SN75LBC776 SINGLE-CHIP GeoPort TRANSCEIVER SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996 D D D D D D D D Single-Chip Interface Solution for the 9-terminal GeoPort Host (DTE) Designed to Operate up to 4 Mbit/s Full Duplex Single 5-V Supply Operation 6-kV ESD Protection on All Terminals Backward compatible With AppleTalk and LocalTalk Combines Multiple Components into a Single-chip Solution Complements the SN75LBC777 9-Terminal GeoPort Peripheral (DCE) Interface Device LinBiCMOS Process Technology DW PACKAGE (TOP VIEW) DA1 VEE C– C+ SHDN DZ2 DY2 GND DEN DA2 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 GND VCC DY1 RY3 RB3 RA2 RY2 RB1 RA1 RY1 description The SN75LBC776 is a low-power LinBiCMOS device that incorporates the drivers and receivers for a 9-pin GeoPort host interface. GeoPort combines hybrid EIA/TIA-422-B and EIA/TIA-423-B drivers and receivers to transmit data up to four megabits per second (Mbit/s) full duplex. GeoPort is a serial communications standard that is intended to replace the RS-232, Appletalk, and LocalTalk printer ports all in one connector in addition to providing real-time data transfer capability. It provides point-to-point connections between GeoPort-compatible devices with data transmission rates up to 4 Mbit/s full duplex and a hot-plug feature. Applications include connection to telephony, integrated services digital network (ISDN), digital sound and imaging, fax-data modems, and other serial and parallel connections. The GeoPort is backwardly compatible to both LocalTalk and AppleTalk. While the SN75LBC776 is powered-off (VCC = 0) the outputs are in a high-impedance state. When the shutdown (SHDN) terminal is high, the charge pump is powered down and the outputs are in a high-impedance state. The driver enable (DEN) terminal sends the outputs of the differential driver into a high-impedance state with a high input signal. All drivers and receivers have fail-safe mechanisms to ensure a high output state when the inputs are left open. A switched-capacitor voltage converter generates the negative voltage required from a single 5-V supply using four 0.1-µF capacitors, two capacitors between the C+ and C- terminals and two capacitors between VEE and ground. The SN75LBC776 is characterized for operation over the 0°C to 70°C temperature range. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. GeoPort, LocalTalk, and AppleTalk are trademarks of Apple Computer, Incorporated. LinBiCMOS is a trademark of Texas Instruments Incorporated. Copyright 1996, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SN75LBC776 SINGLE-CHIP GeoPort TRANSCEIVER SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996 DRIVER FUNCTION TABLE† INPUT DA1 INPUT DA2 ENABLE SHDN ENABLE DEN H X L L X L X H OUTPUT OUTPUT DY1 DY2 DZ2 X L X X X H X X L L X H L H X L L L X L OPEN OPEN L L L H L X X H X Z Z Z X X X H X Z Z X X OPEN OPEN Z Z Z † H = high level L = low level X = irrelevant ? = indeterminate Z = high impedance (off) RECEIVER FUNCTION TABLE† INPUT RA1 RB1 INPUT RA2 & RB3 ENABLE SHDN OUTPUT RY1 OUTPUT RY2 OUTPUT RY3 H L H L H H L L H L L L L H OPEN OPEN L H H H SHORT‡ SHORT‡ L ? ? ? X H Z Z Z Z Z X X X X X † H = high level L = low level ‡ – 0.2 V < VID < 0.2 V OPEN X = irrelevant Z ? = indeterminate Z = high impedance (off) function logic diagram (positive logic) DA2 DEN RY1 DA1 7 10 6 9 11 1 14 RY3 17 SHDN VCC GND 2 DZ2 12 RA1 13 RB1 18 15 RY2 DY2 16 DY1 RA2 RB3 5 19 20 Charge Pump POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2 VEE (– 5 V) SN75LBC776 SINGLE-CHIP GeoPort TRANSCEIVER SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Positive supply voltage range, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 to 7 V Negative supply voltage range, VEE (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 7 to 0.5 V Receiver input voltage range (RA, RB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 