SII S-812C47AMC-C3B-T2

Rev.1.0
HIGH OPERATING VOLTAGE
CMOS VOLTAGE REGULATOR
S-812C Series
The S-812C series is a family of high-voltage positive
regulators developed using CMOS technology.
The
maximum operating voltage of 16V makes the S-812C
series best in high-voltage applications. Not only current
consumption is small but also power-off function is
included, the regulator is also suitable in constructing lowpower portable devices. Combination of power-off function
and short-current protection can be selected.
„ Features
„ Applications
• Low current consumption
• Power source for battery-powered devices
Operating current: Typ. 1.0 µA, Max. 1.8 µA (3.0 V)
• Power source for personal communication
• Output voltage: 2.0 to 6.0 V (0.1 V step)
devices
• Output voltage accuracy: ±2.0%
• Power source for home electric/electronic
• Output current:
appliances
Note1
50mA capable (3.0 V output product, VIN=5 V)
Note1
75mA capable (5.0 V output product, VIN=7 V)
• Dropout voltage
Typ. 120 mV (VOUT = 5.0 V, IOUT = 10 mA)
• Power-off function: Polarity for power-off switch or removal of the power-off function can be selected.
• Short-circuit protection: Product with/without short-circuit protection is available.
Short-circuited current : 40 mA typ. for products with protection
• Packages: SOT-23-5 (Package drawing code : MP005-A)
SOT-89-5 (Package drawing code : UP003-A)
SOT-89-3 (Package drawing code : UP005-A)
TO-92
(Package drawing code : YF003-A)
Note1 Power dissipation of the package should be taken into account when the output current is large.
„ Block Diagram
(1) Product without power-off function
(2) Product with power-off function
(1)
VIN
VOUT
VIN
VOUT
(2)
(2)
Short-circuit
protection
Short-circuit
protection
ON/OFF
Reference
Reference
voltage
voltage
VSS
(1)
(1) : Parasitic diode
(2) : In case of a product with short-circuit protection
VSS
(1) : Parasitic diode
(2) : In case of a product with short-circuit protection
Figure 1 Block Diagram
Seiko Instruments Inc.
1
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.1.0
„ Absolute Maximum Ratings
Table 1
Item
Input voltage
Output voltage
Power dissipation
Operating temperature range
Storage temperature range
(Ta=25°C unless otherwise specified)
Symbol
VIN
VON/OFF
VOUT
PD
Topr
Tstg
Absolute Maximum Rating
18
VSS-0.3 to 18
VSS-0.3 to VIN+0.3
250(SOT-23-5),500 (SOT-89-5)
500(SOT-89-3),400(TO-92)
-40 to +85
-40 to +125
Units
V
V
V
mW
°C
°C
Note: Although the IC contains protection circuit against static electricity, excessive static electricity
or voltage which exceeds the limit of the protection circuit should not be applied to.
„ Selection Guide
Product Name
S-812C xx Axx - xxx - T2
IC orientation for taping specifications
Product code
Package code
MC: SOT-23-5
UA: SOT-89-3
Y : TO-92
UC: SOT-89-5
WI: WAFER
Function
A: No short-circuit protection and no power-off function
B: Short-circuit protection and power-off function
ON/OFF pin; Positive logic
Output voltage x 10
Table 2.1 Selection Guide
S-812CxxB series (Short-circuit protection and power-off fuction)
Output Voltage
SOT-23-5
SOT-89-5
−
−
2.0 V ± 2.0%
−
3.0 V ± 2.0%
S-812C30BMC-C4K-T2
−
−
3.3 V ± 2.0%
−
−
3.5 V ± 2.0%
−
−
3.8 V ± 2.0%
−
−
4.0 V ± 2.0%
−
5.0 V ± 2.0%
S-812C50BMC-C5E-T2
Please contact our sales office for products with an output voltage not listed above.
2
Seiko Instruments Inc.
Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Table 2.2
S-812CxxA series (No short-circuit protection and no power-off function)
Output voltage
SOT-23-5
SOT-89-3
TO-92*
SOT-89-5
2.0 V± 2.0%
S-812C20AMC-C2A-T2
S-812C20AUA-C2A-T2
S-812C20AY-X

2.1 V± 2.0%
S-812C21AMC-C2B-T2
S-812C21AUA-C2B-T2
S-812C21AY-X

2.2 V± 2.0%
S-812C22AMC-C2C-T2
S-812C22AUA-C2C-T2
S-812C22AY-X

2.3 V± 2.0%
S-812C23AMC-C2D-T2
S-812C23AUA-C2D-T2
S-812C23AY-X

2.4 V± 2.0%
S-812C24AMC-C2E-T2
S-812C24AUA-C2E-T2
S-812C24AY-X

2.5 V± 2.0%
S-812C25AMC-C2F-T2
S-812C25AUA-C2F-T2
S-812C25AY-X

2.6 V± 2.0%
S-812C26AMC-C2G-T2
S-812C26AUA-C2G-T2
S-812C26AY-X

2.7 V± 2.0%
S-812C27AMC-C2H-T2
S-812C27AUA-C2H-T2
S-812C27AY-X

2.8 V± 2.0%
S-812C28AMC-C2I-T2
S-812C28AUA-C2I-T2
S-812C28AY-X

2.9 V± 2.0%
S-812C29AMC-C2J-T2
S-812C29AUA-C2J-T2
S-812C29AY-X

3.0 V± 2.0%
S-812C30AMC-C2K-T2
S-812C30UA-C2K-T2
S-812C30AY-X

3.1 V± 2.0%
S-812C31AMC-C2L-T2
S-812C31AUA-C2L-T2
S-812C31AY-X

3.2 V± 2.0%
S-812C32AMC-C2M-T2
S-812C32AUA-C2M-T2
S-812C32AY-X

3.3 V± 2.0%
S-812C33AMC-C2N-T2
S-812C33AUA-C2N-T2
S-812C33AY-X

3.4 V± 2.0%
S-812C34AMC-C2O-T2
S-812C34AUA-C2O-T2
S-812C34AY-X

3.5 V± 2.0%
S-812C35AMC-C2P-T2
S-812C35AUA-C2P-T2
S-812C35AY-X

3.6 V± 2.0%
S-812C36AMC-C2Q-T2
S-812C36AUA-C2Q-T2
S-812C36AY-X

3.7 V± 2.0%
S-812C37AMC-C2R-T2
S-812C37AUA-C2R-T2
S-812C37AY-X

3.8 V± 2.0%
S-812C38AMC-C2S-T2
S-812C38AUA-C2S-T2
S-812C38AY-X

3.9 V± 2.0%
S-812C39AMC-C2T-T2
S-812C39AUA-C2T-T2
S-812C39AY-X

4.0 V± 2.0%
S-812C40AMC-C2U-T2
S-812C40AUA-C2U-T2
S-812C40AY-X

4.1 V± 2.0%
S-812C41AMC-C2V-T2
S-812C41AUA-C2V-T2
S-812C41AY-X

4.2 V± 2.0%
S-812C42AMC-C2W-T2
S-812C42AUA-C2W-T2
S-812C42AY-X

4.3 V± 2.0%
S-812C43AMC-C2X-T2
S-812C43AUA-C2X-T2
S-812C43AY-X

4.4 V± 2.0%
S-812C44AMC-C2Y-T2
S-812C44AUA-C2Y-T2
S-812C44AY-X

4.5 V± 2.0%
S-812C45AMC-C2Z-T2
S-812C45AUA-C2Z-T2
S-812C45AY-X

4.6 V± 2.0%
S-812C46AMC-C3A-T2
S-812C46AUA-C3A-T2
S-812C46AY-X

4.7 V± 2.0%
S-812C47AMC-C3B-T2
S-812C47AUA-C3B-T2
S-812C47AY-X

4.8 V± 2.0%
S-812C48AMC-C3C-T2
S-812C48AUA-C3C-T2
S-812C48AY-X

4.9 V± 2.0%
S-812C49AMC-C3D-T2
S-812C49AUA-C3D-T2
S-812C49AY-X

5.0 V± 2.0%
S-812C50AMC-C3E-T2
S-812C50AUA-C3E-T2
S-812C50AY-X

5.1 V± 2.0%
S-812C51AMC-C3F-T2
S-812C51AUA-C3F-T2
S-812C51AY-X

5.2 V± 2.0%
S-812C52AMC-C3G-T2
S-812C52AUA-C3G-T2
S-812C52AY-X

5.3 V± 2.0%
S-812C53AMC-C3H-T2
S-812C53AUA-C3H-T2
S-812C53AY-X

5.4 V± 2.0%
S-812C54AMC-C3I-T2
S-812C54AUA-C3I-T2
S-812C54AY-X

5.5 V± 2.0%
S-812C55AMC-C3J-T2
S-812C55AUA-C3J-T2
S-812C55AY-X

5.6 V± 2.0%
S-812C56AMC-C3K-T2
S-812C56AUA-C3K-T2
S-812C56AY-X

5.7 V± 2.0%

S-812C57AUA-C3L-T2
S-812C57AY-X

5.8 V± 2.0%

S-812C58AUA-C3M-T2
S-812C58AY-X

5.9 V± 2.0%

S-812C59AUA-C3N-T2
S-812C59AY-X



6.0 V± 2.0%
S-812C60AUA-C3O-T2
S-812C60AY-X
*: X changes according to the packing form in TO-92. Standard forms are B; Bulk and Z; Zigzag (tape and ammo).
If tape and reel (T) is needed, please contact SII sales office.
Seiko Instruments Inc.
3
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.1.0
„ Pin Configuration
For details of package, refer to the attached drawing.
Table 3 Pin Assignment
SOT-23-5
Top view
5
4
Pin No.
Symbol
1
VSS
GND pin
2
VIN
Input voltage pin
3
VOUT
4
(1)
N.C.
5
2
(1)
3
Figure 2
Output voltage pin

ON/OFF ON/OFF pin
N.C.
1
Description

(1)
N.C. pin is electrically open. N.C. pin can be connected to
VIN or VSS. The ON/OFF pin becomes N.C. pin, when the
power-off function is removed.
Table 4 Pin Assignment
SOT-89-5
Top view
4
5
Pin No.
Symbol
Description
1
VOUT
Output voltage pin
2
VIN
Input voltage pin
3
VSS
GND pin
4
ON/OFF. ON/OFF pin
5
1
2
(1)
3
Figure 3
N.C.
(1)

N.C.
(1)

N.C. pin is electrically open. N.C. pin can be connected to
VIN or VSS. The ON/OFF pin becomes N.C. pin, when the
power-off function is removed.
Table 5 Pin Assignment
SOT-89-3
Top view
1
2
Pin No.
Symbol
Description
1
VSS
GND pin
2
VIN
Input voltage pin
3
VOUT
Output voltage pin
3
Figure 4
Table 6 Pin Assignment
TO-92
Bottom view
1
2
Pin No.
Symbol
1
VSS
GND pin
2
VIN
Input voltage pin
3
VOUT
3
Figure 5
4
Seiko Instruments Inc.
Description
Output voltage pin
Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
„ Electrical Characteristics
1. S-812C Series
Table 7 Electrical Characteristics
Parameter
Output voltage
Symbol
1)
VOUT(E)
Conditions
Min.
VIN=VOUT(S)+2V, IOUT=10mA
VOUT(S)+2V2.0V ≤ VOUT(S) ≤ 2.9V
≤ VIN≤16V 3.0V ≤ VOUT(S) ≤ 3.9V
4.0V ≤ VOUT(S) ≤ 4.9V
5.0V ≤ VOUT(S) ≤ 5.9V
3)
Dropout voltage
Vdrop
IOUT =
2.0V ≤ VOUT(S) ≤ 2.4V
10mA
2.5V ≤ VOUT(S) ≤ 2.9V
3.0V ≤ VOUT(S) ≤ 3.4V
3.5V ≤ VOUT(S) ≤ 3.9V
4.0V ≤ VOUT(S) ≤ 4.4V
4.5V ≤ VOUT(S) ≤ 4.9V
5.0V ≤ VOUT(S) ≤ 5.4V
5.5V ≤ VOUT(S) ≤ 6.0V
∆ VOUT11 VOUT(S) + 1 V ≤ VIN ≤ 16 V,
Line regulation 1
IOUT = 1mA
∆ VOUT21 VOUT(S) + 1 V ≤ VIN ≤ 16 V,
Line regulation 2
IOUT = 1µA
∆ VOUT31 VIN=
2.0V ≤ VOUT(S) ≤ 2.9V,
Load regulation
VOUT(S)+ 2 V 1µA ≤ IOUT ≤ 20mA
3.0V ≤ VOUT(S) ≤ 3.9V,
1µA ≤ IOUT ≤ 30mA
4.0V ≤ VOUT(S) ≤ 4.9V,
1µA ≤ IOUT ≤ 40mA
5.0V ≤ VOUT(S) ≤ 5.9V,
1µA ≤ IOUT ≤ 50mA
∆VOUT 1 VIN = VOUT(S) + 1 V, IOUT = 10mA
Output voltage temperature
∆Ta • VOUT -40°C ≤ Ta ≤ 85°C
4)
coefficient
Current consumption
ISS
VIN =
2.0V ≤ VOUT(S) ≤ 2.7V
VOUT(S)+2V, 2.8V ≤ VOUT(S) ≤ 3.7V
no load
3.8V ≤ VOUT(S) ≤ 5.1V
5.2V ≤ VOUT(S) ≤ 6.0V
Input voltage
VIN
Applied to products with Power-off Function
Current consumption at powerISS2
VIN = VOUT(S) + 2V,
off
VON/OFF = 0V, no load
ON/OFF pin
VSH
VIN = VOUT(S) + 2V, RL = 1kχ,
Input voltage for high level
judged by VOUT output level
ON/OFF pin
VSL
VIN = VOUT(S) + 2V, RL = 1kΩ,
Input voltage for low level
judged by VOUT output level
ON/OFF pin
ISH
VIN=VOUT(S) + 2V,
Input current at high level
VON/OFF = 7V
ON/OFF pin
ISL
VIN=VOUT(S) + 2V,
Input current at low level
VON/OFF = 0V
Applied to products with Short-circuit Protection
Short-circuit current
IOS
VIN = VOUT(S) + 2 V,
VOUT pin = 0 V
Output current
1)
2)
3)
4)
2)
(Ta=25°C unless otherwise specified)
IOUT
Typ.
Max.
VOUT(S)× VOUT(S) VOUT(S)
× 1.02
0.98
−
−
30
−
−
50
−
−
65
−
−
75
0.46
0.95
−
0.32
0.68
−
0.23
0.41
−
0.19
0.35
−
0.16
0.30
−
0.14
0.27
−
0.12
0.25
−
0.11
0.23
−
−
5
20
Test
Units circuits
V
1
mA
mA
mA
mA
V
V
V
V
V
V
V
V
mV
3
3
3
3
1
1
1
1
1
1
1
1
1
−
5
20
mV
1
−
6
30
mV
1
−
10
45
mV
1
−
13
65
mV
1
−
17
80
mV
1
±100
−
1
−
0.9
1.0
1.2
1.5
−
1.6
1.8
2.1
2.5
16
ppm
/°C
µA
µA
µA
µA
V
−
0.1
0.5
µA
2
2.0
−
−
V
4
−
−
0.4
V
4
−
−
0.1
µA
4
−
−
-0.1
µA
4
−
40
−
mA
3
−
2
2
2
2
1
VOUT(S)=Specified output voltage
VOUT(E)=Effective output voltage, i.e., the output voltage when fixing IOUT(=10 mA) and inputting VOUT(S)+2.0 V.
Output current at which output voltage becomes 95% of VOUT(E) after gradually increasing output current.
Vdrop = VIN1-(VOUT(E) × 0.98), where VIN1 is the Input voltage at which output voltage becomes 98% of VOUT(E) after
gradually decreasing input voltage.
Temperature change ratio for the output voltage [mV/°C] is calculated using the following equation.
∆VOUT
∆VOUT
[mV/° C] = VOUT(S)[ V ] × ∆Ta • VOUT [ppm/° C] ÷ 1000
∆Ta
Temperature change ratio for output voltage
Specified output voltage
Output voltage temperature coefficient
Seiko Instruments Inc.
5
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
„ Test Circuits
3.
Rev.1.0
2.
VIN
VOUT
A
A
VOUT
(ON/OFF)*
VSS
V
(ON/OFF)*
VSS
Set power ON
VIN
VIN or GND
3.
4.
VIN
VOUT
VIN
A
V
(ON/OFF)*
VSS
A
VOUT
(ON/OFF)*
VSS
V
RL
Set power ON
Figure 6 Test Circuits
„ Standard Circuit
OUTPUT
INPUT
VIN
VOUT
→ (ON/OFF)
CIN
CL
VSS
One point GND
In addition to a tantalum capacitor, a ceramic
capacitor can be used for CL. See terms below.
CIN is a capacitor used to stabilize input.
GND
Figure 7 Standard Circuit
„ Terms
1. Output capacitors (CL)
Output capacitors are generally used to stabilize regulation operation and to improve transient response
characteristics. But the S-812C series can provide stable operation without output capacitors. Capacitors
are used only to improve transient response characteristics. Output capacitors can hence be removed in
applications in which transient response can be negligible. When an output capacitor is used, a low ESR
(Equivalent Series Resistance) capacitor like ceramic capacitor can also be used.
2. Output voltage (VOUT)
The accuracy of the output voltage is ± 2.0% guaranteed under the specified conditions for input voltage,
which differs depending upon the product items, output current, and temperature.
Note: If the above conditions change, the output voltage value may vary and go out of the accuracy range
