Freescale Semiconductor Data Sheet: Technical Data Document Number: MPC5510 Rev. 3, 3/2009 MPC5510 MPC5510 Microcontroller Family Data Sheet MPC5510 Family Features • Single issue, 32-bit CPU core complex (e200z1) – Compliant with the Power Architecture™ embedded category – Includes an instruction set enhancement allowing variable length encoding (VLE) for code size footprint reduction. With the optional encoding of mixed 16-bit and 32-bit instructions, it is possible to achieve significant code size footprint reduction. • Up to 1.5-Mbyte on-chip flash with flash control unit (FCU) • Up to 80 Kbytes on-chip SRAM • Memory protection unit (MPU) with up to sixteen region descriptors and 32-byte region granularity • Interrupt controller (INTC) capable of handling selectable-priority interrupt sources • Frequency modulated Phase-locked loop (FMPLL) • Crossbar switch architecture for concurrent access to peripherals, flash, or RAM from multiple bus masters • 16-channel enhanced direct memory access controller (eDMA) • Boot assist module (BAM) supports internal flash programming via a serial link (CAN or SCI) • Timer supports input/output channels providing a range of 16-bit input capture, output compare, and pulse width modulation functions (eMIOS200) • Up to 40-channel 12-bit analog-to-digital converter (ADC) • Up to four serial peripheral interface (DSPI) modules • Media Local Bus (MLB) emulation logic (works with two DSPIs, the e200z0, the eDMA, and system RAM to create a 3-pin or 5-pin 256Fs MLB protocol) • Up to eight serial communication interface (eSCI) modules • Up to six enhanced full CAN (FlexCAN) modules with configurable buffers • One inter IC communication interface (I2C) module MAPBGA–208 MAPBGA–225 17 15 mm mm xx 17 15 mm mm LQFP–144 QFN12 20 mm x 20 mm ##_mm_x_##mm SOT-343R ##_mm_x_##mm LQFP–176 24 mm x 24 mm PKG-TBD ## mm x ## mm • Up to 144 configurable general purpose pins supporting input and output operations and 3.0V through 5.5V supply levels • Real-time counter (RTC_API) with clock source from external 32-kHz crystal oscillator, internal 32-kHz or 16-MHz oscillator and supporting wake-up with selectable 1-second resolution and > 1-hour timeout, or 1-millisecond resolution with maximum timeout of one second • Up to eight periodic interrupt timers (PIT) with 32-bit counter resolution • Nexus development interface (NDI) per IEEE-ISTO 5001-2003 Class Two Plus standard • Device/board test support per Joint Test Action Group (JTAG) of IEEE (IEEE 1149.1) • On-chip voltage regulator (VREG) for regulation of 5V input to 1.5V and 3.3V internal supply levels • Optional e200z0, second Power Architecture based I/O processor with VLE instruction set • Optional FlexRAY controller • Optional external bus interface (EBI) module This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © Freescale Semiconductor, Inc., 2007-2009. All rights reserved. TBD Table of Contents 1 2 3 4 Pin Assignments and Reset States . . . . . . . . . . . . . . . . . . . . .4 1.1 Signal Properties and Multiplexing Summary . . . . . . . . .4 1.2 Power and Ground Supply Summary . . . . . . . . . . . . . .15 1.3 Pinout – 144 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 1.4 Pinout – 176 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 1.5 Pinout – 208 PBGA. . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 2.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 2.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .21 2.2.1 General Notes for Specifications at Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . .21 2.3 ESD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .24 2.4 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . .25 2.5 Operating Current Specifications . . . . . . . . . . . . . .27 2.6 I/O Pad Current Specifications . . . . . . . . . . . . . . . . . . .29 2.7 Low Voltage Characteristics . . . . . . . . . . . . . . . . . . . . .30 2.8 Oscillators Electrical Characteristics. . . . . . . . . . . . . . .31 2.9 FMPLL Electrical Characteristics . . . . . . . . . . . . . . . . .33 2.10 eQADC Electrical Characteristics . . . . . . . . . . . . . . . . .34 2.11 Flash Memory Electrical Characteristics. . . . . . . . . . . .35 2.12 Pad AC Specifications. . . . . . . . . . . . . . . . . . . . . . . . . .36 2.13 AC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 2.13.1 Reset and Boot Configuration Pins . . . . . . . . . .37 2.13.2 External Interrupt (IRQ) and Non-Maskable Interrupt (NMI) Pins . . . . . . . . . . . . . . . . . . . . .37 2.13.3 JTAG (IEEE 1149.1) Interface . . . . . . . . . . . . . .38 2.13.4 Nexus Debug Interface . . . . . . . . . . . . . . . . . . .41 2.13.5 External Bus Interface (EBI) . . . . . . . . . . . . . . .43 2.13.6 Enhanced Modular I/O Subsystem (eMIOS) . . .46 2.13.7 Deserial Serial Peripheral Interface (DSPI) . . . .47 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Product Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 4.1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 List of Tables Table 1. MPC5510 Signal Properties . . . . . . . . . . . . . . . . . . . . . . .4 Table 2. MPC5510 Power/Ground . . . . . . . . . . . . . . . . . . . . . . . .15 Table 3. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . .20 Table 4. Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . .21 Table 5. ESD Ratings, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Table 6. DC Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . .25 Table 7. Operating Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Table 8. I/O Pad Average DC Current . . . . . . . . . . . . . . . . . . . . . .29 Table 9. Low Voltage Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Table 10. 3.3V High Frequency External Oscillator. . . . . . . . . . . .31 Table 11. 5V Low Frequency (32 kHz) External Oscillator . . . . . .31 Table 12. 5V High Frequency (16 MHz) Internal RC Oscillator . . .32 Table 13. 5V Low Frequency (32 kHz) Internal RC Oscillator . . . 32 Table 14. FMPLL Electrical Specifications . . . . . . . . . . . . . . . . . 33 Table 15. eQADC Conversion Specifications (Operating) . . . . . . 34 Table 16. Flash Program and Erase Specifications . . . . . . . . . . . 35 Table 17. Flash EEPROM Module Life (Full Temperature Range) 35 Table 18. Pad AC Specifications (VDDE = 3.0V - 5.5V) . . . . . . . 36 Table 19. Reset and Boot Configuration Timing . . . . . . . . . . . . . 37 Table 20. IRQ/NMI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Table 21. JTAG Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . 38 Table 22. Nexus Debug Port Timing . . . . . . . . . . . . . . . . . . . . . . 41 Table 23. External Bus Operation Timing . . . . . . . . . . . . . . . . . . 43 Table 24. eMIOS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Table 25. DSPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Table 26. Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Table 27. Revision History of MPC5510 Data Sheet . . . . . . . . . . 53 List of Figures Figure 1. MPC5510 Family Block Diagram . . . . . . . . . . . . . . . . . . 3 Figure 2. MPC5510 Pinout – 144 LQFP . . . . . . . . . . . . . . . . . . . 17 Figure 3. MPC5510 Pinout – 176 LQFP . . . . . . . . . . . . . . . . . . . 18 Figure 4. MPC5510 Pinout – 208 PBGA . . . . . . . . . . . . . . . . . . . 19 Figure 5. Pad Output Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure 6. Reset and Boot Configuration Timing. . . . . . . . . . . . . . 37 Figure 7. IRQ and NMI Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure 8. JTAG Test Clock Input Timing. . . . . . . . . . . . . . . . . . . . 38 Figure 9. JTAG Test Access Port Timing . . . . . . . . . . . . . . . . . . . 39 Figure 10. JTAG JCOMP Timing . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure 11. JTAG Boundary Scan Timing . . . . . . . . . . . . . . . . . . . 40 Figure 12. Nexus Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . 41 Figure 13. Nexus TDI, TMS, TDO Timing . . . . . . . . . . . . . . . . . . 42 Figure 14. CLKOUT Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Figure 15. Synchronous Output Timing . . . . . . . . . . . . . . . . . . . . 44 Figure 16. Synchronous Input Timing . . . . . . . . . . . . . . . . . . . . . 45 Figure 17. Address Latch Enable (ALE) Timing . . . . . . . . . . . . . 46 Figure 18. DSPI Classic SPI Timing — Master, CPHA = 0 . . . . . 48 Figure 19. DSPI Classic SPI Timing — Master, CPHA = 1 . . . . . 48 Figure 20. DSPI Classic SPI Timing — Slave, CPHA = 0 . . . . . . 49 Figure 21. DSPI Classic SPI Timing — Slave, CPHA = 1 . . . . . . 49 Figure 22. DSPI Modified Transfer Format Timing — Master, CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 23. DSPI Modified Transfer Format Timing — Master, CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Figure 24. DSPI Modified Transfer Format Timing — Slave, CPHA = 0 51 Figure 25. DSPI Modified Transfer Format Timing — Slave, CPHA = 1 51 Figure 26. DSPI PCS Strobe (PCSS) Timing . . . . . . . . . . . . . . . 51 MPC5510 Microcontroller Family Data Sheet, Rev. 3 2 Freescale Semiconductor Oscillators e200z1 Core General Purpose Registers (32 x 32-bit) Integer Execution Unit e200z0 Core INTC Integer Execution Unit Timers JTAG Multiply Unit Branch Unit Instruction Unit PPC & VLE FMPLL NDI Multiply Unit FlexRay Instruction Unit VLE eDMA General Purpose Registers (32 x 32-bit) Branch Unit Load/Store Unit Instruction Bus VREG MPC5510 Load/Store Unit Data Bus Crossbar Switch (XBAR) Private Instruction Bus Memory Protection Unit (MPU) Peripheral Bridge FCU Flash (ECC) EBI eSCI DSPI FlexCAN ADC I2C BAM eMIOS200 SIU PIT RAM Controller SRAM (ECC) MLB LEGEND ADC BAM EBI ECC DSPI eDMA eMIOS200 eSCI FCU FlexCAN – Analog to Digital Converter modules – Boot Assist Module – External Bus Interface module – Error Correction Code – Serial Peripherals Interface controller module – enhanced Direct Memory Controller module – Timed Input Output module – Serial Communications Interface modules – Flash Controller Unit – Controller Area Network controller modules FlexRay – Dual Channel FlexRay controller FMPLL – Frequency Modulated Phase Locked Loop module I 2C – Inter IC Controller modules INTC – Interrupt Controller module JTAG – Joint Test Action Group interface MLB – Media Local Bus emulation logic NDI – Nexus Debug Interface module PIT – Periodic Interrupt Timer module SIU – System Integration module VREG – Voltage Regulator Figure 1. MPC5510 Family Block Diagram MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 3 Pin Assignments and Reset States 1 Pin Assignments and Reset States 1.1 Signal Properties and Multiplexing Summary Table 1 shows the signal properties for each pin on the MPC5510. For all port pins, which have an associated pad configuration register (SIU_PCRn register) to control its pin properties, the “Supported Pin Functions” column lists the functions associated with the programming of the SIU_PCRn[PA] bit field in the following order: GPIO, Function1, Function2 and Function3. If fewer than three functions plus GPIO are supported by a given pin, then the unused functions begin with Function3, then Function2, then Function1. Note that the GPIO number is the same number as the corresponding pad configuration register (SIU_PCRn) number. Table 1. MPC5510 Signal Properties GPIO Pin (PCR) Name Num1 Supported Functions2 Pad4 I/O Voltage3 Type Type Description Status During Reset5 Status After Reset5 Package Pin Locations 144 176 208 Port A (16) PA0 0 PA0 AN0 GPI eQADC Analog Input I I VDDA AE + IH — — 9 9 E3 PA1 1 PA1 AN1 GPI eQADC Analog Input I I VDDA AE + IH — — 8 8 E2 PA2 2 PA2 AN2 GPI eQADC Analog Input I I VDDA AE + IH — — 7 7 E1 PA3 3 PA3 AN3 GPI eQADC Analog Input I I VDDA AE + IH — — 6 6 D3 PA4 4 PA4 AN4 GPI eQADC Analog Input I I VDDA AE + IH — — 5 5 D2 PA5 5 PA5 AN5 GPI eQADC Analog Input I I VDDA AE + IH — — 4 4 D1 PA6 6 PA6 AN6 GPI eQADC Analog Input I I VDDA AE + IH — — 3 3 C2 PA7 7 PA7 AN7 GPI eQADC Analog Input I I VDDA AE + IH — — 2 2 C1 PA8 8 PA8 AN8/ANW GPI eQADC Analog Input I I VDDA AE + IH — — 143 175 A3 PA9 9 PA9 AN9/ANX GPI eQADC Analog Input I I VDDA AE + IH — — 142 174 C4 PA10 10 PA10 AN10/ANY GPI eQADC Analog Input I I VDDA AE + IH — — 140 172 D5 PA11 11 PA11 AN11/ANZ GPI eQADC Analog Input I I VDDA AE + IH — — 139 171 C5 PA12 12 PA12 AN12 GPI eQADC Analog Input I I VDDA AE + IH — — 138 170 B5 PA13 13 PA13 AN13 GPI eQADC Analog Input I I VDDA AE + IH — — 137 169 A5 PA14 14 PA14 AN14 EXTAL326 GPI eQADC Analog Input 32 kHz Crystal Oscillator Input I I I VDDA AE + IH — — 136 167 D6 MPC5510 Microcontroller Family Data Sheet, Rev. 3 4 Freescale Semiconductor Pin Assignments and Reset States Table 1. MPC5510 Signal Properties (continued) GPIO Pin (PCR) Name Num1 PA15 15 Supported Functions2 PA15 AN15 XTAL326 Pad4 I/O Voltage3 Type Type Description GPI eQADC Analog Input 32 kHz Crystal Oscillator Output I I O Status During Reset5 Status After Reset5 Package Pin Locations 144 176 208 VDDA AE + IH — — 135 165 C6 Port B (16) 16 PB0 AN28 eMIOS16 PCS_C5 GPIO eQADC Analog Input7 eMIOS Channel DSPI_C Peripheral Chip Select I/O I O O VDDE1 A + SH — — 134 162 C7 PB1 17 PB1 AN29 eMIOS17 PCS_C4 GPIO eQADC Analog Input7 eMIOS Channel DSPI_C Peripheral Chip Select I/O I O O VDDE1 A + SH — — 133 161 D7 PB2 18 PB2 AN30 eMIOS18 PCS_C3 GPIO eQADC Analog Input7 eMIOS Channel DSPI_C Peripheral Chip Select I/O I O O VDDE1 A + SH — — 132 160 A8 PB3 19 PB3 AN31 PCS_C2 GPIO eQADC Analog Input7 DSPI_C Peripheral Chip Select I/O I O VDDE1 A + SH — — 131 159 B8 PB4 20 PB4 AN32 PCS_C1 GPIO eQADC Analog Input7 DSPI_C Peripheral Chip Select I/O I O VDDE1 A + SH — — 130 158 C8 PB5 21 PB5 AN33 PCS_C0 GPIO eQADC Analog Input7 DSPI_C Peripheral Chip Select I/O I I/O VDDE1 A + SH — — 129 157 D8 PB6 22 PB6 AN34 SCK_C GPIO eQADC Analog Input7 DSPI_C Clock I/O I I/O VDDE1 A + SH — — 128 156 A9 PB7 23 PB7 AN35 SOUT_C GPIO eQADC Analog Input7 DSPI_C Data Output I/O I O VDDE1 A + SH — — 127 153 B9 PB8 24 PB8 AN36 SIN_C GPIO eQADC Analog Input7 DSPI_C Data Input I/O I I VDDE1 A + SH — — 126 152 C9 PB9 25 PB9 AN37 CNTX_D PCS_B4 GPIO eQADC Analog Input7 CAN_D Transmit DSPI_B Peripheral Chip Select I/O I O O VDDE1 A + SH — — 125 151 D9 PB10 26 PB10 AN38 CNRX_D PCS_B3 GPIO eQADC Analog Input7 CAN_D Receive DSPI_B Peripheral Chip Select I/O I I O VDDE1 A + SH — — 124 150 A10 27 PB11 AN39 eMIOS19 PCS_B5 GPIO eQADC Analog Input7 eMIOS Channel DSPI_B Peripheral Chip Select I/O I O O VDDE1 A + SH — — 123 149 B10 PB0 PB11 MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 5 Pin Assignments and Reset States Table 1. MPC5510 Signal Properties (continued) GPIO Pin (PCR) Name Num1 Supported Functions2 Pad4 I/O Voltage3 Type Type Description Status During Reset5 Status After Reset5 Package Pin Locations 144 176 208 PB12 28 PB12 TXD_G PCS_B4 GPIO SCI_G Transmit DSPI_B Peripheral Chip Select I/O O O VDDE1 SH — — — 164 A7 PB13 29 PB13 RXD_G PCS_B3 GPIO SCI_G Receive DSPI_B Peripheral Chip Select I/O I O VDDE1 SH — — — 163 B7 PB14 30 PB14 TXD_H GPIO SCI_H Transmit I/O O VDDE1 SH — — — 148 C10 PB15 31 PB15 RXD_H GPIO SCI_H Receive I/O I VDDE1 SH — — — 147 A11 Port C (16) 32 PC0 eMIOS0 FR_A_TX_EN AD24 GPIO eMIOS Channel FlexRay Channel A Transmit Enable EBI Muxed Address/Data I/O I/O O I/O VDDE1 MH — — 122 146 B11 PC1 33 PC1 eMIOS1 FR_A_TX AD16 GPIO eMIOS Channel FlexRay Channel A Transmit EBI Muxed Address/Data I/O I/O O I/O VDDE1 MH — — 121 145 C11 PC2 34 PC2 eMIOS2 FR_A_RX TS GPIO eMIOS Channel FlexRay Channel