15 V to 15 V Receiver differential input voltage range, VID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 12 to 12 V Receiver output voltage range (RY) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to 5.5 V Driver output voltage range (Power Off) (DY1, DY2, DZ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 15 V to 15 V Driver output voltage range (Power On) (DY1, DY2, DZ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 11 V to 11 V Driver input voltage range (DA, SHND, DEN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to VCC+ 0.4 V Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Electrostatic discharge (see Note 2): (Bus terminals), Class 3, A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 kV (Bus terminals), Class 3, B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 V (All terminals), Class 3, A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 kV (All terminals), Class 3, B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500 V Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values are with respect to network ground terminal unless otherwise noted. 2. This parameter is measured in accordance with MIL-STD-883C, Method 3015.7. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING OPERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING DW 1125 mW 9.0 mW/°C 720 mW POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SN75LBC776 SINGLE-CHIP GeoPort TRANSCEIVER SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996 recommended operating conditions Supply voltage, VCC High-level input voltage, VIH DA, SHDN, DEN Low-level input voltage, VIL DA, SHDN, DEN MIN NOM MAX UNIT 4.75 5 5.25 V 5.25 V 0.8 V V 2 Receiver common-mode input voltage, VIC –7 7 Receiver differential input voltage, VID –12 12 Voltage-converter filter capacitance 0.2 Voltage-converter filter-capacitor equivalent series resistance (ESR) Operating free-air temperature, TA V µF 0 0.2 Ω 70 °C driver electrical characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER VOH TEST CONDITIONS High level output voltage High-level Single g ended,, See Figure 1 VOL Low level output voltage Low-level |VOD| Magnitude of differential output voltage |(V(DY) – V(DZ)| ∆|VOD| Change in differential voltage magnitude VOC Common-mode output voltage |∆VOC(SS)| Magnitude of change, common-mode steady state output voltage |∆VOC(PP)| Magnitude of change, common-mode peak-to-peak output voltage ICC Supply current IOZ IOS High-impedance output current RL = 120 Ω,, TYP RL = 12 kΩ 3.6 4.53 RL = 120 Ω 2 3.63 V V – 3.6 V RL = 120 Ω – 2.7 – 1.8 V 4 V 250 3 200 See Figure 3 700 SHDN = DEN = 0 V, No load SHDN = DEN = 5 V, No load VO = –10 V to 10 V, VO = – 5 V to 5 V VCC = 0 or 5 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT – 4.53 –1 Short-circuit output current (see Note 3) MAX RL = 12 kΩ g See Figure 2 NOTE 3: Not more than one output should be shorted at one time. 4 MIN 7 ± 170 mV V mV mV 15 mA 100 µA ±100 µA ± 450 mA SN75LBC776 SINGLE-CHIP GeoPort TRANSCEIVER SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996 driver switching characteristics over operating free-air temperature range (unless otherwise noted) TYP MAX tPHL tPLH Propagation delay time, high-to-low level output PARAMETER 42 75 Propagation delay time, low-to-high level output 41 75 ns tPZL tPZH Driver output enable time to low-level output 25 100 µs 25 100 µs tPLZ tPHZ Driver output disable time from low-level output 28 100 ns 37 100 ns tr tf Rise time 10 25 75 ns Fall time 10 23 75 ns tPHL tPLH Propagation delay time, high-to-low level output 40 75 ns Propagation delay time, low-to-high level output 42 75 ns tPZL Driver output enable time to low-level low level output SHDN 25 100 µs DEN 29 150 ns SHDN 25 100 µs 35 150 ns 28 100 ns DEN 34 100 ns SHDN 37 100 ns DEN 34 100 ns tPZH tPLZ TEST CONDITIONS Driver output enable time to high-level output MIN Single g ended,, See