TI SN74ALVCH16245KR

SN74ALVCH16245
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
FEATURES
•
•
•
•
•
•
•
Member of the Texas Instruments Widebus™
Family
Operates From 1.65 V to 3.6 V
Max tpd of 3 ns at 3.3 V
±24-mA Output Drive at 3.3 V
Bus Hold on Data Inputs Eliminates the Need
for External Pullup/Pulldown Resistors
Latch-Up Performance Exceeds 250 mA Per
JESD 17
ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
DESCRIPTION/ORDERING INFORMATION
This 16-bit (dual-octal) noninverting bus transceiver is
designed for 1.65-V to 3.6-V VCC operation.
The
SN74ALVCH16245
is
designed
for
asynchronous communication between two data
buses. The logic levels of the direction-control (DIR)
input and the output-enable (OE) input activate either
the B-port outputs or the A-port outputs or place both
output ports into the high-impedance mode. The
device transmits data from the A bus to the B bus
when the B-port outputs are activated, and from the B
bus to the A bus when the A-port outputs are
activated. The input circuitry on both A and B ports is
always active and must have a logic HIGH or LOW
level applied to prevent excess ICC and ICCZ.
SCES015L – JULY 1995 – REVISED NOVEMBER 2005
DGG, DGV, OR DL PACKAGE
(TOP VIEW)
1DIR
1B1
1B2
GND
1B3
1B4
VCC
1B5
1B6
GND
1B7
1B8
2B1
2B2
GND
2B3
2B4
VCC
2B5
2B6
GND
2B7
2B8
2DIR
1
48
2
47
3
46
4
45
5
44
6
43
7
42
8
41
9
40
10
39
11
38
12
37
13
36
14
35
15
34
16
33
17
32
18
31
19
30
20
29
21
28
22
27
23
26
24
25
1OE
1A1
1A2
GND
1A3
1A4
VCC
1A5
1A6
GND
1A7
1A8
2A1
2A2
GND
2A3
2A4
VCC
2A5
2A6
GND
2A7
2A8
2OE
xxxxxx
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors
with the bus-hold circuitry is not recommended.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus is a trademark of Texas Instruments.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 1995–2005, Texas Instruments Incorporated
SN74ALVCH16245
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES015L – JULY 1995 – REVISED NOVEMBER 2005
ORDERING INFORMATION
PACKAGE (1)
TA
FBGA – GRD
FBGA – ZRD (Pb-free)
SSOP – DL
–40°C to 85°C
SN74ALVCH16245DL
SN74ALVCH16245DLR
TVSOP – DGV
Tape and reel
Tape and reel
TOP-SIDE MARKING
VH245
SN74ALVCH16245ZRDR
Tape and reel
Tape and reel
VFBGA – ZQL (Pb-free)
SN74ALVCH16245GRDR
Tube
TSSOP – DGG
VFBGA – GQL
(1)
Tape and reel
ORDERABLE PART NUMBER
ALVCH16245
SN74ALVCH16245DGGR
ALVCH16245
74ALVCH16245DGGRG4
SN74ALVCH16245DGVR
VH245
74ALVCH16245DGVRE4
SN74ALVCH16245KR
VH245
74ALVCH16245ZQLR
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
GQL OR ZQL PACKAGE
(TOP VIEW)
TERMINAL ASSIGNMENTS (1)
(56-Ball GQL/ZQL Package)
1 2 3 4 5 6
A
B
C
D
E
F
G
H
J
K
XXX
1
2
3
4
5
6
A
1DIR
NC
NC
NC
NC
1OE
B
1B2
1B1
GND
GND
1A1
1A2
C
1B4
1B3
VCC
VCC
1A3
1A4
D
1B6
1B5
GND
GND
1A5
1A6
E
1B8
1B7
1A7
1A8
F
2B1
2B2
2A2
2A1
G
2B3
2B4
GND
GND
2A4
2A3
H
2B5
2B6
VCC
VCC
2A6
2A5
J
2B7
2B8
GND
GND
2A8
2A7
K
2DIR
NC
NC
NC
NC
2OE
XXX
(1)
XXX
NC – No internal connection
GRD OR ZRD PACKAGE
(TOP VIEW)
1
2
3
4
5
6
TERMINAL ASSIGNMENTS (1)
(54-Ball GRD/ZRD Package)
A
B
1
2
3
4
5
6
A
1B1
NC
1DIR
1OE
NC
1A1
B
1B3
1B2
NC
NC
1A2
1A3
C
1B5
1B4
VCC
VCC
1A4
1A5
C
D
1B7
1B6
GND
GND
1A6
1A7
D
E
2B1
1B8
GND
GND
1A8
2A1
F
2B3
2B2
GND
GND
2A2
2A3
G
2B5
2B4
VCC
VCC
2A4
2A5
H
2B7
2B6
NC
NC
2A6
2A7
J
2B8
NC
2DIR
2OE
NC
2A8
E
F
G
H
J
(1)
2
NC – No internal connection
SN74ALVCH16245
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES015L – JULY 1995 – REVISED NOVEMBER 2005
(1)
FUNCTION TABLE
(EACH 8-BIT SECTION)
CONTROL INPUTS
OE
(1)
OUTPUT CIRCUITS
OPERATION
DIR
A PORT
B PORT
L
L
Enabled
Hi-Z
B data to A bus
L
H
Hi-Z
Enabled
A data to B bus
H
X
Hi-Z
Hi-Z
Isolation
Input circuits of the data I/Os always are active.