A Receive EBI Transfer Start I/O I/O I I/O VDDE1 MH — — 120 144 D11 PC3 35 PC3 eMIOS3 FR_DBG0 GPIO eMIOS Channel FlexRay Debug I/O I/O O VDDE1 MH — — 117 141 A12 PC4 36 PC4 eMIOS4 FR_DBG1 GPIO eMIOS Channel FlexRay Debug I/O I/O O VDDE1 SH — — 116 140 B12 PC5 37 PC5 eMIOS5 FR_DBG2 GPIO eMIOS Channel FlexRay Debug I/O I/O O VDDE1 SH — — 115 139 C12 PC6 38 PC6 eMIOS6 FR_DBG3 GPIO eMIOS Channel FlexRay Debug I/O I/O O VDDE1 SH — — 114 138 D12 PC7 39 PC7 eMIOS7 FR_B_RX GPIO eMIOS Channel FlexRay Channel B Receive I/O I/O I VDDE1 SH — — 113 137 A13 PC8 40 PC8 eMIOS8 FR_B_TX AD15 GPIO eMIOS Channel FlexRay Channel B Transmit EBI Muxed Address/Data I/O I/O O I/O VDDE1 MH — — 112 136 B13 PC9 41 PC9 eMIOS9 FR_B_TX_EN AD14 GPIO eMIOS Channel FlexRay Channel B Transmit Enable EBI Muxed Address/Data I/O I/O O I/O VDDE1 MH — — 111 135 C13 PC0 MPC5510 Microcontroller Family Data Sheet, Rev. 3 6 Freescale Semiconductor Pin Assignments and Reset States Table 1. MPC5510 Signal Properties (continued) GPIO Pin (PCR) Name Num1 Supported Functions2 Pad4 I/O Voltage3 Type Type Description Status During Reset5 Status After Reset5 Package Pin Locations 144 176 208 42 PC10 eMIOS10 PCS_C5 SCK_D GPIO eMIOS Channel DSPI_C Peripheral Chip Select DSPI_D Clock I/O I/O O I/O VDDE1 SH — — 110 134 A14 PC11 43 PC11 eMIOS11 PCS_C4 SOUT_D GPIO eMIOS Channel DSPI_C Peripheral Chip Select DSPI_D Serial Out I/O I/O O O VDDE1 SH — — 109 133 B14 PC12 44 PC12 eMIOS12 PSC_C3 SIN_D GPIO eMIOS Channel DSPI_C Peripheral Chip Select DSPI_D Serial In I/O I/O O I VDDE1 SH — — 108 132 B16 PC13 45 PC13 eMIOS13 PCS_A5 PCS_D0 GPIO eMIOS Channel DSPI_A Peripheral Chip Select DSPI_D Peripheral Chip Select I/O I/O O O VDDE1 SH — — 107 131 C15 PC14 46 PC14 eMIOS14 PCS_A4 PCS_D1 GPIO eMIOS Channel DSPI_A Peripheral Chip Select DSPI_D Peripheral Chip Select I/O I/O O O VDDE1 SH — — 106 130 C16 47 PC15 eMIOS15 PCS_A3 PCS_D2 GPIO eMIOS Channel DSPI_A Peripheral Chip Select DSPI_D Peripheral Chip Select I/O I/O O O VDDE1 SH — — 105 129 D14 PC10 PC15 Port D (16) PD0 48 PD0 CNTX_A PCS_D3 GPIO CAN_A Transmit DSPI_D Peripheral Chip Select I/O O O VDDE1 SH — — 104 128 D15 PD1 49 PD1 CNRX_A PCS_D4 GPIO CAN_A Receive DSPI_D Peripheral Chip Select I/O I O VDDE1 SH — — 103 127 D16 PD2 50 PD2 CNRX_B eMIOS10 BOOTCFG PCS_D5 GPIO CAN_B Receive eMIOS Channel Boot Configuration DSPI_D Peripheral Chip Select I/O I O I O VDDE1 SH BOOTCFG (Pulldown) GPI (Pulldown) 102 126 E14 PD3 51 PD3 CNTX_B eMIOS11 GPIO CAN_B Transmit eMIOS Channel I/O O O VDDE1 SH — — 101 125 E15 PD4 52 PD4 CNTX_C eMIOS12 GPIO CAN_C Transmit eMIOS Channel I/O O O VDDE1 SH — — 100 124 E16 PD5 53 PD5 CNRX_C eMIOS13 GPIO CAN_C Receive eMIOS Channel I/O I O VDDE1 SH — — 99 123 F13 MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 7 Pin Assignments and Reset States Table 1. MPC5510 Signal Properties (continued) GPIO Pin (PCR) Name Num1 Supported Functions2 Pad4 I/O Voltage3 Type Type Description Status During Reset5 Status After Reset5 Package Pin Locations 144 176 208 PD6 54 PD6 TXD_A eMIOS14 GPIO SCI_A Transmit eMIOS Channel I/O O O VDDE1 SH — — 98 122 F14 PD7 55 PD7 RXD_A eMIOS15 GPIO SCI_A Receive eMIOS Channel I/O I O VDDE1 SH — — 97 121 F15 PD8 56 PD8 TXD_B SCL_A GPIO SCI_B Transmit I2C Serial Clock Line I/O O I/O VDDE1 SH — — 94 118 G13 PD9 57 PD9 RXD_B SDA_A GPIO SCI_B Receive I2C Serial Data Line I/O I I/O VDDE1 SH — — 93 117 F16 PD10 58 PD10 PCS_B2 CNTX_F NMI0 GPIO DSPI_B Peripheral Chip Select CAN_F Transmit NMI Input for Z1 Core I/O O O I VDDE1 SH — — 92 116 G14 PD11 59 PD11 PCS_B1 CNRX_F NMI1 GPIO DSPI_B Peripheral Chip Select CAN_F Receive NMI Input for Z0 Core I/O O I I VDDE1 SH — — 91 115 G15 PD12 60 PD12 PCS_B0 eMIOS9 GPIO DSPI_B Peripheral Chip Select eMIOS Channel I/O I/O O VDDE1 SH — — 90 114 H14 PD13 61 PD13 SCK_B eMIOS8 GPIO DSPI_B Clock eMIOS Channel I/O I/O O VDDE1 SH — — 89 113 H15 PD14 62 PD14 SOUT_B eMIOS7 GPIO DSPI_B Data Output eMIOS Channel I/O O O VDDE1 SH — — 88 110 J14 PD15 63 PD15 SIN_B eMIOS6 GPIO DSPI_B Data Input eMIOS Channel I/O I O VDDE1 SH — — 87 107 K14 Port E (16) PE0 PE1 PE2 64 PE0 PCS_A2 eMIOS5 MLBCLK GPIO DSPI_A Peripheral Chip Select eMIOS Channel MLB Clock I/O O O I VDDE1 SH — — 86 106 K16 65 PE1 PCS_A1 eMIOS4 MLBSI / MLBSIG GPIO DSPI_A Peripheral Chip Select eMIOS Channel MLB Signal In (5-pin) / MLB Bi-directional Signal (3-pin) I/O O O I I/O VDDE1 MH — — 85 103 L14 66 PE2 PCS_A0 eMIOS3 MLBDI / MLBDAT GPIO DSPI_A Peripheral Chip Select eMIOS Channel MLB Data In (5-pin) / MLB Bi-directional Data (3-pin) I/O I/O O I I/O VDDE1 MH — — 84 101 L15 MPC5510 Microcontroller Family Data Sheet, Rev. 3 8 Freescale Semiconductor Pin Assignments and Reset States Table 1. MPC5510 Signal Properties (continued) GPIO Pin (PCR) Name Num1 PE3 PE4 PE5 Supported Functions2 Pad4 I/O Voltage3 Type Type Description Status During Reset5 Status After Reset5 Package Pin Locations 144 176 208 67 GPIO DSPI_A Clock eMIOS Channel MLB Signal Out (5-pin) / MLBSIG_BUFEN MLB Signal Level Shifter Enable (3-pin) I/O I/O O O O VDDE1 MH — — 83 100 M13 68 GPIO DSPI_A Data Out eMIOS Channel MLB Data Out (5-pin) / MLBDAT_BUFEN MLB Data Level Shifter Enable (3-pin) I/O O O O O VDDE1 MH — — 82 98 N14 I/O I O O O O VDDE1 MH — — 81 97 M15 MLB_SLOT / MLB_SIGOBS / MLB_DATOBS GPIO DSPI_A Data In eMIOS Channel MLB Slot Debug / MLB Clock Adjust Observe Signal / MLB Clock Adjust Observe Data 69 PE3 SCK_A eMIOS2 MLBSO / PE4 SOUT_A eMIOS1 MLBDO / PE5 SIN_A eMIOS0 PE6 70 PE6 CLKOUT GPIO System Clock Output I/O O VDDE3 MH — — 67 83 P13 PE7 71 PE7 GPIO I/O VDDE1 SH — — — — H13 PE8 72 PE8 GPIO I/O VDDE1 SH — — — — H16 PE9 72 PE9 GPIO I/O VDDE1 SH — — — — J13 PE10 74 PE10 GPIO I/O VDDE1 SH — — — 112 J16 PE11 75 PE11 GPIO I/O VDDE1 SH — — — 111 J15 PE12 76 PE12 GPIO I/O VDDE1 SH — — — 109 K13 PE13 77 PE13 GPIO I/O VDDE1 SH — — — 108 L13 PE14 78 PE14 GPIO I/O VDDE1 SH — — — 102 L16 PE15 79 PE15 GPIO I/O VDDE1 SH — — — 99 M14 Port F (16) PF0 80 PF0 RD_WR EVTI8 GPIO EBI Read/Write Nexus Event In I/O I/O I VDDE3 MH — — 66 82 N12 PF1 81 PF1 TA MLBCLK EVTO8 GPIO EBI Transfer Acknowledge MLB Clock Nexus Event Out I/O I/O I O VDDE3 MH — — 65 81 P12 82 PF2 AD8 ADDR8 MLBSI / MLBSIG MSEO8 GPIO EBI Muxed Address/Data EBI Non Muxed Address MLB Signal In (5-pin) / MLB Bi-Directional Signal (3-pin) Nexus Message Start/End Out I/O I/O O I I/O O VDDE3 MH — — 64 80 R12 PF2 MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 9 Pin Assignments and Reset States Table 1. MPC5510 Signal Properties (continued) GPIO Pin (PCR) Name Num1 PF3 83 Supported Functions2 PF3 AD9 ADDR9 MLBDI / MLBDAT MCKO8 Description GPIO EBI Muxed Address/Data EBI Non Muxed Address MLB Data In (5-pin) / MLB Bi-directional Data (3-pin) Nexus Message Clock Out Pad4 I/O Voltage3 Type Type Status During Reset5 Status After Reset5 Package Pin Locations 144 176 208 I/O I/O O I I/O O VDDE3 MH — — 63 79 T12 I/O I/O O O O O VDDE3 MH — — 59 74 T10 84 GPIO PF4 EBI Muxed Address/Data AD10 EBI Non Muxed Address ADDR10 MLB Signal Out (5-pin) / MLBSO / MLBSIG_BUFEN MLB Signal Level Shifter Enable (3-pin) MDO08 Nexus Message Data Out 85 PF5 AD11 ADDR11 MLBDO / MLBDAT_BUFEN MDO18 GPIO EBI Muxed Address/Data EBI Non Muxed Address MLB Data Out (5-pin) / MLB Data Level Shifter Enable (3-pin) Nexus Message Data Out I/O I/O O O O O VDDE3 MH — — 58 72 R9 86 PF6 AD12 ADDR12 MLB_SLOT / MLB_SIGOBS / MLB_DATOBS MDO28 GPIO EBI Muxed Address/Data EBI Non Muxed Address MLB Slot Debug / MLB Clock Adjust Observe Signal / MLB Clock Adjust Observe Data Nexus Message Data Out I/O I/O O O O O O VDDE3 MH — — 57 68 T8 PF7 87 PF7 AD13 ADDR13 MDO38 GPIO EBI Muxed Address/Data EBI Non Muxed Address Nexus Message Data Out I/O I/O O O VDDE3 MH — — 56 66 P8 PF8 88 PF8 AD14 ADDR14 MDO48 GPIO EBI Muxed Address/Data EBI Non Muxed Address Nexus Message Data Out I/O I/O O O VDDE2 MH — — 55 65 N8 PF9 89 PF9 AD15 ADDR15 MDO58 GPIO EBI Muxed Address/Data EBI Non Muxed Address Nexus Message Data Out I/O I/O O O VDDE2 MH — — 54 64 T7 PF10 90 PF10 CS1 TXD_C MDO68 GPIO EBI Chip Select SCI_C Transmit Nexus Message Data Out I/O O O O VDDE2 MH — — 52 62 R7 PF11 91 PF11 CS0 RXD_C MDO78 GPIO EBI Chip Select SCI_C Receive Nexus Message Data Out I/O O I O VDDE2 MH — — 51 61 P7 PF12 92 PF12 TS TXD_D ALE GPIO EBI Transfer Start SCI_D Transmit EBI Address Latch Enable I/O I/O O O VDDE2 MH — — 50 60 N7 PF4 PF5 PF6 MPC5510 Microcontroller Family Data Sheet, Rev. 3 10 Freescale Semiconductor Pin Assignments and Reset States Table 1. MPC5510 Signal Properties (continued) GPIO Pin (PCR) Name Num1 Supported Functions2 Pad4 I/O Voltage3 Type Type Description Status During Reset5 Status After Reset5 Package Pin Locations 144 176 208 PF13 93 PF13 OE RXD_D GPIO EBI Output Enable SCI_D Receive I/O O I VDDE2 MH — — 49 59 R6 PF14 94 PF14 WE0 BDIP CNTX_D GPIO EBI Write Enable EBI Burst Data In Progress CAN_D Transmit I/O O O O VDDE2 MH — — 45 55 P6 95 PF15 WE1 TEA CNRX_D GPIO EBI Write Enable EBI Transfer Error Acknowledge CAN_D Receive I/O O I/O I VDDE2 MH — — 44 54 N6 PF15 Port G (16) PG0 96 PG0 AD16 eMIOS16 GPIO EBI Muxed Address/Data eMIOS Channel I/O I/O I/O VDDE2 MH — — 43 51 P5 PG1 97 PG1 AD17 eMIOS17 SIN_C GPIO EBI Muxed Address/Data eMIOS Channel DSPI_C Serial In I/O I/O I/O I VDDE2 MH — — 42 50 T4 PG2 98 PG2 AD18 eMIOS18 SOUT_C GPIO EBI Muxed Address/Data eMIOS Channel DSPI_C Serial Out I/O I/O I/O O VDDE2 MH — — 41 49 R4 PG3 99 PG3 AD19 eMIOS19 SCK_C GPIO EBI Muxed Address/Data eMIOS Channel DSPI_C Serial Clock I/O I/O I/O I/O VDDE2 MH — — 40 48 P4 PG4 100 PG4 AD20 eMIOS20 PCS_C0 GPIO EBI Muxed Address/Data eMIOS Channel DSPI_C Peripheral Chip Select I/O I/O I/O I/O VDDE2 MH — — 39 47 T3 PG5 101 PG5 AD21 eMIOS21 GPIO EBI Muxed Address/Data eMIOS Channel I/O I/O I/O VDDE2 MH — — 38 46 R3 PG6 102 PG6 AD22 eMIOS22 GPIO EBI Muxed Address/Data eMIOS Channel I/O I/O I/O VDDE2 MH — — 37 45 T2 PG7 103 PG7 AD23 eMIOS23 RXD_C GPIO EBI Muxed Address/Data eMIOS Channel SCI_C Receive I/O I/O I/O I VDDE2 MH — — 36 44 R1 PG8 104 PG8 AD24 PCS_A4 GPIO EBI Muxed Address/Data DSPI_A Peripheral Chip Select I/O I/O O VDDE2 MH — — 35 43 P2 MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 11 Pin Assignments and Reset States Table 1. MPC5510 Signal Properties (continued) GPIO Pin (PCR) Name Num1 Supported Functions2 Pad4 I/O Voltage3 Type Type Description Status During Reset5 Status After Reset5 Package Pin Locations 144 176 208 PG9 105 PG9 AD25 PCS_A3 TXD_C GPIO EBI Muxed Address/Data DSPI_A Peripheral Chip Select SCI_C Transmit I/O I/O O O VDDE2 MH — — 34 42 N3 PG10 106 PG10 AD26 PCS_A2 GPIO EBI Muxed Address/Data DSPI_A Peripheral Chip Select I/O I/O O VDDE2 MH — — 30 38 N2 PG11 107 PG11 AD27 PCS_A1 GPIO EBI Muxed Address/Data DSPI_A Peripheral Chip Select I/O I/O O VDDE2 MH — — 29 37 N1 PG12 108 PG12 AD28 PCS_A0 GPIO EBI Muxed Address/Data DSPI_A Peripheral Chip Select I/O I/O I/O VDDE2 MH — — 28 36 M4 PG13 109 PG13 AD29 SCK_A GPIO EBI Muxed Address/Data DSPI_A Clock I/O I/O I/O VDDE2 MH — — 27 35 M3 PG14 110 PG14 AD30 SOUT_A GPIO EBI Muxed Address/Data DSPI_A Data Out I/O I/O O VDDE2 MH — — 26 34 M2 PG15 111 PG15 AD31 SIN_A GPIO EBI Muxed Address/Data DSPI_A Data In I/O I/O I VDDE2 MH — — 25 33 M1 Port H (16) GPIO eQADC Analog Input7 eMIOS Channel I2C_A Serial Clock I/O I O I/O VDDE2 A + SH — — 24 32 L3 PH0 112 PH0 AN27 eMIOS20 SCL_A PH1 113 PH1 AN26 eMIOS21 SDA_A GPIO eQADC Analog Input7 eMIOS Channel I2C_A Serial Data I/O I O I/O VDDE2 A + SH — — 23 31 L2 PH2 114 PH2 AN25 eMIOS22 CS3 GPIO eQADC Analog Input7 eMIOS Channel EBI Chip Select I/O I O O VDDE2 A + MH — — 22 30 L1 PH3 115 PH3 AN24 eMIOS23 CS2 GPIO eQADC Analog Input7 eMIOS Channel EBI Chip Select I/O I O O VDDE2 A + MH — — 21 29 K4 PH4 116 PH4 AN23 TXD_E MA2 GPIO eQADC Analog Input7 SCI_E Transmit eQADC External Mux Address I/O I O O VDDE2 A + SH — — 20 28 K3 PH5 117 PH5 AN22 RXD_E MA1 GPIO eQADC Analog Input7 SCI_E Receive eQADC External Mux Address I/O I I O VDDE2 A + SH — — 19 24 J3 MPC5510 Microcontroller Family Data Sheet, Rev. 3 12 Freescale Semiconductor Pin Assignments and Reset States Table 1. MPC5510 Signal Properties (continued) GPIO Pin (PCR) Name Num1 Supported Functions2 Pad4 I/O Voltage3 Type Type Description Status During Reset5 Status After Reset5 Package Pin Locations 144 176 208 PH6 118 PH6 AN21 TXD_F GPIO eQADC Analog Input7 SCI_F Transmit I/O I O VDDE2 A + SH — — 18 23 J2 PH7 119 PH7 AN20 RXD_F GPIO eQADC Analog Input7 SCI_F Receive I/O I I VDDE2 A + SH — — 17 22 J1 PH8 120 PH8 AN19 CNTX_E MA0 GPIO eQADC Analog Input7 CAN_E Transmit eQADC External Mux Address I/O I O O VDDE2 A + SH — — 14 17 H1 PH9 121 PH9 AN18/ANT CNRX_E GPIO eQADC Analog Input7 CAN_E Receive I/O I I VDDE2 A + SH — — 13 14 G2 PH10 122 PH10 AN17/ANS CNRX_F GPIO eQADC Analog Input7 CAN_F Receive I/O I I VDDE2 A + SH — — 12 12 F4 PH11 123 PH11 AN16/ANR CNTX_F GPIO eQADC Analog Input7 CAN_F Transmit I/O I O VDDE2 A + SH — — 11 11 F3 PH12 124 PH12 PCS_D5 GPIO DSPI_D Peripheral Chip Select I/O O VDDE2 SH — — — — F2 PH13 125 PH13 GPIO I/O VDDE2 SH — — — — F1 PH14 126 PH14 WE2 GPIO EBI Write Enable I/O O VDDE2 MH — — — 53 T5 PH15 127 PH15 WE3 GPIO EBI Write Enable I/O O VDDE2 MH — — — 52 R5 Port J (16) PJ0 128 PJ0 AD0 GPIO EBI Muxed Address/Data I/O I/O VDDE3 MH — — — — N11 PJ1 129 PJ1 AD1 GPIO EBI Muxed Address/Data I/O I/O VDDE3 MH — — — — P11 PJ2 130 PJ2 AD2 GPIO EBI Muxed Address/Data I/O I/O VDDE3 MH — — — — N10 PJ3 131 PJ3 AD3 GPIO EBI Muxed Address/Data I/O I/O VDDE3 MH — — — — R10 PJ4 132 PJ4 AD4 GPIO EBI Muxed Address/Data I/O I/O VDDE3 MH — — — 75 P10 PJ5 133 PJ5 AD5 GPIO EBI Muxed Address/Data I/O I/O VDDE3 MH — — — 73 T9 PJ6 134 PJ6 AD6 GPIO EBI Muxed Address/Data I/O I/O VDDE3 MH — — — 69 P9 PJ7 135 PJ7 AD7 GPIO EBI Muxed Address/Data I/O I/O VDDE3 MH — — — 67 R8 MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 13 Pin Assignments and Reset States Table 1. MPC5510 Signal Properties (continued) GPIO Pin (PCR) Name Num1 Supported Functions2 Pad4 I/O Voltage3 Type Type Description Status During Reset5 Status After Reset5 Package Pin Locations 144 176 208 PJ8 136 PJ8 PCS_D4 GPIO DSPI_D Peripheral Chip Select I/O I/O VDDE2 SH — — — 27 K2 PJ9 137 PJ9 PCS_D3 GPIO DSPI_D Peripheral Chip Select I/O I/O VDDE2 SH — — — 26 K1 PJ10 138 PJ10 PCS_D2 GPIO DSPI_D Peripheral Chip Select I/O I/O VDDE2 SH — — — 25 J4 PJ11 139 PJ11 PCS_D1 GPIO DSPI_D Peripheral Chip Select I/O I/O VDDE2 SH — — — 19 H3 PJ12 140 PJ12 PCS_D0 GPIO DSPI_D Peripheral Chip Select I/O I/O VDDE2 SH — — — 18 H2 PJ13 141 PJ13 SCK_D GPIO DSPI_D Clock I/O I/O VDDE2 SH — — — 16 G4 PJ14 142 PJ14 SOUT_D GPIO DSPI_D Serial Out I/O O VDDE2 SH — — — 15 G3 PJ15 143 PJ15 SIN_D GPIO DSPI_D Serial In I/O I VDDE2 SH — — — 13 G1 Port K (2) PK0 144 PK0 EXTAL32 GPIO 32 kHz Crystal Oscillator Input I I VDDA AE + IH — — — 168 B6 PK1 145 PK1 XTAL32 GPIO 32 kHz Crystal Oscillator Output I O VDDA AE + IH — — — 166 A6 Miscellaneous Pins (9) EXTAL — EXTAL EXTCLK Main Crystal Oscillator Input External Clock Input I I VDDSYN AE EXTAL 75 91 N16 XTAL — XTAL Main Crystal Oscillator Output O VDDSYN AE XTAL 74 90 P16 TMS — TMS JTAG Test Mode Select Input I VDDE3 SH TMS (Pull Up) 72 88 T15 TCK — TCK JTAG Test Clock Input I VDDE3 IH TCK (Pull Down) 71 87 R14 9 TDO — TDO JTAG Test Data Output O VDDE3 MH TDO (Pull Up ) 70 86 T14 TDI — TDI JTAG Test Data Input I VDDE3 IH TDI (Pull Up) 69 85 R13 JCOMP — JCOMP JTAG Compliancy I VDDE3 IH JCOMP (Pull Down) 68 84 T13 TEST10 — TEST Test Mode Select I VDDE3 IH TEST 62 78 R11 RESET — RESET External Reset I/O VDDE2 SH RESET (Pull Up) 10 10 E4 1 The GPIO number is the same as the corresponding pad configuration register (SIU_PCRn) number. This column lists the functions associated with the programming of the SIU_PCRn[PA] bit field in the following order: GPIO, function 1, function 2, and function 3. The unused functions by a given pin begin with function 3, then function 2, then function 1. 3 These are nominal voltages. Each segment provides the power and ground for the given set of I/O pins. 4 Pad types: SH - Bi-directional slow speed pad with input hysteresis; MH - Bi-directional medium speed pad with input hysteresis; IH - Input only pad with input hysteresis; AE/A - Analog pad. 5 A dash for the function in this column denotes the input and output buffer are turned off. 2 MPC5510 Microcontroller Family Data Sheet, Rev. 3 14 Freescale Semiconductor Pin Assignments and Reset States 6 Port A[14:15]—EXTAL32 and XTAL32 functions only apply on the 144LQFP. These functions are on PortK[0:1] for the 176LQFP and 208BGA. In the 176 LQFP and 208 BGA packages, activity on PA14 should be minimized if the 32kHz XTAL is enabled. 7 This analog input pin has reduced analog-to-digital conversion accuracy compared to PA0–PA15. See eQADC spec #11 (Total Unadjusted Error for single ended conversions with calibration) for further notes on this. 8 The NEXUS function is selected when the JTAG TAP controller is enabled via the JCOMP pin and the appropriate bits in the NP PCR register. The value of the PA field in the associated PCR register has no effect on the pin function when the NEXUS function is selected. 9 Pullup is enabled only when JCOMP is negated. 10 Always connect the TEST pin to Ground (Vss). 1.2 Power and Ground Supply Summary Table 2. MPC5510 Power/Ground Pin Name Function Description VDDR Voltage Regulator Supply 5.0 V VDDA Analog Power 5.0 V VRH2 eQADC Voltage Reference High 5.0 V VSSA Analog Ground – VRL 3 Package Pin Locations Voltage1 144 176 46 56 144 176 141 173 208 T6 A2 B3 A4 B4 eQADC Voltage Reference Low – REFBYPC eQADC Reference Bypass Capacitor VSSA 1 1 B1 VPP4 Flash Program/Erase Power 5.0 V 78 94 P15 Clock Synthesizer Power 3.3 V 73 89 R16 Clock Synthesizer Ground – 76 92 M16 96,119 105,120, 143,155 A15,D10,E13, G16,K15 16,33,48 21,41,58 H4,L4,N5,P1 71,77 N9,T11 VDDSYN 5 VSSSYN VDDE1 VDDE2 External I/O Power 3.3 V – 5.0 V 61 VDDE3 95,118 VSSE1 VSSE2 External I/O Ground – VSSE3 VDD335 VFLASH 5, 6 3.3 V I/O Power Flash Read Power VDD5 Internal Logic Power VDDF5 Flash Internal Logic Power 3.3 V 104,119, Shorted to VSS in 142,154 the package 15,32,47 20,40,57 Shorted to VSS in the package 60 70,76 Shorted to VSS in the package 77 93 N15 31,53,79 39,63,95 A1,A16,B2,B15, R2,R15,T1,T16 79 95 Shorted to VDD in the package 1.5 V VSS Ground – VSSF 1 2 80 96 Flash Internal Logic Ground C3,C14,D4,D13, G7-G10,H7-H10, J7-J10,K7-K10, N4,N13,P3,P14 Shorted to VSS in the package These are nominal voltages. VRH is shorted to VDDA in the 144LQFP and 176 LQFP packages. MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 15 Pin Assignments and Reset States 3 VRL is shorted to VSSA in the 144LQFP and 176 LQFP packages. VPP requires 5V for program/erase operations, but may be 0-5V otherwise. VPP should not go high or low when the device is in Sleep mode. 5 Voltage generated from internal voltage regulator and no external connection or load allowed except the required bypass capacitors. 6 V FLASH is shorted to VDD33 in the package. 4 MPC5510 Microcontroller Family Data Sheet, Rev. 3 16 Freescale Semiconductor Pin Assignments and Reset States Pinout – 144 LQFP REFBYPC AN7/PA7 AN6/PA6 AN5/PA5 AN4/PA4 AN3/PA3 AN2/PA2 AN1/PA1 AN0/PA0 RESET CNTX_F/AN16/ANR/PH11 CNRX_F/AN17/ANS/PH10 CNRX_E/AN18/ANT/PH9 MA0/CNTX_E/AN19/PH8 VSSE2 VDDE2 RXD_F/AN20/PH7 TXD_F/AN21/PH6 MA1/RXD_E/AN22/PH5 MA2/TXD_E/AN23/PH4 CS2/eMIOS23/AN24/PH3 CS3/eMIOS22/AN25/PH2 SDA_A/eMIOS21/AN26/PH1 SCL_A/eMIOS20/AN27/PH0 SIN_A/AD31/PG15 SOUT_A/AD30/PG14 SCK_A/AD29/PG13 PCS_A0/AD28/PG12 PCS_A1/AD27/PG11 PCS_A2/AD26/PG10 144 LQFP 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 * Denotes active during RESET only PC12/eMIOS12/PCS_C3/SIN_D PC13/eMIOS13/PCS_A5/PCS_D0 PC14/eMIOS14/PCS_A4/PCS_D1 PC15/eMIOS15/PCS_A3/PCS_D2 PD0/CNTX_A/PCS_D3 PD1/CNRX_A/PCS_D4 PD2/CNRX_B/eMIOS10/BOOTCFG*/PCS_D5 PD3/CNTX_B/eMIOS11 PD4/CNTX_C/eMIOS12 PD5/CNRX_C/eMIOS13 PD6/TXD_A/eMIOS14 PD7/RXD_A/eMIOS15 VDDE1 VSSE1 PD8/TXD_B/SCL_A PD9/RXD_B/SDA_A PD10/PCS_B2/CNTX_F/NMI0 PD11/PCS_B1/CNRX_F/NMI1 PD12/PCS_B0/eMIOS9 PD13/SCK_B/eMIOS8 PD14/SOUT_B/eMIOS7 PD15/SIN_B/eMIOS6 PE0/PCS_A2/eMIOS5/MLBCLK PE1/PCS_A1/eMIOS4/MLBSI PE2/PCS_A0/eMIOS3/MLBDI PE3/SCK_A/eMIOS2//MLBSO PE4/SOUT_A/eMIOS1/MLBDO PE5/SIN_A/eMIOS0/MLB_SLOT VSS/VSSF VDD/VDDF VPP VDD33/VFLASH VSSSYN EXTAL/EXTCLK XTAL VDDSYN MDO5/ADDR15/AD15/PF9 MDO4/ADDR14/AD14/PF8 MDO3/ADDR13/AD13/PF7 MDO2/MLB_SLOT/ADDR12/AD12/PF6 MDO1/MLBDO/ADDR11/AD11/PF5 MDO0/MLBSO/ADDR10/AD10/PF4 VSSE3 VDDE3 TEST MCKO/MLBDI/ADDR9/AD9/PF3 MSEO/MLBSI/ADDR8/AD8/PF2 EVTO/MLBCLK/TA/PF1 EVTI/RD_WR/PF0 CLKOUT/PE6 JCOMP TDI TDO TCK TMS eMIOS22/AD22/PG6 eMIOS21/AD21/PG5 PCS_C0/eMIOS20/AD20/PG4 SCK_C/eMIOS19/AD19/PG3 SOUT_C/eMIOS18/AD18/PG2 SIN_C/eMIOS17/AD17/PG1 eMIOS16/AD16/PG0 CNRX_D/TEA/WE1/PF15 CNTX_D/BDIP/WE0/PF14 VDDR VSSE2 VDDE2 RXD_D/OE/PF13 ALE/TXD_D/TS/PF12 MDO7/RXD_C/CS0/PF11 MDO6/TXD_C/CS1/PF10 VDD 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 VDD VSSE2 VDDE2 TXD_C/PCS_A3/AD25/PG9 PCS_A4/AD24/PG8 RXD_C/eMIOS23/AD23/PG7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 VDDA/VRH PA8/AN8/ANW PA9/AN9/ANX VSSA/VRL PA10/AN10/ANY PA11/AN11/ANZ PA12/AN12 PA13/AN13 PA14/AN14/EXTAL32 PA15/AN15/XTAL32 PB0/AN28/eMIOS16/PCS_C5 PB1/AN29/eMIOS17/PCS_C4 PB2/AN30/eMIOS18/PCS_C3 PB3/AN31/PCS_C2 PB4/AN32/PCS_C1 PB5/AN33/PCS_C0 PB6/AN34/SCK_C PB7/AN35/SOUT_C PB8/AN36/SIN_C PB9/AN37/CNTX_D/PCS_B4 PB10/AN38/CNRX_D/PCS_B3 PB11/AN39/eMIOS19/PCS_B5 PC0/eMIOS0/FR_A_TX_EN/AD24 PC1/eMIOS1/FR_A_TX/AD16 PC2/eMIOS2/FR_A_RX/TS VDDE1 VSSE1 PC3/eMIOS3/FR_DBG0 PC4/eMIOS4/FR_DBG1 PC5/eMIOS5/FR_DBG2 PC6/eMIOS6/FR_DBG3 PC7/eMIOS7/FR_B_RX PC8/eMIOS8/FR_B_TX/AD15 PC9/eMIOS9/FR_B_TX_EN/AD14 PC10/eMIOS10/PCS_C5/SCK_D PC11/eMIOS11/PCS_C4/SOUT_D 1.3 Figure 2. MPC5510 Pinout – 144 LQFP MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 17 Pin Assignments and Reset States Pinout – 176 LQFP REFBYPC AN7/PA7 AN6/PA6 AN5/PA5 AN4/PA4 AN3/PA3 AN2/PA2 AN1/PA1 AN0/PA0 RESET CNTX_F/AN16/ANR/PH11 CNRX_F/AN17/ANS/PH10 SIN_D/PJ15 CNRX_E/AN18/ANT/PH9 SOUT_D/PJ14 SCK_D/PJ13 MA0/CNTX_E/AN19/PH8 PCS_D0/PJ12 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 176 LQFP PC12/eMIOS12/PCS_C3/SIN_D PC13/eMIOS13/PCS_A5/PCS_D0 PC14/eMIOS14/PCS_A4/PCS_D1 PC15/eMIOS15/PCS_A3/PCS_D2 PD0/CNTX_A/PCS_D3 PD1/CNRX_A/PCS_D4 PD2/CNRX_B/eMIOS10/BOOTCFG*/PCS_D5 PD3/CNTX_B/eMIOS11 PD4/CNTX_C/eMIOS12 PD5/CNRX_C/eMIOS13 PD6/TXD_A/eMIOS14 PD7/RXD_A/eMIOS15 VDDE1 VSSE1 PD8/TXD_B/SCL_A PD9/RXD_B/SDA_A PD10/PCS_B2/CNTX_F/NMI0 PD11/PCS_B1/CNRX_F/NMI1 PD12/PCS_B0/eMIOS9 PD13/SCK_B/eMIOS8 PE10 PE11 PD14/SOUT_B/eMIOS7 PE12 PE13 PD15/SIN_B/eMIOS6 PE0/PCS_A2/eMIOS5/MLBCLK VDDE1 VSSE1 PE1/PCS_A1/eMIOS4/MLBSI PE14 PE2/PCS_A0/eMIOS3/MLBDI PE3/SCK_A/eMIOS2//MLBSO PE15 PE4/SOUT_A/eMIOS1/MLBDO PE5/SIN_A/eMIOS0/MLB_SLOT VSS/VSSF VDD/VDDF VPP VDD33/VFLASH VSSSYN EXTAL/EXTCLK XTAL VDDSYN VSUP/TEST MCKO/MLBDI/ADDR9/AD9/PF3 MSEO/MLBSI/ADDR8/AD8/PF2 EVTO/MLBCLK/TA/PF1 EVTI/RD_WR/PF0 CLKOUT/PE6 JCOMP TDI TDO TCK TMS MDO5/ADDR15/AD15/PF9 MDO4/ADDR14/AD14/PF8 MDO3/ADDR13/AD13/PF7 AD7/PJ7 MDO2/MLB_SLOT/ADDR12/AD12/PF6 AD6/PJ6 VSSE3 VDDE3 MDO1/MLBDO/ADDR11/AD11/PF5 AD5/PJ5 MDO0/MLBSO/ADDR10/AD10/PF4 AD4/PJ4 VSSE3 VDDE3 WE3/PH15 WE2/PH14 CNRX_D/TEA/WE1/PF15 CNTX_D/BDIP/WE0/PF14 VDDR VSSE2 VDDE2 RXD_D/OE/PF13 ALE/TXD_D/TS/PF12 