Figure 4 SHDN Driver output disable time from high-level output high level output Driver output enable time to high-level Driver output disable time from low-level low level output DEN Differential,, See Figure 5 SHDN UNIT ns tPHZ Driver output disable time from high-level high level output tr tf Rise time 10 27 75 ns Fall time 10 26 75 ns tSK(p) Pulse skew, |tPLH – tPHL| 22 ns receiver electrical characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VIT+ VIT– Positive-going input threshold voltage Vhys VOH Differential input voltage hysteresis (VIT+ – VIT–) VOL Low-level output voltage IOS Short circuit output current Short-circuit VO = 0 VO = VCC RI Input resistance VCC = 0 or 5.25 V, VI = –12 V to 12 V TYP MAX 200 See Figure 6 Negative-going input threshold voltage High-level output voltage (see Note 4) MIN – 200 50 VIC = 0, VIC = 0, IOH = –2 mA, IOL = 2 mA, See Figure 6 2 See Figure 6 – 85 6 V 0.8 – 45 47 30 mV mV 4.9 0.2 UNIT + 85 V mA kΩ NOTE 4: When the inputs are left unconnected, receivers one and two interpret these as high-level inputs and receiver three interprets these as low-level inputs so that all outputs are at a high level. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SN75LBC776 SINGLE-CHIP GeoPort TRANSCEIVER SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996 receiver switching characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS TYP MAX 31 75 ns 30 75 ns 15 30 ns 15 30 ns 20 ns Receiver output enable time to low level output 35 100 ns tPZH tPLZ Receiver output enable time to high level output 32 100 ns 21 100 ns tPHZ tPZL Receiver output disable time from high level output 21 100 ns Receiver output enable time to low level output 12 25 µs tPZH tPLZ Receiver output enable time to high level output 12 25 µs 25 100 ns tPHZ Receiver output disable time from high level output 125 400 ns tPHL tPLH Propagation delay time, high-to-low-level output tr tf Rise time tSK(P) tPZL Pulse skew |tPLH–tPHL| 6 Propagation delay time, low-to-high level output RL = 2 kΩ, kΩ See Figure 6 CL = 15 pF, F Fall time Receiver output disable time from low level output Receiver output disable time from low level output Differential,, See Figure 7 Single g ended, See Figure 7 POST OFFICE BOX 655303 CL =50 pF,, CL =50 pF, • DALLAS, TEXAS 75265 MIN UNIT SN75LBC776 SINGLE-CHIP GeoPort TRANSCEIVER SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996 PARAMETER MEASUREMENT INFORMATION CL IO CL II IO DY1 II DA1 VO CL DA2 RL VI RL DY2 VO VI SHDN IO DZ2 VO SHDN or DEN NOTE A: CL = 50 pF RL TEST CIRCUIT Figure 1. Single-Ended Driver DC Parameter Test 60 Ω DY2 II IO VOD DA2 VI 60 Ω DZ2 50 pF SHDN or DEN TEST CIRCUIT Figure 2. Differential Driver DC Parameter Test 60 Ω DY2 VOD DA2 VI DZ2 60 Ω VOC 15 pF SHDN or DEN TEST CIRCUIT (see Note A) 3V VI 1.5 v 1.5 v 0V VOC 0V V VOC(PP) OC(SS) VOLTAGE WAVEFORM NOTE A: Measured 3dB bandwidth = 300 MHz Figure 3. Differential-Driver Common-Mode Output Voltage Tests POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SN75LBC776 SINGLE-CHIP GeoPort TRANSCEIVER SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996 PARAMETER MEASUREMENT INFORMATION CL IO CL = 50 pF II DY1 DA1 RL DY2 VO CL DA2 RL = 120 Ω VO VI SHDN IO DZ2 RL VO SHDN or DEN TEST CIRCUIT (see Note A) 3V SHDN or DEN 1.5 V 1.5 V 1.5 V 1.5 V 0V 3V 1.5 V DA 1.5 V 0V tPLH tPHL tPLZ tPZL 90% DY1, DZ2 tPHZ 90% 10% 90% 50% 10% 10% 90% 0V 50% 10% VOL tPZH tf tPLZ tr tPHL tPHZ tPLH VOH tPZH DY2 90% 90% tPZL 90% 50% 10% 10% VOH 90% 50% 10% tf tr VOLTAGE WAVEFORM (see Note B) NOTES: A. CL = 50 pF, RL = 120 Ω B. The input waveform tr, tf ≤ 10 ns. Figure 4. Single-Ended Driver Propagation and Transition Times 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 0V 10% VOL SN75LBC776 SINGLE-CHIP GeoPort TRANSCEIVER SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996 PARAMETER MEASUREMENT INFORMATION RL = 60 Ω DY2 VOD DA2 VI RL = 60 Ω DZ2 50 pF SHDN or DEN TEST CIRCUIT 3V SHDN or DEN 1.5 V 1.5 V 1.5 V 1.5 V 0V 3V 1.5 V DA 1.5 V 0V tPHL tPLH tPHZ tPZH 90% VOD 90% 90% VOD(H) 90% 10% 50% tPLZ 50% 10% 0V 10% 10% tPZL VOD(L) tf tr VOLTAGE WAVEFORM (see Note A) Figure 5. Differential Driver Propagation and Transition Times VCC II Input VI 2.5 V VI 2 kΩ RA + RB _ RY 15 pF 0V 0V – 2.5 V IO tPLH Output VO SHDN VO tPHL 90% 90% 10% tr TEST CIRCUIT VOH 1.5 V 10% V OL tf VOLTAGE WAVEFORM (see Note A) Figure 6. Receiver Propagation and Transition Times NOTE A: The input waveform tr, tf ≤ 10 ns. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 SN75LBC776 SINGLE-CHIP GeoPort TRANSCEIVER SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996 PARAMETER MEASUREMENT INFORMATION VCC – 2.5 V or 2.5 V RA + RB _ RY RL = 500 Ω S1 CL = 50 pF SHDN TEST CIRCUIT 3V SHDN 1.5 V 1.5 V 0V tPLZ tPZL VCC S1 at VCC 90% 10% VO tPHZ VOL tPZH VOH 90% S1 at GND 10% 0V VOLTAGE WAVEFORM (see Note A) NOTE A: The input waveform tr, tf ≤ 10 ns. Figure 7. Receiver Enable and Disable Test Circuit and Waveforms 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN75LBC776 SINGLE-CHIP GeoPort TRANSCEIVER SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996 APPLICATION INFORMATION RxD GeoPort Controller and USART 11 TxD 10 SHDN DTR 5 RTXC CTS RTS VCC 0.1 µF + 0.1 µF Standard Host 19 SN75LBC776 9-Terminal DTE 4 + 3 GeoPort Host SN75LBC776 9-Terminal DTE 1 RESET/ATT 14 SCLK 17 TxHS/WAKE-UP 9 13 RxD – 12 RxD + 13 RxD – 12 RxD + 7 6 TxD + TxD – 18 15 GND RESET/ATT SCLK Power 16 TxHS/WAKE-UP 16 TxHS/WAKE-UP 7 TxD + 6 TxD – 6 3 –5 V (see Note A) 0.1 µF VEE + 0.1 µF GND 2 + 8 20 GeoPort Peripheral Device 9-Pin DCE 18 RESET/ATT 15 SCLK 7 VCC 8 4 9 1 2 5 Power NOTE A: The AVX 0603YC104MATXA or equivalent is one of the possible capacitors that can be used as the charge pump capacitor. Figure 8. GeoPort 9-Terminal DTE Connection Application POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 SN75LBC776 SINGLE-CHIP GeoPort TRANSCEIVER SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996 APPLICATION INFORMATION generator characteristics PARAMETER TEST CONDITIONS EIA/TIA-232/V.28 MIN Open circuit |VO| Output voltage magnitude 3 kΩ ≤ RL ≤ 7 kΩ RL = 450 Ω VO(RING) IOS Output voltage ringing Power off output current Power-off SR Output voltage slew rate 300 VCC = 0, |VO| < 6 V NA Transition time 25 4 6 15 NA 3.7 V 3.6 NA V NA ± 3 V to ± 3 V 10% to 90% 0.04 60 mA Ω 300 ±100 V 5% 150 NA MAX 13.2 10% 100 30 ± 3.3 V to ± 3.3 V MIN UNIT MAX NA VO = 0 VCC = 0, |VO| < 2 V 562 MIN NA Short-circuit output current IO(OFF) tt 5 EIA/TIA-423/V.10 MAX µA NA NA 4 30 V/µs NA 0.22 2.1 NA µs ui† NA ui† NA NA 0.3 † ui is the unit interval and is the inverse of the signaling rate (bit transmit time). receiver characteristics PARAMETER |VI| Input voltage magnitude VIT Input voltage threshold RI Input resistance 12 TEST CONDITIONS EIA/TIA-232/V.28 MIN MAX EIA/TIA-423/V.10 MIN 25 |VI| < 15 V –3 |VI| < 10 V NA 3 V < |VI| < 15 V |VI| < 10 V POST OFFICE BOX 655303 3 3 NA • DALLAS, TEXAS 75265 MIN 10 NA – 0.2 7 MAX 562 25 –3 0.2 MAX 3 NA NA 3 4 NA 7 UNIT V V kΩ kΩ SN75LBC776 SINGLE-CHIP GeoPort TRANSCEIVER SLLS221A – NOVEMBER 1995 – REVISED JANUARY 1996 MECHANICAL INFORMATION DW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 16 PIN SHOWN PINS ** 0.050 (1,27) 16 20 24 28 A MAX 0.410 (10,41) 0.510 (12,95) 0.610 (15,49) 0.710 (18,03) A MIN 0.400 (10,16) 0.500 (12,70) 0.600 (15,24) 0.700 (17,78) DIM 0.020 (0,51) 0.014 (0,35) 16 0.010 (0,25) M 9 0.419 (10,65) 0.400 (10,15) 0.010 (0,25) NOM 0.299 (7,59) 0.293 (7,45) Gage Plane 0.010 (0,25) 1 8 0°– 8° A 0.050 (1,27) 0.016 (0,40) Seating Plane 0.104 (2,65) MAX 0.012 (0,30) 0.004 (0,10) 0.004 (0,10) 4040000 / B 10/94 NOTES: A. B. C. D. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). Falls within JEDEC MS-013 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 1998, Texas Instruments Incorporated