LOGIC DIAGRAM (POSITIVE LOGIC)
1DIR
1
2DIR
48
1A1
25
1OE
47
2A1
2
24
2OE
36
13
1B1
2B1
To Seven Other Channels
To Seven Other Channels
Absolute Maximum Ratings (1)
over operating free-air temperature range (unless otherwise noted)
VCC
Supply voltage range
range (2) (3)
VI
Input voltage
VO
Output voltage range (2) (3)
IIK
Input clamp current
VI < 0
IOK
Output clamp current
VO < 0
IO
Continuous output current
MIN
MAX
–0.5
4.6
V
–0.5
VCC + 0.5
V
–0.5
VCC + 0.5
Continuous current through each VCC or GND
θJA
Package thermal impedance (4)
(1)
(2)
(3)
(4)
Storage temperature range
V
-50
mA
-50
mA
±50
mA
±100
mA
DGG package
70
DGV package
58
DL package
63
GQL/ZQL package
42
GRD/ZRD package
Tstg
UNIT
°C/W
36
–65
150
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
This value is limited to 4.6 V maximum.
The package thermal impedance is calculated in accordance with JESD 51-7.
3
SN74ALVCH16245
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES015L – JULY 1995 – REVISED NOVEMBER 2005
Recommended Operating Conditions (1)
VCC
Supply voltage
VIH
High-level input voltage
VCC = 1.65 V to 1.95 V
MIN
MAX
1.65
3.6
Low-level input voltage
VI
Input voltage
VO
Output voltage
IOH
High-level output current
IOL
Low-level output current
∆t/∆v
Input transition rise or fall rate
TA
Operating free-air temperature
(1)
4
V
0.65 × VCC
VCC = 2.3 V to 2.7 V
1.7
VCC = 2.7 V to 3.6 V
2
V
0.35 × VCC
VCC = 1.65 V to 1.95 V
VIL
UNIT
VCC = 2.3 V to 2.7 V
0.7
VCC = 2.7 V to 3.6 V
0.8
V
0
VCC
V
0
VCC
V
VCC = 1.65 V
–4
VCC = 2.3 V
–12
VCC = 2.7 V
–12
VCC = 3 V
–24
VCC = 1.65 V
4
VCC = 2.3 V
12
VCC = 2.7 V
12
VCC = 3 V
24
–40
mA
mA
10
ns/V
85
°C
All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
SN74ALVCH16245
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES015L – JULY 1995 – REVISED NOVEMBER 2005
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
IOH = –100 µA
1.65 V to 3.6 V
1.65 V
IOH = –6 mA
2.3 V
2
2.3 V
1.7
2.7 V
2.2
IOH = –12 mA
II(hold)
V
3V
2.4
3V
2
IOL = 100 µA
1.65 V to 3.6 V
0.2
IOL = 4 mA
1.65 V
0.45
IOL = 6 mA
2.3 V
0.4
2.3 V
0.7
2.7 V
0.4
3V
0.55
IOL = 24 mA
II
1.2
IOH = –24 mA
IOL = 12 mA
UNIT
VCC – 0.2
IOH = –4 mA
VOH
VOL
MIN TYP (1) MAX
VCC
V
±5
VI = VCC or GND
3.6 V
VI = 0.58 V
1.65 V
25
VI = 1.07 V
1.65 V
–25
VI = 0.7 V
2.3 V
45
VI = 1.7 V
2.3 V
–45
VI = 0.8 V
3V
75
VI = 2 V
3V
–75
µA
µA
VI = 0 to 3.6 V (2)
3.6 V
±500
IOZ (3)
VO = VCC or GND
3.6 V
±10
µA
ICC
VI = VCC or GND,
IO = 0
3.6 V
40
µA
∆ICC
One input at VCC – 0.6 V,
Other inputs at VCC or GND
3 V to 3.6 V
750
µA
Ci
Control inputs
VI = VCC or GND
3.3 V
4
pF
Cio
A or B ports
VO = VCC or GND
3.3 V
8
pF
(1)
(2)
(3)
All typical values are at VCC = 3.3 V, TA = 25°C.