of the output voltage. See the electrical characteristics and characteristics data for details.
3. Line regulations 1 and 2 (∆VOUT1, ∆VOUT2)
These parameters indicate the input voltage dependence on the output voltage. That is, the values show
how much the output voltage changes due to a change in the input voltage with the output current remained
unchanged.
4. Load regulation (∆VOUT3)
This parameter indicates the output current dependence on the output voltage. That is, the value shows how
much the output voltage changes due to a change in the output current with the input voltage remained
unchanged.
6
Seiko Instruments Inc.
Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
5. Dropout voltage (Vdrop)
This parameter indicates the difference between the input voltage (VIN1) and the output voltage when output
voltage falls to 98 % of VOUT (E) by gradually decreasing the input voltage (VIN).
Vdrop = VIN1-[VOUT(E) × 0.98]
6. Temperature coefficient of output voltage [∆VOUT/(∆Ta • VOUT)]
The output voltage lies in the shaded area in the whole operating temperature shown in figure 8 when the
temperature coefficient of the output voltage is ±100 ppm/°C.
VOUT
[V]
+0.30mV/°C
VOUT (E) is a measured value of
output voltage at 25°C.
VOUT(E)
-0.30mV/°C
-40
25
Ta [°C]
85
Figure 8 Example for the S-812C30A
Temperature change ratio for output voltage [mV/°C] is calculated by using the following equation.
∆VOUT
∆VOUT
mV/° C] = VOUT(S)[ V ] ×
[
[ppm/° C] ÷ 1000
∆Ta
∆Ta • VOUT
Specified output voltage
Temperatures change ratio for output voltage
Output voltage temperature coefficient
„ Description of Operation
VIN
1. Basic operation
Figure 9 shows the block diagram of the S-812C
series.
The error amplifier compares a reference voltage
*
Current
source
Error amplifier
VOUT
Vref
Vref with a part of the output voltage divided by the
feedback resistors Rs and Rf, and supplies the gate
voltage to the output transistor, necessary to ensure
certain output voltage independent from change of
input voltage and temperature.
Rf
Reference
voltage
Rs
VSS
* : Parasitic diode
Figure 9 Block Diagram
2. Output transistor
The S-812C Series uses a Pch MOS transistor as the output transistor.
The voltage at VOUT must not exceed VIN+0.3V. When the VOUT voltage becomes higher than that of VIN,
reverse current flows and may break the regulator since a parasitic diode between VOUT and VIN exists
inevitably.
Seiko Instruments Inc.
7
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.1.0
3. Power-off function (ON/OFF pin)
The ON/OFF pin controls the start and stop of the regulation operation.
When the ON/OFF pin is set to power-off level, halting whole internal circuit and turning off the Pch MOSFET
between VIN and VOUT, current consumption is drastically reduced. The voltage of the VOUT pin becomes
VSS level due to the internal resistance divider of several MΩ between VOUT and VSS.
The ON/OFF pin should not be left afloat since no pull-up nor pull-down is made internally as shown in figure
10. Note that the current consumption increases if a voltage between 0.3V and VIN-0.3V is applied to the
ON/OFF pin. When the power-off function is not used, connect the pin to the VIN pin in case of positive logic
and to the VSS pin in case of negative logic.
VIN
Table 8 Power-off function
Product
type
B
B
ON/OFF pin
“H” : Power on
“L” : Power off
Internal
circuit
Operate
Halt
VOUT pin
voltage
Set value
VSS level
Current
consumption
Iss
Iss2
ON/OFF
VSS
Figure 10
When a regulation operation at light load less than 100uA is halted, output voltage
may increase. If the increase of the output voltage should be avoided, pull down the VOUT pin to the VSS level
as soon as ON/OFF pin goes to the power-down level.
4. Short-circuit protection
Installation of the short-circuit protection which protects the output transistor against short-circuit between
VOUT and VSS can be selected in the S-812C series. The short-circuit protection controls output current as
shown in the typical characteristics, (1) OUTPUT VOLTAGE versus OUTPUT CURRENT, and suppresses
output current at about 40 mA even if VOUT and VSS pins are short-circuited.
The short-circuit protection can not at the same time be a thermal protection. Attention should be paid to the
Input voltage and the load current under the actual condition so as not to exceed the power dissipation of the
package including the case for short-circuit.
When the output current is large and the difference between input and output voltage is large even if not
shorted, the short-circuit protection may work and the output current is suppressed to the specified value.
Products without short-circuit protection can provide comparatively large current by removing a short-circuit
protection.
„ Selection of External Components
Output Capacitor (CL)
The S-812C series can provide stable operation without output capacitor (CL) since the regulator has an
internal phase compensation circuit to stabilize operation when the load changes. The transient response of
the regulator, however, changes with the output capacitor and the magnitude of overshoot and undershoot on
output voltage accordingly changes. Please refer to CL dependence data in “Transient Response
Characteristics” to select suitable value for the capacitor. .
When a tantalum or an aluminum electrolytic capacitor is used, the ESR of the capacitor shall be 10Ω or less.
When an aluminum electrolytic capacitor is used attention should be especially paid to since the ESR of the
aluminum electrolytic capacitor increases at low temperature and possibility of oscillation becomes large.
Sufficient evaluation including temperature characteristics is indispensable.
8
Seiko Instruments Inc.
Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
„Application Circuits
1. Output Current Boost Circuit
As shown in Figure 11, the output current
can be boosted by externally attaching a
PNP transistor.
The S-812C controls the
base current of the PNP transistor so that the
output voltage VOUT becomes the voltage
specified in the S-812C if the sufficient baseemitter voltage VBE to turn on the PNP
transistor is obtained between input voltage
VIN and S-812C power source pin VIN.
Tr1
S-812C
Series
R1
ON/OFF
VSS
VIN
VIN
VOUT
VOUT
CIN
CL
GND
Figure 11 Output Current Boost Circuit
• As the transient response characteristics
of the circuit shown in figure 11 is not enough in some applications, evaluation for output variation due to
power-on, power line variation and load variation in actual condition is needed before massproduction.
• Note that the short-circuit protection incorporated in the S-812C series does not work as a short-circuit
protection for the boost circuit.
2. Constant Current Circuit
The S-812C series can be served in a
constant current circuit as shown in the
figure 12. Constant current IO is calculated
from the following equation:
IO = (VOUT(E) ÷ RL) +ISS, where VOUT(E) is
the effective output voltage.
Please note that in case of the circuit
shown in the figure 12 (1) the magnitude of
the constant current IO is limited by the
driving ability of the S-812C.
The circuit shown in the figure 12 (2) can,
however, provide the current beyond the
driving ability of the S-812C by combining a
constant current circuit with a current boost
circuit. The maximum input voltage for the
constant current circuit is the sum of the
voltage VO of the device and 16 V. It is not
recommended to attach a capacitor
between the S-812C power source VIN
and VSS pins or between output VOUT
and VSS pins because rush current flows
at power-on.
(1) Constant Current Circuit
VIN
VIN
VOUT
S-812C
Series
VSS
RL
ON/OFF
V0
IO
CIN
VO
GND
Device
(2) Constant Current Boost Circuit
Tr1
VIN
S-812C
R1
VIN
Series
VSS
CIN
GND
VOUT
ON/OFF
RL
VO
Io
V0
Device
Figure 12 Constant Current Circuits
3. Output Voltage Adjustment Circuit
The output voltage can be increased using the configuration shown in the figure 13. The output Voltage VOUT1
can be calculated using the following equation;
VOUT1 = VOUT(E) x (R1 + R2) ÷ R1 + R2 x ISS,
where VOUT(E) is the effective output voltage.
Value of R1 and R2 should be determined so as not to be affected by the current consumption ISS.
Seiko Instruments Inc.
9
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Capacitor C1 has an effect in minimizing output
V
fluctuation due to power-on, power line IN
variation and load variation. Determine the
optimum value in the actual device.
VIN
S-812C
Rev.1.0
VOUT1
VOUT
Series
VSS
ON/OFF
R1
CL
CIN
C1
R2
GND
It is not also recommended to attach a
capacitor between the S-812 power source VIN
and VSS pins or between output VOUT and
VSS pins because output fluctuation or
oscillation at powering on might occur.
Figure 13 Voltage Adjustment Circuit
„ Notice
• Wiring patterns for VIN, VOUT and GND pins should be designed to hold low impedance.
When mounting an output capacitor, the distance from the capacitor to the VOUT pin and to the VSS pin
should be as short as possible.
• Note that output voltage may increase when a voltage regulator is used at low load current (less than 1 µA).
• At low load current less than 100µA output voltage may increase when the regulating operation is halted by
the ON/OFF pin.
• To prevent oscillation, it is recommended to use the external components under the following conditions:
Equivalent Series Resistance (ESR): 10 Ω or less when an output capacitor is used.
Input series resistance (RIN): 10 Ω or less
• A voltage regulator may oscillate when the impedance of the power supply is high and the input capacitor is
small or not connected.
• The application condition for input voltage and load current should not exceed the package power
dissipation.
