INFINEON SKW15N120

SKW15N120
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode
• 40lower Eoff compared to previous generation
• Short circuit withstand time – 10 µs
• Designed for:
- Motor controls
- Inverter
- SMPS
• NPT-Technology offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
C
G
E
P-TO-247-3-1
(TO-247AC)
• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
SKW15N120
VCE
IC
Eoff
Tj
1200V
15A
1.5mJ
150°C
Package
Ordering Code
TO-247AC
Q67040-S4281
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCE
1200
V
DC collector current
IC
A
TC = 25°C
30
TC = 100°C
15
Pulsed collector current, tp limited by Tjmax
ICpul s
52
Turn off safe operating area
-
52
VCE ≤ 1200V, Tj ≤ 150°C
IF
Diode forward current
TC = 25°C
32
TC = 100°C
15
Diode pulsed current, tp limited by Tjmax
IFpul s
50
Gate-emitter voltage
VGE
±20
V
tSC
10
µs
Ptot
198
W
-55...+150
°C
1)
Short circuit withstand time
VGE = 15V, 100V≤ VCC ≤1200V, Tj ≤ 150°C
Power dissipation
TC = 25°C
Operating junction and storage temperature
Tj , Tstg
Soldering temperature, 1.6mm (0.063 in.) from case for 10s
-
1)
260
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
1
Jul-02
SKW15N120
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
RthJC
0.63
K/W
RthJCD
1.5
Characteristic
IGBT thermal resistance,
junction – case
Diode thermal resistance,
junction – case
RthJA
Thermal resistance,
TO-247AC
40
junction – ambient
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
typ.
max.
1200
-
-
2.5
3.1
3.6
-
3.7
4.3
2.0
2.5
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0V ,
I C = 10 0 0 µA
Collector-emitter saturation voltage
VCE(sat)
V G E = 15 V , I C = 15 A
T j =2 5 °C
T j =1 5 0° C
VF
Diode forward voltage
V
V G E = 0V , I F = 1 5 A
T j =2 5 °C
T j =1 5 0° C
-
1.75
3
4
Gate-emitter threshold voltage
VGE(th)
I C = 60 0 µA , V C E = V G E
Zero gate voltage collector current
ICES
V C E =1200V,V G E =0V
5
µA
T j =2 5 °C
-
-
200
T j =1 5 0° C
-
-
800
-
-
100
nA
11
-
S
pF
Gate-emitter leakage current
IGES
V C E =0V,V G E =20V
Transconductance
gfs
V C E = 20 V , I C = 15 A
Input capacitance
Ciss
V C E = 25 V ,
-
1250
1500
Output capacitance
Coss
V G E = 0V ,
-
155
185
Reverse transfer capacitance
Crss
f= 1 MH z
-
65
80
Gate charge
QGate
V C C = 96 0 V, I C =1 5 A
-
130
175
nC
Dynamic Characteristic
V G E = 15 V
Internal emitter inductance
LE
TO-247AC
-
13
-
nH
IC(SC)
V G E = 15 V ,t S C ≤ 10 µs
10 0 V≤ V C C ≤ 12 0 0 V,
T j ≤ 15 0° C
-
145
-
A
measured 5mm (0.197 in.) from case
1)
Short circuit collector current
1)
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
2
Jul-02
SKW15N120
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
18
24
-
23
30
-
580
750
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
T j =2 5 °C ,
V C C = 80 0 V, I C = 1 5 A,
V G E = 15 V /0 V ,
tf
R G = 33 Ω,
Fall time
ns
-
22
29
L σ =1 8 0n H,
1)
C σ = 4 0p F
Energy losses include
“tail” and diode
reverse recovery.
-
1.1
1.5
-
0.8
1.1
-
1.9
2.6
trr
T j =2 5 °C ,
-
65
ns
tS
V R = 8 00 V , I F = 1 5 A,
-
tF
d i F / d t =6 5 0 A/ µs
-
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
1)
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
Diode reverse recovery charge
Qrr
-
0.5
µC
Diode peak reverse recovery current
Irrm
-
15
A
Diode peak rate of fall of reverse
recovery current during t F
d i r r /d t
-
500
A/µs
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
Unit
min.
typ.
max.
-
38
46
-
30
36
-
652
780
-
31
37
-
1.9
2.3
-
1.5
2.0
-
3.4
4.3
200
ns
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
T j =1 5 0° C
V C C = 80 0 V,
I C = 15 A ,
V G E = 15 V /0 V ,
R G = 33 Ω,
1)
Turn-off energy
Eoff
Total switching energy
Ets
L σ =1 8 0n H,
1)
C σ = 4 0p F
Energy losses include
“tail” and diode
reverse recovery.
trr
T j =1 5 0° C
-
tS
V R = 8 00 V , I F = 1 5 A,
-
tF
d i F / d t =6 5 0 A/ µs
-
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
Diode reverse recovery charge
Qrr
-
2.0
µC
Diode peak reverse recovery current
Irrm
-
23
A
Diode peak rate of fall of reverse
recovery current during t F
d i r r /d t
-
140
A/µs
1)
Leakage inductance Lσ and stray capacity Cσ due to dynamic test circuit in figure E.
Power Semiconductors
3
Jul-02
SKW15N120
70A
100A
Ic
tp=2µs
15µs
50A
40A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
60A
TC=80°C
30A
TC=110°C
20A
10A
50µs
10A
200µs
1A
1ms
Ic
DC
0A
10Hz
100Hz
1kHz
10kHz
0.1A
100kHz
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 800V,
VGE = +15V/0V, RG = 33Ω)
1V
10V
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj ≤ 150°C)
35A
200W
30A
IC, COLLECTOR CURRENT
Ptot, POWER DISSIPATION
175W
150W
125W
100W
75W
50W
20A
15A
10A
5A
25W
0W
25°C
25A
50°C
75°C
100°C
0A
25°C
125°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(Tj ≤ 150°C)
Power Semiconductors
50°C
75°C
100°C
125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≤ 15V, Tj ≤ 150°C)
4
Jul-02
50A
50A
40A
40A
V G E =17V
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
SKW15N120
15V
30A
13V
11V
9V
20A
7V
10A
0A
0V
1V
2V
3V
4V
5V
6V
9V
20A
7V
TJ=+150°C
TJ=+25°C
TJ=-40°C
10A
7V
9V
11V
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
30A
5V
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristics
(VCE = 20V)
Power Semiconductors
1V
2V
3V
4V
5V
6V
7V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristics
(Tj = 150°C)
40A
IC, COLLECTOR CURRENT
13V
11V
0A
0V
7V
50A
0A
3V
15V
30A
10A
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
20A
V G E =17V
6V
5V
IC=30A
4V
IC=15A
3V
IC=7.5A
2V
1V
0V
-50°C
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 15V)
5
Jul-02
SKW15N120
1000ns
1000ns
td(off)
t, SWITCHING TIMES
t, SWITCHING TIMES
td(off)
100ns
td(on)
tf
100ns
td(on)
tf
tr
tr
10ns
0Ω
10ns
0A
10A
20A
30A
40A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C,
VCE = 8600V, VGE = +15V/0V, RG = 3 3Ω,
dynamic test circuit in Fig.E )
6V
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
td(off)
t, SWITCHING TIMES
50Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, IC = 15A,
dynamic test circuit in Fig.E )
1000ns
100ns
td(on)
tr
tf
10ns
-50°C
25Ω
0°C
50°C
100°C
max.
4V
typ.
3V
min.
2V
1V
0V
-50°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 800V,
VGE = +15V/0V, IC = 15A, RG = 3 3 Ω,
dynamic test circuit in Fig.E )
Power Semiconductors
5V
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 0.3mA)
6
Jul-02
SKW15N120
5mJ
14mJ
*) Eon and Ets include losses
due to diode recovery.
*) Eon and Ets include losses
due to diode recovery.
Ets*
Ets*
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
12mJ
10mJ
8mJ
Eon*
6mJ
4mJ
Eoff
4mJ
3mJ
Eon*
2mJ
Eoff
1mJ
2mJ
0mJ
0A
10A
20A
30A
40A
0mJ
0Ω
50A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, RG = 3 3 Ω,
dynamic test circuit in Fig.E )
25Ω
50Ω
75Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C,
VCE = 800V, VGE = +15V/0V, IC = 15A,
dynamic test circuit in Fig.E )
4mJ
3mJ
Eon*
2mJ
Eoff
1mJ
0mJ
-50°C
0°C
50°C
100°C
D=0.5
Ets*
ZthJC, TRANSIENT THERMAL IMPEDANCE
E, SWITCHING ENERGY LOSSES
*) Eon and Ets include losses
due to diode recovery.
150°C
10 K/W
0.1
0.05
0.02
R,(K/W)
0.09751
0.29508
0.13241
0.10485
-2
10 K/W 0.01
R1
τ, (s)
0.67774
0.11191
0.00656
0.00069
R2
-3
10 K/W
1µs
single pulse
10µs
100µs
C 1 = τ 1 / R 1 C 2 = τ 2 /R 2
1ms
10ms 100ms
1s
tp, PULSE WIDTH
Tj, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 800V,
VGE = +15V/0V, IC = 15A, RG = 3 3 Ω,
dynamic test circuit in Fig.E )
Power Semiconductors
0.2
-1
Figure 16. IGBT transient thermal
impedance as a function of pulse width
(D = tp / T)
7
Jul-02
SKW15N120
20V
Ciss
15V
C, CAPACITANCE
VGE, GATE-EMITTER VOLTAGE
1nF
UCE=960V
10V
Coss
5V
100pF
Crss
0V
0nC
50nC
100nC
150nC
0V
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC = 15A)
10V
20V
30V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
tsc, SHORT CIRCUIT WITHSTAND TIME
30µs
20µs
10µs
0µs
10V
11V
12V
13V
14V
250A
200A
150A
100A
50A
0A
10V
15V
VGE, GATE-EMITTER VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE = 1200V, start at Tj = 25°C)
Power Semiconductors
300A
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE
Figure 20. Typical short circuit collector
current as a function of gate-emitter voltage
(100V ≤VCE ≤1200V, TC = 25°C, Tj ≤ 150°C)
8
Jul-02
SKW15N120
400ns
2.5µC
Qrr, REVERSE RECOVERY CHARGE
trr, REVERSE RECOVERY TIME
350ns
300ns
250ns
IF=15A
200ns
IF=7.5A
150ns
100ns
50ns
0ns
200A/µs
400A/µs
600A/µs
800A/µs
2.0µC
IF=15A
1.5µC
1.0µC
0.5µC
0.0µC
200A/µs
1000A/µs
d i F / d t, DIODE CURRENT SLOPE
Figure 21. Typical reverse recovery time as
a function of diode current slope
(VR = 800V, Tj = 150°C,
dynamic test circuit in Fig.E )
IF=7.5A
400A/µs
600A/µs
800A/µs
1000A/µs
d i F / d t, DIODE CURRENT SLOPE
Figure 22. Typical reverse recovery charge
as a function of diode current slope
(VR = 800V, Tj = 150°C,
dynamic test circuit in Fig.E )
30A
20A
15A
IF=7.5A
10A
5A
0A
200A/µs
400A/µs
600A/µs
800A/µs
300A/µs
IF=7.5A
200A/µs
IF=15A
100A/µs
0A/µs
200A/µs
1000A/µs
d i F / d t, DIODE CURRENT SLOPE
Figure 23. Typical reverse recovery current
as a function of diode current slope
(VR = 800V, Tj = 150°C,
dynamic test circuit in Fig.E )
Power Semiconductors
OF REVERSE RECOVERY CURRENT
Irr, REVERSE RECOVERY CURRENT
IF=15A
d i r r /d t, DIODE PEAK RATE OF FALL
400A/µs
25A
400A/µs
600A/µs
800A/µs
1000A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 24. Typical diode peak rate of fall of
reverse recovery current as a function of
diode current slope
(VR = 800V, Tj = 150°C,
dynamic test circuit in Fig.E )
9
Jul-02
SKW15N120
50A
3.0V
40A
TJ=150°C
VF, FORWARD VOLTAGE
IF, FORWARD CURRENT
IF=30A
2.5V
30A
20A
TJ=25°C
2.0V
IF=15A
1.5V
IF=7.5A
1.0V
10A
0.5V
0A
0V
1V
2V
3V
0.0V
0°C
4V
40°C
80°C
120°C
Tj, JUNCTION TEMPERATURE
Figure 26. Typical diode forward voltage as
a function of junction temperature
0
10 K/W D=0.5
0.2
0.1
-1
10 K/W
R,(K/W)
0.09709
0.50859
0.36316
0.53106
0.05
0. 0
01 .0
2
ZthJCD, TRANSIENT THERMAL IMPEDANCE
VF, FORWARD VOLTAGE
Figure 25. Typical diode forward current as
a function of forward voltage
R1
single pulse
τ, (s)=
0.40049
0.09815
0.00612
0.00045
R2
C 1 = τ 1 / R 1 C 2 = τ 2 /R 2
-2
10 K/W
10µs
100µs
1ms
10ms
100ms
1s
tp, PULSE WIDTH
Figure 27. Diode transient thermal
impedance as a function of pulse width
(D = tp / T)
Power Semiconductors
10
Jul-02
SKW15N120
dimensions
TO-247AC
symbol
[mm]
min
max
min
max
A
4.78
5.28
0.1882
0.2079
B
2.29
2.51
0.0902
0.0988
C
1.78
2.29
0.0701
0.0902
D
1.09
1.32
0.0429
0.0520
E
1.73
2.06
0.0681
0.0811
F
2.67
3.18
0.1051
0.1252
G
0.76 max
20.80
21.16
0.8189
0.8331
K
15.65
16.15
0.6161
0.6358
L
5.21
5.72
0.2051
0.2252
M
19.81
20.68
0.7799
0.8142
N
3.560
4.930
0.1402
0.1941
Q
11
0.0299 max
H
∅P
Power Semiconductors
[inch]
3.61
6.12
0.1421
6.22
0.2409
0.2449
Jul-02
SKW15N120
i,v
tr r =tS +tF
diF /dt
Qr r =QS +QF
tr r
IF
tS
QS
Ir r m
tF
QF
10% Ir r m
dir r /dt
90% Ir r m
t
VR
Figure C. Definition of diodes
switching characteristics
τ1
τ2
r1
r2
τn
rn
Tj (t)
p(t)
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance Lσ =180nH,
and stray capacity Cσ =40pF.
Figure B. Definition of switching losses
Power Semiconductors
12
Jul-02
SKW15N120
Published by
Infineon Technologies AG i Gr.,
Bereich Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or
systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect
human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Power Semiconductors
13
Jul-02