This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to
another.
For I/O ports, the parameter IOZ includes the input leakage current.
Switching Characteristics
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)
PARAMETER
tpd
(1)
VCC = 2.5 V
± 0.2 V
VCC = 2.7 V
VCC = 3.3 V
± 0.3 V
MIN MAX
MIN MAX
MIN MAX
FROM
(INPUT)
TO
(OUTPUT)
VCC = 1.8 V
A or B
B or A
(1)
1
3.7
3.6
1
3
ns
1
5.7
5.4
1
4.4
ns
1
5.2
4.6
1
4.1
ns
TYP
ten
OE
A or B
(1)
tdis
OE
A or B
(1)
UNIT
This information was not available at the time of publication.
5
SN74ALVCH16245
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES015L – JULY 1995 – REVISED NOVEMBER 2005
Operating Characteristics
TA = 25°C
PARAMETER
Cpd
(1)
6
Power dissipation
capacitance
Outputs enabled
Outputs disabled
TEST CONDITIONS
CL = 50 pF,
This information was not available at the time of publication.
f = 10 MHz
VCC = 1.8 V
VCC = 2.5 V
VCC = 3.3 V
TYP
TYP
TYP
(1)
22
29
(1)
4
5
UNIT
pF
SN74ALVCH16245
16-BIT BUS TRANSCEIVER
WITH 3-STATE OUTPUTS
www.ti.com
SCES015L – JULY 1995 – REVISED NOVEMBER 2005
PARAMETER MEASUREMENT INFORMATION
VLOAD
S1
RL
From Output
Under Test
Open
GND
CL
(see Note A)
RL
TEST
S1
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
VLOAD
GND
LOAD CIRCUIT
INPUT
VCC
1.8 V
2.5 V ± 0.2 V
2.7 V
3.3 V ± 0.3 V
VI
tr/tf
VCC
VCC
2.7 V
2.7 V
≤2 ns
≤2 ns
≤2.5 ns
≤2.5 ns
VM
VLOAD
CL
RL
V∆
VCC/2
VCC/2
1.5 V
1.5 V
2 × VCC
2 × VCC
6V
6V
30 pF
30 pF
50 pF
50 pF
1 kΩ
500 Ω
500 Ω
500 Ω
0.15 V
0.15 V
0.3 V
0.3 V
tw
VI
Timing
Input
VM
VM
VM
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VM
VM
0V
tPLH
Output
Control
(low-level
enabling)
tPLZ
VLOAD/2
VM
tPZH
VOH
VM
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
VM
0V
Output
Waveform 1
S1 at VLOAD
(see Note B)
tPHL
VM
VI
VM
tPZL
VI
Input
VOLTAGE WAVEFORMS
PULSE DURATION
th
VI
Data
Input
VM
0V
0V
tsu
Output
VI
VM
Input
Output
Waveform 2
S1 at GND
(see Note B)
VOL + V∆
VOL
tPHZ
VOH
VM
VOH − V∆
0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
7
PACKAGE OPTION ADDENDUM
www.ti.com
18-Sep-2008
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
74ALVCH16245DGGRG4
ACTIVE
TSSOP
DGG
48
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
74ALVCH16245DGVRE4
ACTIVE
TVSOP
DGV
48
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
74ALVCH16245DGVRG4
ACTIVE
TVSOP
DGV
48
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
74ALVCH16245DLG4
ACTIVE
SSOP
DL
48
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
74ALVCH16245DLRG4
ACTIVE
SSOP
DL
48
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
74ALVCH16245GRDR
ACTIVE
BGA MI
CROSTA
R JUNI
OR
GRD
54
1000
SNPB
Level-1-240C-UNLIM
74ALVCH16245ZQLR
ACTIVE
BGA MI
CROSTA
R JUNI
OR
ZQL
56
1000 Green (RoHS &
no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
74ALVCH16245ZRDR
ACTIVE
BGA MI
CROSTA
R JUNI
OR
ZRD
54
1000 Green (RoHS &
no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
SN74ALVCH16245DGGR
ACTIVE
TSSOP
DGG
48
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ALVCH16245DGVR
ACTIVE
TVSOP
DGV
48
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ALVCH16245DL
ACTIVE
SSOP
DL
48
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ALVCH16245DLR
ACTIVE
SSOP
DL
48