MDO7/RXD_C/CS0/PF11 MDO6/TXD_C/CS1/PF10 VDD eMIOS22/AD22/PG6 eMIOS21/AD21/PG5 PCS_C0/eMIOS20/AD20/PG4 SCK_C/eMIOS19/AD19/PG3 SOUT_C/eMIOS18/AD18/PG2 SIN_C/eMIOS17/AD17/PG1 eMIOS16/AD16/PG0 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 PCS_D1/PJ11 VSSE2 VDDE2 RXD_F/AN20/PH7 TXD_F/AN21/PH6 MA1/RXD_E/AN22/PH5 PCS_D2/PJ10 PCS_D3/PJ9 PCS_D4/PJ8 MA2/TXD_E/AN23/PH4 CS2/eMIOS23/AN24/PH3 CS3/eMIOS22/AN25/PH2 SDA_A/eMIOS21/AN26/PH1 SCL_A/eMIOS20/AN27/PH0 SIN_A/AD31/PG15 SOUT_A/AD30/PG14 SCK_A/AD29/PG13 PCS_A0/AD28/PG12 PCS_A1/AD27/PG11 PCS_A2/AD26/PG10 VDD VSSE2 VDDE2 TXD_C/PCS_A3/AD25/PG9 PCS_A4/AD24/PG8 RXD_C/eMIOS23/AD23/PG7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 VDDA/VRH PA8/AN8/ANW PA9/AN9/ANX VSSA/VRL PA10/AN10/ANY PA11/AN11/ANZ PA12/AN12 PA13/AN13 PK0/EXTAL32 PA14/AN14 PK1/XTAL32 PA15/AN15 PB12/TXD_G/PCS_B4 PB13/RXD_G/PCS_B3 PB0/AN28/eMIOS16/PCS_C5 PB1/AN29/eMIOS17/PCS_C4 PB2/AN30/eMIOS18/PCS_C3 PB3/AN31/PCS_C2 PB4/AN32/PCS_C1 PB5/AN33/PCS_C0 PB6/AN34/SCK_C VDDE1 VSSE1 PB7/AN35/SOUT_C PB8/AN36/SIN_C PB9/AN37/CNTX_D/PCS_B4 PB10/AN38/CNRX_D/PCS_B3 PB11/AN39/eMIOS19/PCS_B5 PB14/TXD_H PB15/RXD_H PC0/eMIOS0/FR_A_TX_EN/AD24 PC1/eMIOS1/FR_A_TX/AD16 PC2/eMIOS2/FR_A_RX/TS VDDE1 VSSE1 PC3/eMIOS3/FR_DBG0 PC4/eMIOS4/FR_DBG1 PC5/eMIOS5/FR_DBG2 PC6/eMIOS6/FR_DBG3 PC7/eMIOS7/FR_B_RX PC8/eMIOS8/FR_B_TX/AD15 PC9/eMIOS9/FR_B_TX_EN/AD14 PC10/eMIOS10/PCS_C5/SCK_D PC11/eMIOS11/PCS_C4/SOUT_D 1.4 * Denotes active during RESET only Figure 3. MPC5510 Pinout – 176 LQFP MPC5510 Microcontroller Family Data Sheet, Rev. 3 18 Freescale Semiconductor Pin Assignments and Reset States 1.5 Pinout – 208 PBGA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A VDD VDDA PA8 VSSA PA13 PK1 PB12 PB2 PB6 PB10 PB15 PC3 PC7 PC10 VDDE1 VDD A B REF BYPC VDD VRH VRL PA12 PK0 PB13 PB3 PB7 PB11 PC0 PC4 PC8 PC11 VDD PC12 B C PA7 PA6 VSS PA9 PA11 PA15 PB0 PB4 PB8 PB14 PC1 PC5 PC9 VSS PC13 PC14 C D PA5 PA4 PA3 VSS PA10 PA14 PB1 PB5 PB9 VDDE1 PC2 PC6 VSS PC15 PD0 PD1 D E PA2 PA1 PA0 RESET VDDE1 PD2 PD3 PD4 E F PH13 PH12 PH11 PH10 PD5 PD6 PD7 PD9 F G PJ15 PH9 PJ14 PJ13 VSS VSS VSS VSS PD8 PD10 PD11 H PH8 PJ12 PJ11 VDDE2 VSS VSS VSS VSS PE7 PD12 PD13 PE8 H J PH7 PH6 PH5 PJ10 VSS VSS VSS VSS PE9 PD14 PE11 PE10 J K PJ9 PJ8 PH4 PH3 VSS VSS VSS VSS PE12 PD15 VDDE1 PE0 K L PH2 PH1 PH0 VDDE2 PE13 PE1 PE2 PE14 L M PG15 PG14 PG13 PG12 PE3 PE15 PE5 VSSSYN M N PG11 PG10 PG9 VSS VDDE2 PF15 PF12 PF8 VDDE3 PJ2 PJ0 PF0 VSS PE4 P VDDE2 PG8 VSS PG3 PG0 PF14 PF11 PF7 PJ6 PJ4 PJ1 PF1 PE6 VSS VPP XTAL R PG7 VDD PG5 PG2 PH15 PF13 PF10 PJ7 PF5 PJ3 TEST PF2 TDI TCK VDD VDDSYN R T VDD PG6 PG4 PG1 PH14 VDDR PF9 PF6 PJ5 PF4 VDDE3 PF3 JCOMP TDO TMS VDD 1 2 3 4 5 6 7 8 9 10 11 12 15 16 208 PBGA Ball Map (as viewed from top through the package) 13 14 VDDE1 G VDD33 EXTAL N P T Figure 4. MPC5510 Pinout – 208 PBGA MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 19 Electrical Characteristics 2 Electrical Characteristics This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for the MCU. 2.1 Maximum Ratings Table 3. Absolute Maximum Ratings1 Num Characteristic Symbol Min Max2 Unit 1 5.0V Voltage Regulator Reference Voltage VDDR – 0.3 6.5 V 2 5.0V Analog Supply Voltage (reference to VSSA) VDDA – 0.3 6.5 V 3 5.0V Flash Program/Erase Voltage VPP – 0.3 6.5 V 4 3.3V – 5.0V External I/O Supply Voltage 3 VDDE14 VDDE24 VDDE34 – 0.3 – 0.3 – 0.3 6.5 6.5 6.5 VIN –1.06 6.57 V VRH – VRL – 0.3 5.5 V V 5 DC Input Voltage 5 6 VREF Differential Voltage 7 VRH to VDDA Differential Voltage VRH – VDDA – 5.5 5.5 V 8 VRL to VSSA Differential Voltage VRL – VSSA – 0.3 0.3 V 9 VDDR to VDDA Differential Voltage VDDR – VDDA – VDDA 0.3 V 8 10 Maximum DC Digital Input Current (per pin, applies to all digital MH, SH, and IH pins) IMAXD –2 2 mA 11 Maximum DC Analog Input Current 9 (per pin, applies to all analog AE and A pins) IMAXA –3 3 mA 12 Storage Temperature Range TSTG – 55.0 150.0 oC 13 Maximum Solder Temperature 10 TSDR — 260.0 oC 14 Moisture Sensitivity Level 11 MSL — 3 1 Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. 2 Absolute maximum voltages are currently maximum burn–in voltages. Absolute maximum specifications for device stress have not yet been determined. 3 All functional non-supply I/O pins are clamped to V SS and VDDE. 4 V , V , and V are separate power segments and may be powered independently with no differential voltage DDE1 DDE2 DDE3 constraints between the power segments. 5 AC signal over and undershoot of the input voltages of up to +/– 2.0 volts is permitted for a cumulative duration of 60 hours over the complete lifetime of the device (injection current does not need to be limited for this duration). 6 Internal structures will hold the input voltage above -1.0 volt if the injection current limit of 2mA is met. 7 Internal structures hold the input voltage below this maximum voltage on all pads powered by V DDE supplies, if the maximum injection current specification is met (2 mA for all pins) and VDDE is within Operating Voltage specifications. 8 Total injection current for all pins (including both digital and analog) must not exceed 25mA. 9 Total injection current for all analog input pins must not exceed 15mA. 10 Solder profile per CDF-AEC-Q100. 11 Moisture sensitivity per JEDEC test method A112. MPC5510 Microcontroller Family Data Sheet, Rev. 3 20 Freescale Semiconductor Electrical Characteristics 2.2 Thermal Characteristics Table 4. Thermal Characteristics Value Num 3 4 5 6 1, 2 208 MAPBGA 176 LQFP 144 LQFP Junction to Ambient Natural Convection (Single layer board) RθJA °C/W 44 38 43 2 Junction to Ambient 1, 3 Natural Convection (Four layer board 2s2p) RθJA °C/W 27 31 34 3 Junction to Ambient 1, 3 (@200 ft./min., Single layer board) RθJMA °C/W 35 30 34 4 Junction to Ambient 1, 3 (@200 ft./min., Four layer board 2s2p) RθJMA °C/W 24 25 28 5 Junction to Board 4 RθJB °C/W 16 20 22 RθJC °C/W 8 6 7 ΨJT °C/W 2 2 2 7 2 Symbol Unit 1 6 1 Characteristic Junction to Case 5 Junction to Package Top Natural Convection 6 Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. 2.2.1 General Notes for Specifications at Maximum Junction Temperature An estimation of the chip junction temperature, TJ, can be obtained from the equation: TJ = TA + (RθJA × PD) Eqn. 1 TA = ambient temperature for the package (oC) Eqn. 2 RθJA = junction to ambient thermal resistance (oC/W) Eqn. 3 PD = power dissipation in the package (W) Eqn. 4 where: The supplied thermal resistances are provided based on JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined on the single-layer (1s) board and on the four-layer board with two signal layers and a power and a ground plane (2s2p) clearly demonstrate that the effective thermal resistance of MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 21 Electrical Characteristics the component is not a constant. It depends on the construction of the application board (number of planes), the effective size of the board which cools the component, how well the component is thermally and electrically connected to the planes, and the power being dissipated by adjacent components. Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between through vias leave the planes virtually disconnected, the thermal performance is also greatly reduced. As a general rule, the value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the application board has one oz (35 micron nominal thickness) internal planes, the components are well separated, and the overall power dissipation on the board is less than 0.02 W/cm2. The thermal performance of any component depends strongly on the power dissipation of surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device. At a known board temperature, the junction temperature is estimated using the following equation: TJ = TB + (RθJB × PD) Eqn. 5 TJ = junction temperature (oC) Eqn. 6 TB = board temperature at the package perimeter (oC/W) Eqn. 7 RθJB = junction to board thermal resistance (oC/W) per JESD51-8 Eqn. 8 PD = power dissipation in the package (W) Eqn. 9 where: When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition, with the component soldered to a board with internal planes. Historically, the thermal resistance has frequently been expressed as the sum of a junction to case thermal resistance and a case to ambient thermal resistance: RθJA = RθJC + RθCA Eqn. 10 RθJA = junction to ambient thermal resistance (oC/W) Eqn. 11 RθJC = junction to case thermal resistance (oC/W) Eqn. 12 RθCA = case to ambient thermal resistance (oC/W) Eqn. 13 where: RθJC is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, RθCA. For instance, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the MPC5510 Microcontroller Family Data Sheet, Rev. 3 22 Freescale Semiconductor Electrical Characteristics device. This description is most useful for packages with heat sinks where some 90% of the heat flow is through the case to the heat sink to ambient. For most packages, a better model is required. A more accurate two-resistor thermal model can be constructed from the junction to board thermal resistance and the junction to case thermal resistance. The junction to case covers the situation where a heat sink will be used or where a substantial amount of heat is dissipated from the top of the package. The junction to board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. This model can be used for either hand estimations or for a computational fluid dynamics (CFD) thermal model. To determine the junction temperature of the device in the application after prototypes are available, the Thermal Characterization Parameter (ΨJT) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation: TJ = TT + (ΨJT × PD) Eqn. 14 TT = thermocouple temperature on top of the package (oC) Eqn. 15 ΨJT = thermal characterization parameter (oC/W) Eqn. 16 PD = power dissipation in the package (W) Eqn. 17 where: The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire. References: Semiconductor Equipment and Materials International 805 East Middlefield Rd Mountain View, CA 94043 (415) 964-5111 MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956. JEDEC specifications are available on the WEB at http://www.jedec.org. 1. 2. 3. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47–54. G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications,” Electronic Packaging and Production, pp. 53–58, March 1998. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212–220. MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 23 Electrical Characteristics 2.3 ESD Characteristics Table 5. ESD Ratings1, 2 Characteristic Symbol Value Unit 2000 V R1 1500 Ohm C 100 pF ESD for Human Body Model (HBM) HBM Circuit Description ESD for Field Induced Charge Model (FDCM) 500 (all pins) 750 (corner pins) V Number of Pulses per pin: Positive Pulses (HBM) Negative Pulses (HBM) — — 1 1 — — Interval of Pulses — 1 second 1 2 All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification MPC5510 Microcontroller Family Data Sheet, Rev. 3 24 Freescale Semiconductor Electrical Characteristics 2.4 DC Electrical Specifications Table 6. DC Electrical Specifications Num 1a 1b 1c Characteristic Symbol Min Max Unit C parts Operating junction temperature range Operating ambient temperature range1 TJ TA – 40 – 40 105 85 o V parts Operating junction temperature range Operating ambient temperature range1 TJ TA – 40 – 40 120 105 o M parts2 Operating junction temperature range Operating ambient temperature range1 TJ TA – 40 – 40 145 125 o o o o C C C C C C 2 5.0V Voltage Regulator Reference Voltage VDDR 4.5 5.25 V 3 5.0V Analog Supply Voltage VDDA 4.5 5.25 V VPP 4.5 5.25 V VDDE14,5 VDDE24 VDDE34 3.0 3.0 3.0 5.5 5.5 5.5 3 4 5.0V Flash Program/Erase Voltage 5 3.3V – 5.0V External I/O Supply Voltage V 0.65 × VDDE VDDE + 0.3 V 0.35 × VDDE V VHYS 0.1 × VDDE 0.2 × VDDE V VINDC VSSA – 0.3 VDDA + 0.3 see note5 V 6 Pad (SH/MH/IH) Input High Voltage VIH 7 Pad (SH/MH/IH) Input Low Voltage VIL 8 Pad (SH/MH/IH) Input Hysteresis 9 Analog (AE/A) Input Voltage 10 Slow/Medium I/O Output High Voltage IOH = –1.0 mA IOH = –0.2 mA VOH Slow/Medium I/O Output Low Voltage IOL = 1.0 mA IOH = 0.2 mA VOL 12 Input Capacitance (Digital Pins: Pad type MH,SH, IH with no A or AE) 13 VSS – 0.3 V 0.80 × VDDE 0.95 × VDDE — — 0.20 × VDDE 0.05 × VDDE CIN — 7 pF Input Capacitance (Analog Pins: Pad type A, AE, and AE+IH) CIN_A — 10 pF 14 Input Capacitance (Shared digital and analog pins: A with SH or MH) CIN_M — 12 pF 15 Slow/Medium I/O Weak Pull Up/Down Absolute Current 6 IACT 10 170 μA IINACT_D – 1.5 1.5 μA IIC – 2.0 2.0 mA 11 7 16 I/O Input Leakage Current 17 DC Injection Current (per pin) 8 V 18 Analog Input Current, Channel Off (Analog pins AE and AE+IH) IINACT_A – 200 200 nA 19 Analog Input Current (Shared digital and analog pins: A with SH or MH) IINACT_AD –1.5 1.5 μA 20 VRH to VDDA Differential Voltage VRH – VDDA – 100 100 mV MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 25 Electrical Characteristics Table 6. DC Electrical Specifications (continued) Num Characteristic Symbol Min Max Unit 21 VRL to VSSA Differential Voltage VRL – VSSA – 100 100 mV 22 VSS to VSSA Differential Voltage VSS – VSSA – 100 100 mV 23 VSSSYN to VSS Differential Voltage VSSSYN – VSS –50 50 mV 24 VDDR to VDDA Differential Voltage VDDR – VDDA – 100 100 mV 25 Slew rate on VDDA, VDDR, and VDDE power supply pins9 Vramp 1 100 V/ms 26 Capactive Supply Load VDD VDD33 VDDSYN Vload 800 200 200 — — 1 2 3 4 5 6 7 8 9 nF Please refer to Section 2.2.1, “General Notes for Specifications at Maximum Junction Temperature” for more details about the relation between ambient temperature TA and device junction temperature TJ. M parts can’t go above 66 MHz. VPP can drop to 0 volts during read-only operations and before entry to Sleep mode, to reduce power consumption. VDDE1, VDDE2, and VDDE3 are separate power segments and may be powered independently with no differential voltage constraints between the power segments. If VDDE1 is below VDDA than the analog input limits (spec #9 (Analog (AE/A) Input Voltage) in Table 6) will be based on the VDDE1 voltage level. Absolute value of current, measured at VIL and VIH. Weak pull up/down inactive. Measured at VDDE = 5.25 V. Applies to pad types: SH and MH. Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each 8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to pad types: A and AE. This applies to the ramp up rate from 0.3 volts to 3.0 volts. MPC5510 Microcontroller Family Data Sheet, Rev. 3 26 Freescale Semiconductor Electrical Characteristics 2.5 Operating Current Specifications Table 7. Operating Currents Num Equations 1 2 3 4 1 2 3 4 5 6 7 Characteristic Symbol Typ1 Max1 Typ1 25C 70C -40–145C Ambient Ambient Junction Unit ITOTAL = IDDE + IPP + IDDA + IDDR IDDE = IDDE1 + IDDE2 + IDDE3 VDDE(1,2,3) Current VDDE(1,2,3) @ 3.0V - 5.5V Static2, or when in SLEEP or STOP Dynamic3 IDDE VPP Current VPP @ 0V (All modes) VPP @ 5.25V SLEEP mode STOP mode RUN mode IPP VDDA Current VDDA @ 4.5V - 5.25V RUN mode4 SLEEP/STOP5 mode with 32KIRC SLEEP/STOP5 mode with 32KOSC SLEEP/STOP5 mode with 16MIRC IDDA VDDR Current VDDR@ 4.5V - 5.25V SLEEP mode with XOSC6 (additonal) with RTC/API (additonal) each 8K RAM block (additional) STOP mode with XOSC6 (additonal) RUN mode (Using 16 MHz IRC) RUN mode (Maximum @ 48 MHz)7 RUN mode (Maximum @ 66 MHz)8 RUN mode (Maximum @ 80MHz)9 IDDR 1 Note 3 3 Note 3 30 Note 3 µA mA 1 1 1 µA 15 15 1 20 20 1 30 30 25 µA µA mA 5 12 12 111 5 16 16 165 10 26 28 225 mA µA µA µA 20 500 1 0.8 