• SII claims no responsibility for any and all disputes arising out of or in connection with any infringement of
the products including this IC upon patents owned by a third party.
10
Seiko Instruments Inc.
Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
„ Typical Characteristics
(1) Output Voltage vs Output Current (When load current increases)
S-812C30B (Ta=25°C) Short-circuit protection
3.5
3.0
1.0
2.0
6V
VIN=3.5V
1.5
1.0
4V
3V
0.5
8V
2.5
VOUT (V)
VOUT (V)
S-812C20B (Ta=25°C) Short- circuit protection
2.5
VIN=2.5V
2.0
5V
7V
1.5
5V
4V
0.5
0.0
0.0
0
50
100
150
0
IOUT (mA)
VOUT (V)
S-812C50B (Ta=25°C) Short-circuit protection
6.0
10V
5.0
VIN=5.5V
2.0
6V
100
150
IOUT (mA)
200
Notice
The condition for input voltage and load current
should not exceed the package power dissipation.
4.0
3.0
50
8V
7V
1.0
0.0
0
100
200
300
IOUT (mA)
S-812C20A (Ta=25 ºC)
2.5
No short-circuit protection
S-812C30A (Ta=25ºC)
3.5
VIN =2.3V
3.0
1.5
VOUT (V)
VOUT (V)
2.0
7V
2.5V
1.0
4V
3V
0.5
5V
2.5
2.0
8V
1.5
3.5V
1.0
4V
5V
6V
0.5
0.0
0.0
0
100
200
300
0
IOUT (mA)
S-812C50A (Ta=25ºC)
100
200
IOUT (mA)
300
400
No short-circuit protection
6.0
Notice
The condition for input voltage and load current
should not exceed the package power dissipation.
5.0
VOUT (V)
No short-circuit protection
VIN=3.3V
4.0
10V
3.0
2.0
VIN=5.3V
1.0
8V
6V 7V
5.5V
0.0
0
100
200
IOUT (mA)
300
400
Seiko Instruments Inc.
11
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.1.0
(2) Maximum Output Current vs Input Voltage
S-812C20B
Short-circuit protection
S-812C30B
140
Ta=-40°C
120
100
IOUTMAX (mA)
IOUTMAX (mA)
Short-circuit protection
200
80
60
25°C
40
85°C
Ta=-40°C
20
150
100
25°C
50
0
85°C
0
0
4
8
12
16
0
4
8
S-812C50B
12
16
VIN (V)
VIN (V)
Short-circuit protection
300
IOUTMAX (mA)
Notice
The condition for input voltage and load current
should not exceed the package power dissipation.
Ta=-40°C
250
200
150
100
25°C
50
85°C
0
0
4
8
12
16
VIN (V)
S-812C20A
S-812C30A
200
No short-circuit protection
140
Ta=-40ºC
80
25ºC
60
40
Ta=−40ºC
150
100
IOUTMAX (mA)
IOUTMAX (mA)
120
85ºC
No short-circuit protection
100
25ºC
50
85ºC
20
0
0
0
4
S-812C50A
8
VIN (V)
12
16
IOUTMAX (mA)
200
150
25ºC
100
85ºC
50
0
4
8
12
16
VIN(V)
12
8
VIN (V)
12
16
Notice
The condition for input voltage and load current
should not exceed the package power dissipation.
Ta=-40ºC
0
4
No short-circuit protection
300
250
0
Seiko Instruments Inc.
Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
(3) Output Voltage vs Input Voltage
S-812C30B
S-812C20B
3.15
2.10
IO UT =-1µA -20m A
-10m A
2.00
-1 m A
-20m A
IO UT = -1µA
3.10
-50m A
VOUT (V)
VOUT (V)
2.05
-10m A
3.05
-50m A
3.00
-1 m A
2.95
1.95
2.90
1.90
2.85
1.5
2
2.5
3
3.5
4
2.5
3
3.5
V IN (V)
4
4.5
5
V IN (V)
S-812C50B
5.25
IO UT = -1µA
-20m A
5.15
VOUT (V)
-10m A
5.05
-1m A
4.95
-50m A
4.85
4.75
4.5
5
5.5
6
6.5
V IN (V)
7
(4) Dropout Voltage vs Output Current
S-812C20B
S-812C30B
2000
1600
1500
1000
500
85°C
1400
25°C
Vdrop (mV)
Vdrop (mV)
85°C
Ta= -40°C
25°C
1200
1000
800
600
400
Ta= -40°C
200
0
0
0
10
20
30
40
50
0
I OUT (mA)
10
20
30
40
50
I OUT (mA)
Vdrop (mV)
S-812C50B
1000
900
800
700
600
500
400
300
200
100
0
85°C
25°C
Ta= -40°C
0
10
20
30
40
50
I OUT (mA)
Seiko Instruments Inc.
13
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
S-812C30B
2.04
3.06
2.02
3.03
VOUT (V)
VOUT (V)
(5) Output Voltage vs Ambient Temperature
S-812C20B
Rev.1.0
2.00
3.00
2.97
1.98
2.94
1.96
-50
0
Ta (°C )
50
100
0
Ta (°C) 50
100
-50
0
Ta (°C)
50
100
S-812C50B
5.10
VOUT (V)
5.05
5.00
4.95
4.90
-50
(7) Line Regulation 2 vs Ambient Temperature
20
20
15
15
10
∆VOUT2(mV)
∆VOUT1 (mV)
(6) Line Regulation 1 vs Ambient Temperature
S -812C 20B
S -812C 30B
S -812C 50B
10
5
5
0
0
-50
0
Ta (°C)
50
100
S-812C 20B
S-812C 50B
-50
(8) Load Regulation vs Ambient Temperature
∆VOUT3 (mV)
80
60
S-812C 20B
40
S-812C 30B
S-812C 50B
20
0
-50
14
0
Ta (°C)
50
100
Seiko Instruments Inc.
0
Ta (°C)
S-812C 30B
50
100
Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
(9) Current Consumption vs Input Voltage
S-812C20B
S-812C30B
2.5
2.5
2.0
25°C
1.5
1.0
0.5
1.5
1.0
0.5
Ta=-40°C
85°C
25°C
85°C
ISS (µA)
ISS (µA)
2.0
Ta= -40°C
0.0
0.0
0
4
8
12
16
0
4
8
12
16
V IN (V)
V IN (V)
S-812C50B
2.5
2.0
85°C
ISS (µA)
25°C
1.5
1.0
0.5
Ta= -40°C
0.0
0
4
8
12
16
V IN (V)
(10)Power-off Pin Input Threshold vs Input Voltage
S-812C20B
VSH / VSL (V)
2.5
25°C
85°C
2.0
Ta=-40°C
1.5
Ta=-40°C
1.0
0.5
25°C
85°C
0.0
0
4
8
12
16
V IN (V)
Seiko Instruments Inc.
15
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.1.0
REFERENCE DATA
„ Transient Response Characteristics (Typical data: Ta=25°C)
INPUT VOLTAGE
or
LOAD CURRENT
Overshoot
OUTPUT VOLTAGE
Undershoot
(1) Power-on : S-812C30B (CL=10µF; ceramic capacitor)
6IN ON/OFF=0→5V, IOUT =10mA, CL=10µF
5V
0V
VOUT (0.5V/div)
3V
0V
TIME (100 µs/div)
Load dependence of overshoot at power-on
CL dependence of overshoot at power-on
V IN , ON/OFF= 0 → V OU T(S )+ 2V , C L = 10 µF
V I N ,ON/OFF=0 → V OU T(S )+2V , IOU T=10m A
0.8
S-812C 30B
0.025
S-812C50B
Over Shoot(V)
Over Shoot(V)
0.030
0.020
S-812C 50B
0.015
0.010
0.005
0.6
S-812C30B
0.4
0.2
0.0
0.000
0
0.02
0.04
0.06
0.08
0
0.1
10
20
I OUT (A)
VDD dependence of overshoot at power-on
50
V I N , ON/OFF=0 → V OU T(S )+2V , IOU T= 10m A , C L = 10 µF
0.035
0.06
0.025
Over Shoot(V)
S-812C 30B
0.030
Over Shoot(V)
40
Temperature dependence of overshoot at power-on
V IN ,ON/OFF=0 → V D D , IOU T= 10m A , C L = 10 µF
S-812C 50B
0.020
0.015
0.010
0.005
0.05
S-812C 50B
0.04
S-812C 30B
0.03
0.02
0.01
0.000
0.00
0
16
30
C L (µF)
5
10
V DD (V)
15
20
-50
Seiko Instruments Inc.
0
Ta (°C)
50
100
Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
(2) Power-on by ON/OFF pin : S-812C30A (CL=10µF; ceramic capacitor)
VIN=5V, ON/OFF=0 → 5V, IOUT=10mA, CL=10µF
VOUT (0.5V/div)
5V
0V
3V
0V
TIME (200 µs/div)
CL dependence of overshoot at power-on
Load dependence of overshoot at power-on
V I N = V OU T(S )+2V , ON/OFF= 0 → V OU T(S )+2V , C L = 10 µF
V I N = V OU T(S )+2V ,ON/OFF= 0 → V OU T(S )+2V , IOU T= 10m A
0.8
Over Shoot(V)
Over Shoot(V)
0.8
0.6
S-812C 50B
0.4
0.2
0.6
S-812C 50B
0.4
0.2
S-812C 30B
S-812C 30B
0.0
0.001
0.0
0.01
0.1
1
10
0
100
10
20
V I N = V OU T(S )+2V ,ON/OFF= 0 → V OU T(S )+2V ,IOU T= 10m A ,
0.7
0.5
Over Shoot(V)
Over Shoot(V)
S-812C 50B
0.4
0.3
0.2
S-812C 30B
0.1
0.0
0
5
10
V DD (V)
15
50
Temperature dependence of overshoot at power-on
V I N = V D D , ON/OFF=0 → V D D , IOU T= 10m A ,C L = 10µF
0.6
40
C L (µF)
I OUT (A)
VDD dependence of overshoot at power-on
30
20
C L = 10 µF
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
S-812C 50B
S-812C 30B
-50
Seiko Instruments Inc.
0
Ta (°C)
50
100
17
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.1.0
(3) Line Transient Response : S-812C30B (CL=10µF; ceramic capacitor)
VOUT (0.05V/div)
VIN,ON/OFF=4→8V, IOUT =10mA
10V
5V
0V
3V
2.9V
TIME (100 µs/div)
Load dependence of overshoot at line transient
CL dependence of overshoot at line transient
V I N , ON/OFF=V OU T(S )+1V → V OU T(S )+5V ,IOU T= 10m A
C L = 10µF
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
0.25
Over Shoot(V)
Over Shoot(V)
V IN , ON/OFF=V OU T(S )+1V → V OU T(S )+5V ,
S-812C 50B
S-812C 30B
S-812C 30B
0.20
0.15
S-812C 50B
0.10
0.05
0.00
0
10
20
30
40
50
0
10
20
I OUT (A)
VDD dependence of overshoot at line transient
50
V I N , ON/OFF=V OU T(S )+1V → V OU T(S )+5V ,
0.16
IOU T=10m A C L =10 µF
0.14
S-812C 50B
0.12
0.10
Over Shoot(V)
Over Shoot(V)
40
Temperature dependence of overshoot at line transient
V I N , ON/OFF= V OU T(S )+ 1V → V D D IOU T= 10m A C L = 10 µF
0.08
0.06
0.04
0.02
S-812C 30B
0.00
0
18
30
C L (µF)
5
10
V DD (V)
15
20
0.16
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
S-812C50B
S-812C30B
-50
Seiko Instruments Inc.
0
Ta (°C)
50
100
Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
VOUT (0.05V/div)
VIN,ON/OFF=8→4V, IOUT =10mA
10V
5V
0V
3V
2.9V
2.8V
TIME (500 µs/div)
Load dependence of undershoot at line transient
CL dependence of undershoot at line transient
V I N , ON/OFF=V OU T(S )+5V → V OU T(S )+1V ,IOU T= 10m A
V I N , ON/OFF= V OU T(S )+ 5V → V OU T(S )+ 1V , C L = 10 µF
0.35
0.6
Under Shoot(V)
Under Shoot(V)
0.8
S-812C 50B
0.4
0.2
S-812C 30B
S-812C 50B
0.25
0.20
0.15
0.10
0.05
S-812C 30B
0.00
0.0
0
10
20
30
I OUT (A)
40
V I N , ON/OFF= V D D → V OU T(S )+ 1V
0
50
VDD dependence of undershoot at line transient
10
20
Under Shoot(V)
0.10
S-812C 50B
0.05
S-812C 30B
0.00
50
V I N ,ON/OFF=V OU T(S )+ 5V → V OU T(S )+ 1V ,
IOU T= 10m A C L = 10 µF
0.30
0.15
40
Temperature dependence of undershoot at line transient
IOU T= 10m A C L = 10 µF
0.20
30
C L (µF)
0.25
Under Shoot(V)
0.30
S-812C 50B
0.25
0.20
0.15
0.10
S-812C 30B
0.05
0.00
0
5
10
V DD (V)
15
20
-50
0
50
100
Ta (°C)
Seiko Instruments Inc.
19
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
Rev.1.0
(4) Load Transient Response : S-812C30B (CL=10µF; ceramic capacitor)
VOUT (0.05V/div)
VIN=5V, IOUT =10mA→1µA,CL=10µF
10mA
0mA
3.1V
3V
2.9V
TIME (200µs/div)
Load dependence of overshoot at load transient
CL dependence of overshoot at load transient
V I N , ON/OFF= V OU T(S )+ 2V , IOU T= IOU T→ 1 µA ,C L = 10 µF
0.16
0.8
0.6
0.4
S-812C 30B
0.2
0.10
0.08
0.06
0.04
S-812C 30B
0.00
0
20
40
60
I OUT (A)
80
IOU T= 10m A → 1 µA , C L = 10µF
0.16
0
100
VDD dependence of overshoot at load transient
10
20
30
40
50
C L (µF)
Temperature dependence of overshoot at load transient
V I N , ON/OFF=V OU T(S )+2V , IOU T= 10m A → 1 µA , C L = 10 µF
0.16
0.14
0.14
S-812C 50B
0.12
Over Shoot(V)
Over Shoot(V)
S-812C 50B
0.12
0.02
0.0
0.10
0.08
0.06
0.04
S-812C 30B
0.02
S-812C 50B
0.12
0.10
0.08
0.06
0.04
S-812C 30B
0.02
0.00
0.00
0
20
V I N , ON/OFF=V OU T(S )+2V ,IOU T= 10m A → 1 µA
0.14
S-812C 50B
1.0
Over Shoot(V)