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74ALVCH16245KR
NRND
GQL
56
1000
SNPB
Level-1-240C-UNLIM
BGA MI
CROSTA
R JUNI
OR
Pins Package Eco Plan (2)
Qty
25
25
TBD
TBD
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
18-Sep-2008
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF SN74ALVCH16245 :
• Enhanced Product: SN74ALVCH16245-EP
NOTE: Qualified Version Definitions:
• Enhanced Product - Supports Defense, Aerospace and Medical Applications
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Aug-2009
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
74ALVCH16245GRDR
BGA MI
CROSTA
R JUNI
OR
GRD
54
1000
330.0
16.4
5.8
8.3
1.55
8.0
16.0
Q1
74ALVCH16245ZQLR
BGA MI
CROSTA
R JUNI
OR
ZQL
56
1000
330.0
16.4
4.8
7.3
1.45
8.0
16.0
Q1
74ALVCH16245ZQLR
BGA MI
CROSTA
R JUNI
OR
ZQL
56
1000
330.0
16.4
4.8
7.3
1.5
8.0
16.0
Q1
74ALVCH16245ZRDR
BGA MI
CROSTA
R JUNI
OR
ZRD
54
1000
330.0
16.4
5.8
8.3
1.55
8.0
16.0
Q1
SN74ALVCH16245DGGR TSSOP
DGG
48
2000
330.0
24.4
8.6
15.8
1.8
12.0
24.0
Q1
SN74ALVCH16245DGVR TVSOP
DGV
48
2000
330.0
16.4
7.1
10.2
1.6
12.0
16.0
Q1
DL
48
1000
330.0
32.4
11.35
16.2
3.1
16.0
32.0
Q1
GQL
56
1000
330.0
16.4
4.8
7.3
1.45
8.0
16.0
Q1
SN74ALVCH16245DLR
SN74ALVCH16245KR
SSOP
BGA MI
CROSTA
R JUNI
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Aug-2009
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
7.3
1.5
8.0
W
Pin1
(mm) Quadrant
OR
SN74ALVCH16245KR
BGA MI
CROSTA
R JUNI
OR
GQL
56
1000
330.0
16.4
4.8
16.0
Q1
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
74ALVCH16245GRDR
BGA MICROSTAR
JUNIOR
GRD
54
1000
346.0
346.0
33.0
74ALVCH16245ZQLR
BGA MICROSTAR
JUNIOR
ZQL
56
1000
346.0
346.0
33.0
74ALVCH16245ZQLR
BGA MICROSTAR
JUNIOR
ZQL
56
1000
333.2
345.9
28.6
74ALVCH16245ZRDR
BGA MICROSTAR
JUNIOR
ZRD
54
1000
346.0
346.0
33.0
SN74ALVCH16245DGGR
TSSOP
DGG
48
2000
346.0
346.0
41.0
SN74ALVCH16245DGVR
TVSOP
DGV
48
2000
346.0
346.0
33.0
SN74ALVCH16245DLR
SSOP
DL
48
1000
346.0
346.0
49.0
SN74ALVCH16245KR
BGA MICROSTAR
JUNIOR
GQL
56
1000
346.0
346.0
33.0
SN74ALVCH16245KR
BGA MICROSTAR
GQL
56
1000
333.2
345.9
28.6
Pack Materials-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Aug-2009
Device
Package Type
Package Drawing
Pins
SPQ
JUNIOR
Pack Materials-Page 3
Length (mm)
Width (mm)
Height (mm)
MECHANICAL DATA
MSSO001C – JANUARY 1995 – REVISED DECEMBER 2001
DL (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0.025 (0,635)
0.0135 (0,343)
0.008 (0,203)
48
0.005 (0,13) M
25
0.010 (0,25)
0.005 (0,13)
0.299 (7,59)
0.291 (7,39)
0.420 (10,67)
0.395 (10,03)
Gage Plane
0.010 (0,25)
1
0°–ā8°
24
0.040 (1,02)
A
0.020 (0,51)
Seating Plane
0.110 (2,79) MAX
0.004 (0,10)
0.008 (0,20) MIN
PINS **
28
48
56
A MAX
0.380
(9,65)
0.630
(16,00)
0.730
(18,54)
A MIN
0.370
(9,40)
0.620
(15,75)
0.720
(18,29)
DIM
4040048 / E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
Falls within JEDEC MO-118
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998
DGG (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0,27
0,17
0,50
48
0,08 M
25
6,20
6,00
8,30
7,90
0,15 NOM
Gage Plane
1
0,25
24
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
48
56
64
A MAX
12,60
14,10
17,10
A MIN
12,40
13,90
16,90
DIM
4040078 / F 12/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated