
Symbol
VIN
VOUT
PD
Input voltage
Output voltage
Power dissipation
Operating temperature range
Storage temperature range
Topr
Tstg
(Ta=25°C unless otherwise specified)
Absolute Maximum Rating
12
VSS-0.3 to VIN+0.3
SOT-23-5
250
SC-82AB
150
SOT-89-3
500
TO-92
400
-40 to +85
-40 to +125
Units
V
V
mW
°C
°C
Note: Although the IC contains protection circuit against static electricity, excessive static electricity
or voltage which exceeds the limit of the protection circuit should not be applied to.
„ Electrical Characteristics
1. S-817AXXANB
Table 7 Electrical Characteristics
Item
Symbol
Output voltage
1)
Output current
2)
Dropout voltage
3)
Line regulation 1
Line regulation 2
Load regulation
Output voltage temperature
4)
coefficient
Current consumption
Input voltage
Short current limit
4
VOUT(E)
Conditions
VIN=VOUT(S)+2V, IOUT=10mA
VOUT(S)+2V1.1V ≤ VOUT(S) ≤ 1.9V
≤ VIN≤10V 2.0V ≤ VOUT(S) ≤ 2.9V
3.0V ≤ VOUT(S) ≤ 3.9V
4.0V ≤ VOUT(S) ≤ 4.9V
5.0V ≤ VOUT(S) ≤ 6.0V
Vdrop
IOUT =
1.1V ≤ VOUT(S) ≤ 1.4V
10mA
1.5V ≤ VOUT(S) ≤ 1.9V
2.0V ≤ VOUT(S) ≤ 2.4V
2.5V ≤ VOUT(S) ≤ 2.9V
3.0V ≤ VOUT(S) ≤ 3.4V
3.5V ≤ VOUT(S) ≤ 3.9V
4.0V ≤ VOUT(S) ≤ 4.4V
4.5V ≤ VOUT(S) ≤ 4.9V
5.0V ≤ VOUT(S) ≤ 5.4V
5.5V ≤ VOUT(S) ≤ 6.0V
∆ VOUT11 VOUT(S) + 1 V ≤ VIN ≤ 10 V,
IOUT = 1mA
∆ VOUT21 VOUT(S) + 1 V ≤ VIN ≤ 10 V,
IOUT = 1µA
∆ VOUT31 VIN=
1.1V ≤ VOUT(S) ≤ 1.9V,
VOUT(S)+ 2 V 1µA ≤ IOUT ≤ 10mA
2.0V ≤ VOUT(S) ≤ 2.9V,
1µA ≤ IOUT ≤ 20mA
3.0V ≤ VOUT(S) ≤ 3.9V,
1µA ≤ IOUT ≤ 30mA
4.0V ≤ VOUT(S) ≤ 4.9V,
1µA ≤ IOUT ≤ 40mA
5.0V ≤ VOUT(S) ≤ 6.0V,
1µA ≤ IOUT ≤ 50mA
∆VOUT 1 VIN = VOUT(S) + 1 V, IOUT = 10mA
∆Ta • VOUT -40°C ≤ Ta ≤ 85°C
ISS
VIN = VOUT(S) + 2 V, no load
VIN
IOS
VIN = VOUT(S) + 2 V,
VOUT pin = 0 V
IOUT
Seiko Instruments Inc.
(Ta=25°C unless otherwise specified)
Min.
Typ.
Max.
VOUT(S) VOUT(S) VOUT(S)
× 0.98
× 1.02
−
−
20
−
−
35
−
−
50
−
−
65
−
−
75
0.92
1.58
−
0.58
0.99
−
0.40
0.67
−
0.31
0.51
−
0.25
0.41
−
0.22
0.35
−
0.19
0.30
−
0.18
0.27
−
0.16
0.25
−
0.15
0.23
−
−
5
20
V
Test
circuits
1
mA
mA
mA
mA
mA
V
V
V
V
V
V
V
V
V
V
mV
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1
1
Units
−
5
20
mV
1
−
5
20
mV
1
−
10
30
mV
1
−
20
45
mV
1
−
25
65
mV
1
−
35
80
mV
1
±100
−
1
1.2
−
40
2.5
10
−
ppm
/°C
µA
V
mA
−
−
−
2
1
3
Rev.2.3
1)
2)
3)
4)
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
VOUT(S)=Specified output voltage
VOUT(E)=Effective output voltage, i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V.
Output current at which output voltage becomes 95% of V OUT(E) after gradually increasing output current.
Vdrop = VIN1-(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E) after
gradually decreasing input voltage.
Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation.
∆VOUT
∆VOUT
[mV/° C] = VOUT(S)[ V ] × ∆Ta • VOUT [ppm/° C] ÷ 1000
∆Ta
Temperature change ratio for output voltage
Specified output voltage
Output voltage temperature coefficient
Seiko Instruments Inc.
5
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
Rev.2.3
2. S-817BXXAMC
Table 8 Electrical Characteristics
Item
Symbol
Output voltage
1)
Output current
2)
Dropout voltage
3)
Line regulation 1
Line regulation 2
Load regulation
Output voltage temperature
4)
coefficient
Current consumption
Input voltage
1)
2)
3)
4)
VOUT(E)
Conditions
(Ta=25°C unless otherwise specified)
Min.
VIN=VOUT(S)+2V, IOUT=10mA
VOUT(S)+2V1.1V ≤ VOUT(S) ≤ 1.9V
≤ VIN≤10V 2.0V ≤ VOUT(S) ≤ 2.9V
3.0V ≤ VOUT(S) ≤ 3.9V
4.0V ≤ VOUT(S) ≤ 4.9V
5.0V ≤ VOUT(S) ≤ 6.0V
Vdrop
IOUT =
1.1V ≤ VOUT(S) ≤ 1.4V
10mA
1.5V ≤ VOUT(S) ≤ 1.9V
2.0V ≤ VOUT(S) ≤ 2.4V
2.5V ≤ VOUT(S) ≤ 2.9V
3.0V ≤ VOUT(S) ≤ 3.4V
3.5V ≤ VOUT(S) ≤ 3.9V
4.0V ≤ VOUT(S) ≤ 4.4V
4.5V ≤ VOUT(S) ≤ 4.9V
5.0V ≤ VOUT(S) ≤ 5.4V
5.5V ≤ VOUT(S) ≤ 6.0V
∆ VOUT11 VOUT(S) + 1 V ≤ VIN ≤ 10 V,
IOUT = 1mA
∆ VOUT21 VOUT(S) + 1 V ≤ VIN ≤ 10 V,
IOUT = 1µA
∆ VOUT31 VIN=
1.1V ≤ VOUT(S) ≤ 1.9V,
VOUT(S)+ 2 V 1µA ≤ IOUT ≤ 10mA
2.0V ≤ VOUT(S) ≤ 2.9V,
1µA ≤ IOUT ≤ 20mA
3.0V ≤ VOUT(S) ≤ 3.9V,
1µA ≤ IOUT ≤ 30mA
4.0V ≤ VOUT(S) ≤ 4.9V,
1µA ≤ IOUT ≤ 40mA
5.0V ≤ VOUT(S) ≤ 6.0V,
1µA ≤ IOUT ≤ 50mA
∆VOUT 1 VIN = VOUT(S) + 1 V, IOUT = 10mA
∆Ta • VOUT -40°C ≤ Ta ≤ 85°C
ISS
VIN = VOUT(S) + 2 V, no load
VIN
IOUT
Typ.
Max.
VOUT(S) VOUT(S) VOUT(S)
× 0.98
× 1.02
−
−
20
−
−
35
−
−
50
−
−
65
−
−
75
0.92
1.58
−
0.58
0.99
−
0.40
0.67
−
0.31
0.51
−
0.25
0.41
−
0.22
0.35
−
0.19
0.30
−
0.18
0.27
−
0.16
0.25
−
0.15
0.23
−
−
5
20
mA
mA
mA
mA
mA
V
V
V
V
V
V
V
V
V
V
mV
3
3
3
3
3
1
1
1
1
1
1
1
1
1
1
1
−
5
20
mV
1
−
5
20
mV
1
−
10
30
mV
1
−
20
45
mV
1
−
25
65
mV
1
−
35
80
mV
1
±100
−
1
1.2
−
2.5
10
ppm
/°C
µA
V
−
−
2
1
VOUT(S)=Specified output voltage
VOUT(E)=Effective output voltage, i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V.
Output current at which output voltage becomes 95% of V OUT(E) after gradually increasing output current.
Vdrop = VIN1-(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E) after
gradually decreasing input voltage.
Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation.
∆VOUT
∆VOUT
[mV/° C] = VOUT(S)[ V ] × ∆Ta • VOUT [ppm/° C] ÷ 1000
∆Ta
Temperature change ratio for output voltage
6
V
Test
circuits
1
Units
Specified output voltage
Output voltage temperature coefficient
Seiko Instruments Inc.
Rev.2.3
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
„ Test Circuits
1.
2.
VIN
A
VOUT
A
VIN
VOUT
V
VSS
VSS
3.
VIN
A
VOUT
V
VSS
Figure 6 Test Circuits
„ Standard Circuit
OUTPUT
INPUT
VIN
CIN
VOUT
CL
VSS
Single GND
In addition to a tantalum capacitor, a ceramic
capacitor of 0.1 µF or more can be used for CL.
CIN is a capacitor used to stabilize input.
GND
Figure 7 Standard Circuit
„ Technical Terms
1. Low ESR
ESR is the abbreviation for Equivalent Series Resistance.
Low ESR output capacitors (CL) can be used in the S-817 Series.
2. Output voltage (VOUT)
The accuracy of the output voltage is ± 2.0% guaranteed under the specified conditions for input voltage,
which differs depending upon the product items, output current, and temperature.
Note: If the above conditions change, the output voltage value may vary and go out of the accuracy range
of the output voltage. See the electrical characteristics and characteristics data for details.
3. Line regulations 1 and 2 (∆VOUT1, ∆VOUT2)
Indicate the input voltage dependencies of output voltage. That is, the values show how much the output
voltage changes due to a change in the input voltage with the output current remained unchanged.
4. Load regulation (∆VOUT3)
Indicates the output current dependencies of output voltage. That is, the values show how much the output
voltage changes due to a change in the output current with the input voltage remained unchanged.
Seiko Instruments Inc.
7
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
Rev.2.3
5. Dropout voltage (Vdrop)
Indicates a difference between input voltage (VIN1) and output voltage when output voltage falls by 98 % of
VOUT (E) by gradually decreasing the input voltage (VIN).
Vdrop = VIN1-[VOUT(E) × 0.98]
6. Temperature coefficient of output voltage [∆VOUT/(∆Ta • VOUT)]
The output voltage lies in the shaded area in the whole operating temperature shown in figure 8 when the
temperature coefficient of the output voltage is ±100 ppm/°C.
VOUT
[V]
+0.15mV/°C
VOUT (E) is a measurement value
of output voltage at 25°C.
VOUT(E)
-0.15mV/°C
-40
25
85
Ta [°C]
Figure 8 Typical Example of the S-817A15A
Temperature change ratio for output voltage [mV/°C] is calculated by using the following equation.
∆VOUT
∆VOUT
[mV/° C] = VOUT(S)[ V ] × ∆Ta • VOUT [ppm/° C] ÷ 1000
∆Ta
Specified output voltage
Temperatures change ratio for output voltage
8
Output voltage temperature coefficient
Seiko Instruments Inc.
Rev.2.3
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
„ Operation
VIN
1. Basic Operation
Figure 9 shows the block diagram of the S-817
series.
The error amplifier compares a reference voltage
*1
Current
source
Error amplifier
VOUT
Vref
Vref with a part of the output voltage divided by the
feedback resistors Rs and Rf, and supplies the gate
voltage to the output transistor, necessary to ensure
certain output voltage independent from change of
input voltage and temperature.
Rf
Reference
voltage
circuit
VSS
Rs
*1 Parasitic diode
Figure 9 Block Diagram
2. Output Transistor
The S-817 series uses a Pch MOS transistor as the output transistor.
The voltage at VOUT must not exceed VIN+0.3V. When the VOUT voltage becomes higher than that of VIN,
reverse current flows and may break the regulator since a parasitic diode between VOUT and VIN exists
inevitably.
3. Short Circuit Protection
The S-817A series incorporates a short circuit protection to protect the output transistor against short circuit
between VOUT pin and VSS pin. Installation of the short-circuit protection which protects the output transistor
against short-circuit between VOUT and VSS can be selected in the S-812C series. The short-circuit
protection controls output current as shown in the typical characteristics, (1) OUTPUT VOLTAGE versus
OUTPUT CURRENT, and suppresses output current at about 40 mA even if VOUT and VSS pins are shortcircuited.
The short-circuit protection can not at the same time be a thermal protection. Attention should be paid to the
Input voltage and the load current under the actual condition so as not to exceed the power dissipation of the
package including the case for short-circuit.
When the output current is large and the difference between input and output voltage is large even if not
shorted, the short-circuit protection may work and the output current is suppressed to the specified value.
Products without short-circuit protection can provide comparatively large current by removing a short-circuit
protection.
For details, refer to (3) MAXIMUM OUTPUT CURRENT versus INPUT VOLTAGE curve.
The S-817B series can provide comparatively large current by removing a short circuit protection.
„ Selection of Output Capacitor (CL)
To stabilize operation against variation in output load, a capacitor (CL) must be mounted between VOUT and
VSS in the S-817 series because the phase is compensated with the help of the internal phase compensation
circuit and the ESR of the output capacitor.
When selecting a ceramic or an OS capacitor, capacitance should be 0.1 µF or more, and
when selecting a tantalum or an aluminum electrolytic capacitor, capacitance should be 0.1 µF or more and
ESR 30 Ω or less.
When an aluminum electrolytic capacitor is used attention should be especially paid to since the ESR of the
aluminum electrolytic capacitor increases at low temperature and possibility of oscillation becomes large.
Sufficient evaluation including temperature characteristics is indispensable.
Overshoot and undershoot characteristics differ depending upon the type of the output capacitor.
Refer to CL dependencies in “TRANSIENT RESPONSE CHARACTERISTICS”.
Seiko Instruments Inc.
9
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
Rev.2.3
„Applied Circuits
1. Output Current Boosting Circuit
As shown in Figure 10, the output current
can be boosted by externally attaching a
PNP transistor.
The base current of the
PNP transistor is controlled so that output
voltage VOUT goes the voltage specified in
the S-817 when base-emitter voltage VBE
necessary to turn on the PNP transistor is
obtained between input voltage VIN and S817 power source pin VIN.
Tr1
VIN
R1
VOUT
S-817
Series
VIN
R2
VSS
CIN
VOUT
CL
GND
Figure 10 Output Current Boosting
The following are tips and hints for selecting
and ensuring optimum use of external parts:
•
PNP transistor Tr1:
1. Set hFE to approx. 100 to 400.
2. Confirm that no problem occurs due to power dissipation under normal operation conditions.
•
Resistor R1:
Generally set R1 to 1 kΩ ÷ VOUT (S) (the voltage specified in the S-817 Series) or more.
Output capacitor CL:
Output capacitor CL is effective in minimizing output fluctuation at powering on or due to power or load
fluctuation, but oscillation might occur. Always connect resistor R2 in series to output capacitor CL.
•
Resistor R2: Set R2 to 2 Ω x VOUT(S) or more.
•
DO NOT attach a capacitor between the S-817 power source VIN and GND pins or between base and
emitter of the PNP transistor to avoid oscillation.
•
To improve transient response characteristics of the output current boosting circuit shown in Figure 10,
check that no problem occurs due to output fluctuation at powering on or due to power or load fluctuation
under normal operating conditions.
•
Pay attention to the short current limit circuit incorporated into the S-817 Series because it does not
function as a shortcircuiting protection circuit for this boosting circuit.
The following graphs show the examples of input-output voltage characteristics (Ta = 25°C, typ.) in the output
current boosting circuit:
(1) S-817A11ANB/S-817B11AMC
(2) S-817A50ANB/S-817B50AMC
Tr1: 2SA1213Y, R1: 1kΩ, CL: 10µF, R2: 2Ω
Tr1: 2SA1213Y, R1: 200Ω, CL: 10µF, R2: 10Ω
5.20
1.20
100mA
1.10
5.10
V OUT (V)
0.90
V OUT (V)
50mA
1.00
10mA
1mA
800mA
600mA
0.80
100mA
50mA
10mA
4.90
800mA
600mA
400mA
5mA
4.80
400mA
0.70
5.00
4.70
200mA
200mA
0.60
1.4
4.60
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
5.2
5.4
5.5
5.6
V IN (V)
VIN (V)
10
5.3
Seiko Instruments Inc.
5.7
5.8
5.9
Rev.2.3
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
2. Constant Current Circuit
The S-817 Series can be configured as a
constant current circuit. See Figure 11.
Constant amperage IO is calculated using
the following equation
(VOUT (E): Effective output voltage):
IO = (VOUT (E) ÷ RL) +ISS.
Please note that it is impossible to set
constant amperage IO in case of circuit
(1) of Figure 11 to the value exceeding
the drive ability of the S-817.
However, circuit (2) of Figure 11 is an
example to set constant amperage to the
value exceeding the drive ability of the S817. Circuit (2) incorporates a current
boosting circuit. The maximum input
voltage of the constant current circuit is
the value obtained by adding 10 V to
voltage VO of the device.
It is not
recommended to attach a capacitor
between the S-817 power source VIN and
VSS pins or between output VOUT and
VSS pins because rush current flows at
powering on.
An example of input
voltage between VIN and VO in circuit (2)
vs. IO current characteristics
(Ta = 25 °C, typ.) is illustrated in Figure 12.
(1) Constant Current Circuit
VIN
VIN
VOUT
S-817
Series
RL
VSS
V0
IO
CIN
VO
GND
Device
(2) Constant Current Boosting Circuit
Tr1
VIN
VOUT
S-817
R1
Series
RL
VSS
CIN
VO
GND
Io
V0
Device
Figure 11 Constant Current Circuit
S-817A11ANB, S-817B11AMC;
VIN-VO pins, Input voltage-IO current
3. Output Voltage Adjustment Circuit
Tr: 2SK1213Y, R1: 1kΩ,VO=2V
The output voltage can be boosted by using the
0.60
configuration shown in Figure 13. The output Voltage
RL=1.83Ω
0.50
VO can be calculated using the following equation
2.2Ω
(VOUT (E):Effective output voltage):
0.40
2.75Ω
VO = VOUT (E) x (R1 + R2) ÷ R1 + R2 x ISS
Io (A)
3.67Ω
0.30
Set R1 and R2 to high values of resistance so as not to
5.5Ω
be affected by current consumption ISS.
0.20
11Ω
Capacitor C1 is effective in minimizing output
0.10
fluctuation at powering on or due to power or load
fluctuation. Determine the optimum value on your
0.00
1.4
1.6
1.8
2
2.2
2.4
actual device.
V
IN -V O
(V)
Figure 12 Input Voltage vs Current Characteristics
VIN VIN
It is not also recommended to attach a
capacitor between the S-817 power
source VIN and VSS pins or between
output VOUT and VSS pins because
CIN
output fluctuation or oscillation at
powering on might occur.
GND
S-817
V0
VOUT
Series
VSS
C1
R1
CL
R2
Figure 13 Voltage Adjustment Circuit
Seiko Instruments Inc.
11
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
Rev.2.3
„ Notice
•
•
•
•
•
•
12
Design wiring patterns for VIN, VOUT and GND pins to hold low impedance.
When mounting an output capacitor, the distance from the capacitor to the VOUT pin and to the VSS pin
should be as short as possible.
Note that output voltage may be increased at low load current of less than 1 µA.
To prevent oscillation, it is recommended to use the external parts under the following conditions.
* Output capacitor (CL): 0.1 µF or more
* Equivalent Series Resistance (ESR): 30 Ω or less
* Input series resistance (RIN): 10 Ω or less
A voltage regulator may oscillate when power source impedance is high and input capacitor is low or not
connected.
The application condition for input voltage and load current should not exceed the package power
dissipation.
SII claims no responsibility for any and all disputes arising out of or in connection with any infringement of
the products including this IC upon patents owned by a third party.
Seiko Instruments Inc.
Rev.2.3
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
Be sure that input voltage and load current do not
exceed the power dissipation level of the package.
„ Typical Operating Chracteristics
(1) OUTPUT VOLTAGE versus OUTPUT CURRENT (When load current increases)
S-817A20A(Ta=25°C)
S-817A11A(Ta=25°C)
1.2
2.5
0.9
VIN=
1.5V
0.6
V OUT
(V) 0.3
8V
2.0
3.1V
1.5
4.1V
2.1V
10V
3V
V OUT
(V) 1.0
4V
0.5
VIN=
2.4V
0.0
0.0
0
20
40
60
0
80
30
60
90
120
IOUT (mA)
IOUT (mA)
S-817A30A(Ta=25°C)
S-817A50A(Ta=25°C)
3.0
5.0
2.5
5V
6V
1.0
6V
8V
V OUT 3.0
(V) 2.0
10V
VIN=
3.4V
0.5
10V
4.0
4V
2.0
V OUT
1.5
(V)
VIN=5.4V
7V
1.0
0.0
0.0
0
30
60
90
120
150
0
40
IOUT(mA)
80
120
160
200
IOUT (mA)
S-817B20A(Ta=25°C)
S-817B11A(Ta=25°C)
2.5
1.2
8V
0.9
1.5
3.1V
VOUT
(V)
2.1V
0.3
10V
VIN=2.4V
2.0
4.1V
VOUT
(V) 0.6
VIN=
1.5V
5V
1.0
3V
4V
0.5
0.0
0.0
0
50
100
150
200
250
0
50
100
IOUT (mA)
150
200
250
300
IOUT (mA)
S-817B30A(Ta=25°C)
S-817B50A(Ta=25°C)
3.5
5.0
3.0
10V
4.0
4V
2.5
VOUT
(V)
5V
10V
2.0
1.5
5V
1.0
VIN=
3.4V
0.5
7V
8V
3.0
VOUT
(V) 2.0
6V
6V
VIN=5.4V
1.0
0.0
0.0
0
50
100
150
200
250
300
0
IOUT (mA)
50
100
150
200
250
300
IOUT (mA)
Seiko Instruments Inc.
13
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
Rev.2.3
(2) OUTPUT VOLTAGE versus INPUT VOLTAGE
S-817A11A/S-817B11A(Ta=25°C)
S-817A20A/S-817B20A(Ta=25°C)
2.5
1.5
IOUT =1µA
IOUT =1µA
2.0
1.0
50mA
1.5
V OUT
(V) 0.5
V OUT
(V) 1.0
1mA
10mA
20mA
10mA
0.5
20mA
0.0
1mA
0.0
0
2
4
6
8
10
0
2
4
VIN (V)
6
8
10
VIN (V)
S-817A30A/S-817B30A(Ta=25°C)
S-817A50A/S-817B50A(Ta=25°C)
3.5
5.0
20mA
3.0
2.5
4.0
50mA
10mA
2.0
V OUT
(V) 1.5
V OUT
(V) 2.0
1mA
1.0
0.5
20mA
1mA
1.0
IOUT =1µA
0.0
IOUT =1µA
0.0
0
2
4
6
8
10
0
VIN (V)
14
50mA
10mA
3.0
2
4
6
VIN (V)
Seiko Instruments Inc.
8
10
Rev.2.3
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
Be sure that input voltage and load current do not
exceed the power dissipation level of the package.
(3) MAXIMUM OUTPUT CURRENT versus INPUT VOLTAGE
S-817A11A
S-817A20A
100
120
25°C
Ta=-40°C
80
Ta=-40°C
100
80
60
I OUT
max.(mA) 40
I OUT
max.(mA) 60
85°C
25°C
40
20
20
0
0
0
2
4
6
8
85°C
10
1
3
5
VIN (V)
S-817A30A
9
S-817A50A
250
180
25°C
150
I OUT
90
max.(mA)
60
30
50
0
0
4
6
Ta=-40°C
I OUT 150
max.(mA)100
85°C
2
25°C
200
Ta=-40°C
120
8
85°C
10
4
6
8
VIN (V)
10
VIN (V)
S-817B20A
S-817B11A
300
300
250
IOUT
7
VIN (V)
250
Ta=-40°C
200
Ta=-40°C
200
25°C
25°C
IOUT 150
max.(mA)
150
max.(mA)
100
100
85°C
50
85°C
50
0
0
0
2
4
6
8
0
10
2
4
V). (V)
6
8
10
V). (V)
S-817B30A
S-817B50A
300
300
250
250
Ta=-40°C
200
IOUT
25°C
IOUT
150
max.(mA)
Ta=-40°C
25°C
200
150
max.(mA)
85°C
100
100
85°C
50
50
0
0
2
4
6
8
10
4
V). (V)
6
8
10
V). (V)
Seiko Instruments Inc.
15
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
Rev.2.3
(4) DROPOUT VOLTAGE versus OUTPUT CURRENT
S-817A11A/S-817B11A
S-817A20A/S-817B20A
2000
2000
25°C
25°C
1500
1500
85°C
85°C
Vdrop
1000
(mV)
Vdrop
1000
(mV)
500
500
Ta=-40°C
Ta=-40°C
0
0
0
5
10
15
20
0
10
20
IOUT (mA)
30
40
IOUT (mA)
S-817A30A/S-817B30A
S-817A50A/S-817B50A
1600
1000
85°C
1200
Vdrop
(mV)
85°C
800
25°C
Vdrop
(mV)
800
25°C
600
400
400
200
Ta=-40°C
0
Ta=-40°C
0
0
10
20
30
40
50
0
10
20
(5) OUTPUT VOLTAGE versus AMBIENT TEMPERATURE
VIN =3.1V,IOUT =10mA
S-817A11A/S-817B11A
S-817A20A/S-817B20A
1.12
2.04
1.11
2.02
1.10
(V)
1.09
VIN =4V,IOUT =10mA
2.00
1.96
-50
0
50
100
-50
0
50
Ta(°C)
100
Ta(°C)
VIN =5V,IOUT =10mA
S-817A30A/S-817B30A
S-817A50A/S-817B50A
3.06
5.10
3.03
5.05
VIN =7V,IOUT =10mA
VOUT
VOUT
3.00
(V)
2.97
5.00
4.95
2.94
4.90
-50
0
50
100
Ta(°C)
16
50
1.98
1.08
(V)
40
VOUT
VOUT
(V)
30
I OUT (mA)
IOUT (mA)
-50
0
50
Ta(°C)
Seiko Instruments Inc.
100
Rev.2.3
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
(6) LINE REGULATION 1 versus
AMBIENT TEMPERATURE
S-817A11/20/30/50A
S-817B11/20/30/50A VIN=VOUT (S)+1V↔10V,I OUT=1mA
(7) LINE REGULATION 2 versus
AMBIENT TEMPERATURE
S-817A11/20/30/50A
S-817B11/20/30/50A VIN =VOUT (S)+1V↔10V,I OUT=1µA
30
30
25
25
20
20
∆ VOUT1 15
(mV)
VOUT =1.1V
10
2V
3V
∆ VOUT2 15
(mV) 10
5V
5
5
0
0
-50
-25
0
25
50
Ta(°C)
75
100
2V
VOUT=1.1V
-50
-25
0
3V
25
Ta(°C)
5V
50
75
100
(8) LOAD REGULATION versus AMBIENT TEMPERATURE
S-817A11/20/30/50A
S-817B11/20/30/50A VIN=VOUT(S)+2V,IOUT=1µA ↔I OUT
80
70
60
50
∆ VOUT3
(mV)
VOUT=1.1V(I OUT=10mA)
2V(I OUT =20mA)
3V(I OUT =30mA)
5V(I OUT=50mA)
40
30
20
10
0
-50
-25
0
25
50
75
100
Ta(°C)
(9) CURRENT CONSUMPTION versus INPUT VOLTAGE
S-817A11A/S-817B11A
S-817A20A/S-817B20A
1.6
1.6
85°C
85°C
1.2
1.2
25°C
ISS1
(µ A) 0.8
25°C
ISS1
(µ A) 0.8
Ta=-40°C
0.4
Ta=-40°C
0.4
0
0
2
4
6
8
10
0
0
VIN (V)
2
4
6
8
10
VIN (V)
S-817A30A/S-817B30A
S-817A50A/S-817B50A
1.6
1.6
85°C
85°C
1.2
1.2
25°C
ISS1
(µ A) 0.8
ISS1
(µ A) 0.8
Ta=-40°C
0.4
25°C
Ta=-40°C
0.4
0
0
0
2
4
6
8
10
0
VIN (V)
2
4
6
8
10
VIN (V)
Seiko Instruments Inc.
17
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
Rev.2.3
REFERENCE DATA
„ TRANSIENT RESPONSE CHARACTERISTICS (Typical data: Ta=25°C)
INPUT VOLTAGE
or
LOAD CURRENT
Overshoot
OUTPUT VOLTAGE
Undershoot
(1) At powering on S-817A30A (when using a ceramic capacitor, CL=1µF)
VIN =0→10V,I OUT =10mA, CL=1µF
10V
0V
3V
V OUT
(0.5V/div)
TIME(100 µsec/div)
Load dependencies of overshoot at powering on
CL dependencies of overshoot at powering on
VIN =0→V OUT (S)+2V,CL=1 µ F
0.05
VIN =0→VOUT (S)+2V,I OUT =10mA
0.05
0.04
0.04
5V
Over 0.03
Shoot
(V) 0.02
2V
0.03
3V
Over
Shoot 0.02
(V)
2V
3V
5V
0.01
0.01
0
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
0
0.01
0.1
IOUT (A)
1
10
CL(µF)
VDD dependencies of overshoot at powering on
“Ta” dependencies of overshoot at powering on
VIN =0→VOUT(S)+2V
IOUT =10mA,CL=1µF
VIN =0→VDDIOUT =10mA,CL=1µF
0.05
0.05
0.04
0.04
5V
Over 0.03
Shoot
(V) 0.02
Over 0.03
Shoot
(V) 0.02
3V
2V
0.01
0.01
0
0
0
2
4
6
8
10
3V
2V
-50
0
50
Ta(°C)
VDD(V)
18
5V
Seiko Instruments Inc.
100
Rev.2.3
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
(2) At powering on S-817B30A (when using a ceramic capacitor, CL=1µF)
VIN=0→10V, IOUT=10mA, CL=1µF
10V
0V
3V
VOUT
(0.5V/div)
TIME(100 µsec/div)
Load dependencies of overshoot at powering on
CL dependencies of overshoot at powering on
VIN=0→VOUT(S)+2V,CL=1µF
0.05
VIN=0→VOUT(S)+2V,IOUT=10mA
0.05
0.04
0.04
5V
Over 0.03
Shoot
(V) 0.02
Over 0.03
Shoot
(V) 0.02
2V
3V
0.01
3V
2V
5V
0.01
0
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
0
0.01
0.1
1
10
CL(µF)
IOUT(A)
VDD dependencies of overshoot at powering on
“Ta” dependencies of overshoot at powering on
VIN=0→ VDD, IOUT=10mA,CL=1µF
VIN=0→VOUT(S)+2V,IOUT=10mA,CL=1µF
0.05
0.05
0.04
0.04
Over0.03
Shoot
(V) 0.02
Over 0.03
Shoot
0.02
(V)
5V
3V
2V
0.01
2V
3V
5V
0.01
0
0
0
2
4
6
8
10
-50
0
50
100
Ta(°C)
VDD(V)
Seiko Instruments Inc.
19
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
Rev.2.3
(3) Power fluctuation S-817A30A/S-817B30A (when using a ceramic capacitor, CL=1µF)
VIN=4→10V,IOUT=1mA, CL=1µF
10V
4V
V OUT
(0.2V/div)
3V
TIME(200 µsec/div)
Load dependencies of overshoot at power fluctuation
CL dependencies of overshoot at power fluctuation
VIN=VOUT(S)+1V→ VOUT(S)+2V,CL=1µF
VIN=VOUT(S)+1V→VOUT(S)+2V,IOUT=1mA
0.5
1
Over 0.4
Shoot
(V) 0.3
0.8
2V
5V
3V
Over 0.6
Shoot
(V) 0.4
3V
0.2
2V
5V
0.2
0.1
0
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
0
0.01
0.1
IOUT (A)
1
10
CL(µF)
VDD dependencies of overshoot at power fluctuation
"Ta” dependencies of overshoot at power fluctuation
VIN=VOUT(S)+1V→VOUT(S)+2V
IOUT=1mA,CL=1µF
VIN=VOUT(S)+1V→VDD, IOUT=1mA,CL=1µF
1
1
0.8
0.8
5V
Over 0.6
Shoot
(V) 0.4
Over 0.6
Shoot
(V) 0.4
3V
2V
0.2
5V
3V
2V
0.2
0
0
0
2
4
6
8
10
-50
VDD(V)
20
0
50
Ta(°C)
Seiko Instruments Inc.
100
Rev.2.3
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
VIN =10→4V,IOUT =1mA, CL=1µF
10V
4V
VOUT 3V
(0.02V/div)
TIME(50 µsec/div)
Load dependencies of undershoot at power fluctuation
CL dependencies of undershoot at power fluctuation
VIN =VOUT(S)+2V→VOUT (S)+1V,CL=1µF
0.5
VIN =VOUT(S)+2V→VOUT(S)+1V,IOUT =1mA
1
0.4
Under
Shoot 0.3
(V)
3V
5V
Under 0.6
3V
Shoot
(V) 0.4
2V
0.2
2V
0.8
5V
0.2
0.1
0
1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01
0
0.01
0.1
1
IOUT (A)
10
CL(µF)
VDD dependencies of undershoot at power fluctuation "Ta” dependencies of undershoot at power fluctuation
VIN =VOUT (S)+2V→VOUT(S)+1V
I OUT=1mA,CL=1µF
VIN =VDD→VOUT(S)+1V, IOUT=1mA,CL=1 µ F
0.1
0.1
0.08
Under 0.06
Shoot
(V) 0.04
3V
2V
0.02
0
0
2
4
6
8
3V
Under 0.06
Shoot
0.04
(V)
0.02
0
2V
0.08
5V
10
5V
-50
0
50
100
Ta(°C)
VDD(V)
Seiko Instruments Inc.
21
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
Rev.2.3
(4) Load fluctuation S-817A30A/S-817B30A (when using a ceramic capacitor, CL=1µF)
IOUT =30mA→10µA, V IN =5V, CL=1µF
30mA
10µA
V OUT
(0.2V/div)
3V
TIME(20msec/div)
Load current dependencies of overshoot at load fluctuation
CL dependencies of overshoot at load fluctuation
VIN =VOUT(S)+2V,I OUT=IL→10µA,CL=1µ F
2
VIN =VOUT (S)+2V,I OUT =10mA →10µA
1
5V
Over
Shoot 1
(V)
2V
0.8
1.5
2V
3V
Over 0.6
Shoot
(V) 0.4
3V
0.5
5V
0.2
0
1.E-05
0
1.E-04
1.E-03
1.E-02
1.E-01 1.E+00
0.01
0.1
10
CL(µF)
IOUT (A)
VDD dependencies of overshoot at load fluctuation
"Ta” dependencies of overshoot at load fluctuation
VIN =VDD, I OUT=10mA→10 µA,CL=1µ F
VIN =VOUT (S)+2V
I OUT =10mA → 10µ A,CL=1µF
0.2
0.2
5V
2V
0.15
5V
0.15
Over
Shoot 0.1
(V)
Over
Shoot 0.1
(V)
3V
2V
0.05
3V
0.05
0
0
0
2
4
6
8
10
-50
0
50
Ta(°C)
VDD(V)
22
1
Seiko Instruments Inc.
100
Rev.2.3
ULTRA COMPACT CMOS VOLTAGE REGULATOR
S-817 Series
IOUT =10µA→30mA, VIN =5V, CL=1µF
30mA
10µA
3V
V OUT
(0.2V/div)
TIME(50µsec/div)
Load current dependencies of undershoot at load fluctuation
CL dependencies of undershoot at load fluctuation
VIN =VOUT (S)+2V,IOUT=10µA→ IL,CL=1 µA
2
VIN =VOUT (S)+2V,IOUT =10µ A→10mA
1.4
3V
1.2
5V
1.5
5V
1
Under
Shoot 1
(V)
Under
Shoot 0.8
(V) 0.6
3V
0.5
0.4
2V
2V
0.2
0
1.E-05 1.E-04 1.E-03
0
1.E-02 1.E-01 1.E+00
0.01
0.1
IOUT(A)
1
10
CL(µF)
VDD dependencies of undershoot at load fluctuation
"Ta” dependencies of undershoot at load fluctuation
VIN =VDDIOUT =10µA →10mA,CL=1µF
VIN =VOUT (S)+2V
IOUT=10µA→10mA,CL=1µF
0.5
0.5
0.4
0.4
5V
3V
Under 0.3
Shoot
(V) 0.2
3V
Under
0.3
Shoot
(V) 0.2
2V
0.1
5V
2V
0.1
0
0
0
2
4
6
8
10
-50
0
50
100
Ta(°C)
VDD(V)
Seiko Instruments Inc.