Over Shoot(V)
1.2
5
10
V DD (V)
15
20
Seiko Instruments Inc.
-50
0
Ta (°C)
50
100
Rev.1.0
HIGH OPERATING VOLTAGE CMOS VOLTAGE REGULATOR
S-812C Series
VIN=5V, IOUT =1µA→ 10mA, CL=10µF
VOUT (0.05V/div)
10mA
0mA
3V
2.9V
TIME (500 µs/div)
Load dependence of undershoot at load transient
CL dependence of undershoot at load transient
V I N , ON/OFF=V OU T(S )+2V , IOU T= 1µA → IOU T,C L = 10µ F
VIN , O N/O FF=VO UT (S)+2V,IO UT =1µA→ 10m A
0.25
1.0
S-812C 50B
Under Shoot(V)
Under Shoot(V)
1.2
0.8
0.6
0.4
0.2
S-812C 30B
0.20
S-812C 50B
0.15
0.10
0.05
S-812C 30B
0.0
0.00
0
20
40
60
80
100
0
I OUT (A)
30
40
50
Temperature dependence of undershoot at load transient
IOU T= 1 µA → 10m A , C L = 10 µF
V I N , ON/OFF=V OU T(S )+2V ,IOU T= 1 µA → 10m A , C L = 10 µF
0.25
S-812C 50B
0.15
Over Shoot(V)
Under Shoot(V)
20
C L (µF)
VDD dependence of undershoot at load transient
0.20
10
0.10
0.05
S-812C 30B
0.00
0
5
10
V DD (V)
15
20
0.20
S-812C 50B
0.15
0.10
S-812C 30B
0.05
0.00
-50
Seiko Instruments Inc.
0
Ta (°C)
50
100
21
n SOT-23-5
MP005-A
l Dimensions
010801
Unit : mm
2.9±0.2
1.9±0.2
0.45
4
5
1.6
1
2
2.8
+0.2
-0.3
0.16
3
+0.1
-0.06
1.1±0.1
1.3max.
0~0.15
0.95±0.1
No. MP005-A-P-SD-1.1
0.4±0.1
l Tape Specifications
l Reel Specifications
4.0±0.1(10-pitch total: 40.0±0.2)
ø1.5
+0.1
-0
2.0±0.05
ø1.0
3000 pcs./reel
0.27±0.05
12.5max.
4.0±0.1
+0.1
-0
1.4±0.2
3°max.
ø60
+0
ø180
-3
+1
-0
3.25±0.15
T1
5
4
9.0±0.3
1 2 3
ø13±0.2
Winding core
2±0.2
Feed direction
(60°)
(60°)
No. MP005-A-R-SD-1 0
UP005-A 000601
n SOT-89-5
Unit:mm
lDimensions
4.5±0.1
1.5±0.1
0.65min.
1.6±0.2
4
5
2.5±0.1
1
2
4.5
+0.2
-0.3
3
1.5±0.1 1.5±0.1
0.4±0.05
0.65min.
0.1
3.1
0.3
0.35
0.4±0.1
0.4±0.1
0.2
45°
0.45±0.1
No. UP005-A-P-SD-1.1
lTaping Specifications
+0.1
ø1.5 -0
4.0±0.1(10 pitches:40±0.2)
2.0±0.05
lReel Specifications
1 reel holds 1000 ICs.
1.5±0.1
16.5max.
5.65±0.05
12.0±0.2
3°max.
ø1.5 +0.1
-0
5°max.
8.0±0.1
4.35±0.1
+1
0.3±0.05
2.0±0.1
ø60 -0
+0
ø180 -3
4.75±0.1
T2
13.0±0.3
Winding core
ø13±0.2
ø21±0.5
2±0.2
Feed direction
(60°)
No. UP005-A-C-SD-1.0
(60°)
No. UP005-A-R-SD-1.0
UP003-A 010515
n SOT-89-3
Unit:mm
lDimensions
4.5±0.1
1.5±0.1
1.6±0.2
2.5±0.1
1
2
4.0
+0.25
-0.35
0.8min.
3
1.5±0.1 1.5±0.1
0.4±0.05
0.4
2.5
45°
0.4±0.1
0.4±0.1
0.4
0.45±0.1
No. UP003-A-P-SD-1.0
lTaping Specifications
ø1.5+0.1
-0
4.0±0.1(10 pitches:40.0±0.2)
lReel Specifications
1 reel holds 1000 ICs.
1.5±0.1
2.0±0.05
16.5max.
5.65±0.05
12.0±0.2
4.35±0.1
+0.1
ø1.5 -0
8.0±0.1
5° max.
0.3±0.05
2.0±0.1
+1
ø60 -0
4.75±0.1
T2
13.0±0.3
Winding core
Feed direction
No. UP003-A-C-SD-1.0
(60°)
(60°)
No. UP003-A-R-SD-1.0
+0
ø180 -3
YF003-A 010515
n TO-92
Unit:mm
(2) Leadforming for tape (reel/zigzag)
lDimensions
(1) Bulk
4.2max.
5.2max.
Marked side
4.2max.
5.2max.
Marked side
5.0±0.2
5.0±0.2
0.6max.
0.6max.
0.8max.
2.3max.
0.8max.
2.3max.
10.0min.
12.7min.
0.45±0.1
0.45±0.1
0.45±0.1
0.45±0.1
+0.4
2.5 -0.1
1.27
No. YF003-A-P-SD-1.0
No. YS003-A-P-SD-1.0
1.27
lTape
12.7±1.0
1.0max.
lZigzag
1.0max.
[Type Z]
Marked side
Side spacer
24.7max.
0.5max.
2.5min.
165
16.0±0.5
19.0±0.5
#
1 pin
1.45max.
9.0±0.5
6.0±0.5
320
Spacer
+1.0
18.0 -0.5
ø4.0±0.2
6.35±0.4
0.7±0.2
60
12.7±0.3 (20-pitch total:254.0±1.0)
320
40
Feed direction
[Type F]
[Type T]
Marked side
Feed direction
Feed direction
No. YF003-A-C-SD-1.0
lReel
Side Spacer placed in front side
Space more than 4 strokes
1 reel holds 2000 ICs.
262
45±0.5
ø30±0.5
ø79±1
330
47
1 box holds 2500 ICs.
2±0.5
5±0.5
43±0.5
ø358±2
53±0.5
No. YF003-A-R-SD-1.0
Feed direction
No. YF003-A-Z-SD-1.0
•
•
•
•
•
•
The information described herein is subject to change without notice.
Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein
whose related industrial properties, patents, or other rights belong to third parties. The application circuit
examples explain typical applications of the products, and do not guarantee the success of any specific
mass-production design.
When the products described herein are regulated products subject to the Wassenaar Arrangement or other
agreements, they may not be exported without authorization from the appropriate governmental authority.
Use of the information described herein for other purposes and/or reproduction or copying without the
express permission of Seiko Instruments Inc. is strictly prohibited.
The products described herein cannot be used as part of any device or equipment affecting the human
body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus
installed in airplanes and other vehicles, without prior written permission of Seiko Instruments Inc.
Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the
failure or malfunction of semiconductor products may occur. The user of these products should therefore
give thorough consideration to safety design, including redundancy, fire-prevention measures, and
malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.