23
n SOT-23-5
MP005-A
l Dimensions
010907
Unit : mm
2.9±0.2
1.9±0.2
4
5
1
2
+0.1
0.16 -0.06
3
0.95±0.1
0.4±0.1
No. MP005-A-P-SD-1.1
l Tape Specifications
l Reel Specifications
4.0±0.1(10-pitches total: 40.0±0.2)
+0.1
2.0±0.05
ø1.5-0
3000 pcs./reel
0.27±0.05
12.5max.
3°max.
ø1.0 +0.1
-0
4.0±0.1
1.4±0.2
ø60
+0
ø180
-3
+1
-0
3.25±0.15
T2
9.0±0.3
Winding core
3 21
ø13±0.2
4 5
2±0.2
Feed direction
No. : MP005-A-C-SD-1.0
(60°)
(60°)
No. MP005-A-R-SD-1 0
NP004-A
n SC-82AB
Rev.1.0
020109
Unit:mm
lDimensions
2.0±0.2
1.3±0.2
4
3
0.05
1
0.3
+0.1
-0.05
0.16
2
0.4
+0.1
-0.06
+0.1
-0.05
No. NP004-A-P-SD-1.0
lReel Specifications
lTaping Specifications
1.5 +0.1
-0.05
4.0±0.1
2.0±0.05
4.0±0.1
0.2±0.05
1.1±0.1
3000 pcs / reel
12.5max.
1.05±0.1
(0.7)
2.2±0.2
T2
2
1
3
4
9.0±0.3
Winding core
Feed direction
ø13±0.2
(60°) (60°)
No. NP004-A-C-SD-1.0
No. NP004-A-R-SD-1.0
UP003-A
n SOT-89-3
Rev.1.0
020109
Unit:mm
lDimensions
4.5±0.1
1.6±0.2
1
2
1.5±0.1
3
1.5±0.11.5±0.1
0.4±0.1
0.4±0.05
0.4±0.1
45
0.45±0.1
No. UP003-A-P-SD-1.0
lReel Specifications
lTaping Specifications
1 reel holds 1000 ICs.
4.0±0.1(10 pitches:40.0±0.2)
+0.1
ø1.5 -0
16.5max.
2.0±0.05
ø1.5 +0.1
-0
5
8.0±0.1
max.
0.3±0.05
2.0±0.1
4.75±0.1
T2
Feed direction
No. UP003-A-C-SD-1.0
13.0±0.3
Winding core
(60°)
(60°)
No. UP003-A-R-SD-1.0
Y003-A
n TO-92
011220
Unit:mm
(2) Leadforming for tape (reel/zigzag)
lDimensions
(1) Bulk
4.2max.
5.2max.
4.2max.
5.2max
.
Marked side
Rev.1.0
Marked side
5.0±0.2
5.0±0.2
0.6max.
0.6max.
0.8max.
2.3max.
0.8max.
2.3max.
10.0min.
12.7min.
0.45±0.1
0.45±0.1
0.45±0.1
0.45±0.1
+0.4
2.5 -0.1
1.27
No. YF003-A-P-SD-1.0
No. YS003-B-P-SD-1.0
1.27
lReel
lZigzag
1 reel holds 2000 ICs.
[Type Z]
Side spacer
165
45±0.5
320
Spacer
60
2±0.5
320
5±0.5
43±0.5
53±0.5
ø358±2
lTape
12.7±1.0
1.0max.
40
No. YF003-A-R-SD-2.0
1.0max.
Marked side
Side Spacer placed in front side
Space more than 4 strokes
24.7max.
0.5max
2.5min. .
16.0±0.5
19.0±0.5
#
1 pin
1.45max.
9.0±0.5
6.0±0.5
+1.0
18.0 -0.5
ø4.0±0.2
6.35±0.4
0.7±0.2
262
12.7±0.3 (20-pitch total:254.0±1.0)
330
Feed direction
[Type F]
[Type T]
Marked side
No. YZ003-C-Z-SD-2.0
1 box holds 2500 ICs.
Feed direction
Feed direction
No. YF003-A-C-SD-1.0
Feed direction
No. YZ003-C-C-SD-1.0
47
•
•
•
•
•
•
The information described herein is subject to change without notice.
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein
whose related industrial properties, patents, or other rights belong to third parties. The application circuit
examples explain typical applications of the products, and do not guarantee the success of any specific
mass-production design.
When the products described herein are regulated products subject to the Wassenaar Arrangement or other
agreements, they may not be exported without authorization from the appropriate governmental authority.
Use of the information described herein for other purposes and/or reproduction or copying without the
express permission of Seiko Instruments Inc. is strictly prohibited.
The products described herein cannot be used as part of any device or equipment affecting the human
body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus
installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the
failure or malfunction of semiconductor products may occur. The user of these products should therefore
give thorough consideration to safety design, including redundancy, fire-prevention measures, and
malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.