170 500 30 50 105 120 25 600 1 7 600 600 35 75 110 130 360 900 3 45 1500 900 40 90 120 135 µA µA µA µA µA µA mA mA mA mA Typ - Nominal voltage levels and functional activity. Max - Maximum voltage levels and functional activity. Static state of pins is when input pins are disabled or not being toggled and driven to a valid input level, output pins are not toggling or driving against any current loads, and internal pull devices are disabled or not pulling against any current loads. Dynamic current from pins is application specific and depends on active pull devices, switching outputs, output capacitive and current loads, and switching inputs. Refer to Table 8 for more information. RUN mode is a typical application with the ADC, 16MIRC, 32KIRC running. SLEEP/STOP mode means that only the listed peripherals are on. All others are diabled. XOSC: optionally enabled in SLEEP and STOP modes (oscillator remains running from crystal but XOSC clock output disabled). RUN mode condition includes PLL selected as source of system clock, XOSC enabled with 40MHz crystal, all peripherals enabled, both cores running, and running a typical application using both SRAM and flash. MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 27 Electrical Characteristics 8 RUN mode condition includes PLL selected as source of system clock, XOSC enabled with 40MHz crystal; all peripheral and cores enabled and running a typical application using both SRAM and flash. Be sure to calculate the junction temperature, as the maximum current at maximum ambient temperature can exceed the maximum junction temperature. 9 RUN mode condition includes PLL selected as source of system clock, XOSC enabled with 40MHz crystal, all peripheral and cores enabled and running a typical application using both SRAM and flash. Only for 208 MAPBGA and only 120C junction or lower. Be sure to calculate the junction temperature, as the maximum current at maximum ambient temperature can exceed the maximum junction temperature MPC5510 Microcontroller Family Data Sheet, Rev. 3 28 Freescale Semiconductor Electrical Characteristics 2.6 I/O Pad Current Specifications The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The power consumption is the sum of all output pin currents for a particular segment. The output pin current can be calculated from Table 8 based on the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 8. Table 8. I/O Pad Average DC Current1 Num Pad Type Symbol Frequency (MHz) Load2 (pF) Voltage (V) Slew Rate Control Current (mA) 1 Slow (Pad Type SH) IDRV_SH 25 50 5.25 11 8.0 10 50 5.25 01 3.2 2 50 5.25 00 0.7 2 3 4 5 6 1 2 Medium (Pad Type MH) IDRV_MH 2 200 5.25 00 2.4 50 50 5.25 11 17.3 20 50 5.25 01 6.5 7 3.33 50 5.25 00 1.1 8 3.33 200 5.25 00 3.9 These values are estimated from simulation and are not tested. Currents apply to output pins only. All loads are lumped. MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 29 Electrical Characteristics 2.7 Low Voltage Characteristics Table 9. Low Voltage Monitors Num Characteristic Symbol Min Typical Max Unit VPOR — 0.70 — V 1 Power-on-Reset Assert Level 1 2 Low Voltage Monitor 1.5V 1 Assert Level De-assert Level VLV15A VLV15D — — 1.40 1.45 — — V Low Voltage Monitor 3.3V 2 Assert Level De-assert Level VLV33A VLV33D — — 3.05 3.10 — — V VLVSYNA VLVSYND — — 3.05 3.10 — — V Low Voltage Monitor 5.0V Low Threshold 4 Assert Level De-assert Level VLV5LA VLV5LD 3.30 3.35 3.35 3.40 3.40 3.45 V Low Voltage Monitor 5.0V 4 Assert Level De-assert Level VLV5A VLV5D 4.50 4.55 4.55 4.60 4.70 4.75 V Low Voltage Monitor 5.0V High Threshold 4 Assert Level De-assert Level VLV5HA VLV5HD 4.70 4.75 4.75 4.80 4.80 4.85 V 3 4 5 6 7 Low Voltage Monitor Synthesizer 3 Assert Level De-assert Level 1 Monitors VDD Monitors VDD33 3 Monitors V DDSYN 4 Monitors V DDA 2 MPC5510 Microcontroller Family Data Sheet, Rev. 3 30 Freescale Semiconductor Electrical Characteristics 2.8 Oscillators Electrical Characteristics Table 10. 3.3V High Frequency External Oscillator Num 2 3 4 5 Symbol Min. Value Max. Value Unit 1 Frequency Range1 fref 42 40 MHz 2 Duty Cycle of reference tdc 40 60 % 3 EXTAL Input High Voltage External crystal mode 3 External clock mode VIHEXT VXTAL + 0.4 0.65 x VDDSYN VDDSYN + 0.3 VDDSYN + 0.3 EXTAL Input Low Voltage External crystal mode 3 External clock mode VILEXT VDDSYN – 0.3 VDDSYN – 0.3 VXTAL – 0.4 0.35 x VDDSYN IXTAL 2 6 mA 4 1 Characteristic V V 5 XTAL Current 4 6 Total On-chip stray capacitance on XTAL CS_XTAL — 3 pF 7 Total On-chip stray capacitance on EXTAL CS_EXTAL — 3 pF 8 Crystal manufacturer’s recommended capacitive load CL See crystal specification See crystal specification pF 9 Discrete load capacitance to be connected to EXTAL CL_EXTAL — 2×CL – CS_EXTAL – CPCB_EXTAL5 pF 10 Discrete load capacitance to be connected to XTAL CL_XTAL — 2×CL – CS_XTAL – CPCB_XTAL5 pF 11 Startup Time tstartup — 10 ms Since this is an amplitude controlled oscillator the use of overtone oscillators is not recommended. Only use fundamental frequency oscillators. When PLL frequency modulation is active, reference frequencies less than 8MHz will distort the modulated waveform and the effects of this on emissions is not characterized. This parameter is meant for those who do not use quartz crystals or resonators, but CAN osc, in crystal mode. In that case, Vextal – Vxtal ≥ 400mV criteria has to be met for oscillator’s comparator to produce output clock. Ixtal is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded. CPCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively Table 11. 5V Low Frequency (32 kHz) External Oscillator Num 1 Characteristic Symbol Min. Value Max. Value Unit 1 Frequency Range fref32 32 38 kHz 2 Duty Cycle of reference tdc32 40 60 % IXTAL32 0.5 3 μA CL32 See crystal specification See crystal specification pF tstartup — 2 s 1 3 XTAL32 Current 4 Crystal manufacturer’s recommended capacitive load 5 Startup Time Ixtal32 is the oscillator bias current out of the XTAL32 pin with both EXTAL32 and XTAL32 pins grounded. MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 31 Electrical Characteristics Table 12. 5V High Frequency (16 MHz) Internal RC Oscillator Num Characteristic Symbol Min Typ Max Unit 1 Frequency before trim1 Fut 12.8 16 22.3 MHz 2 Frequency after loading factory trim2 Ft 15.1 16 16.9 MHz 3 Application trim resolution3 Ts — — ± 0.5 % 4 Application frequency trim step3 Fs — 300 — kHz 5 Start up time St — — 500 ns 1 Across process, voltage, and temperature Across voltage and temperature 3 Fixed voltage and temperature 2 Table 13. 5V Low Frequency (32 kHz) Internal RC Oscillator Num Characteristic Symbol Min Typ Max Unit 1 Frequency before trim1 Fut32 20.8 32.0 43.2 kHz 2 Frequency after loading factory trim2 Ft32 26 32.0 38 kHz 3 Application trim resolution3 Ts32 — — ±2 % 4 Application frequency trim step3 Fs32 — 1 — kHz 5 Start up time St32 — — 100 μs 1 Across process, voltage, and temperature Across voltage and temperature 3 Fixed voltage and temperature 2 MPC5510 Microcontroller Family Data Sheet, Rev. 3 32 Freescale Semiconductor Electrical Characteristics 2.9 FMPLL Electrical Characteristics Table 14. FMPLL Electrical Specifications 1 Num 1 2 3 4 5 6 Characteristic Symbol System frequency2 -40 oC ≤ TJ ≤ 120 oC -40 oC ≤ TJ ≤ 145 oC fsys PLL Reference Frequency (output of predivider) VCO Min. Value Max. Value 375 375 80000 3 66000 Unit kHz fpllref 4 10 MHz Frequency4 fvco 192 500 MHz 5 fpll 3 3 80 3 66 fLOR 100 1000 kHz fSCM 13 35 MHz tlpll — 750 μs PLL Frequency -40 oC ≤ TJ ≤ 120 oC -40 oC ≤ TJ ≤ 145 oC Loss of Reference Frequency 6 Self Clocked Mode Frequency 7 8 MHz 7 PLL Lock Time 8 Frequency un-LOCK Range fUL – 4.0 4.0 % fsys 9 Frequency LOCK Range fLCK – 2.0 2.0 % fsys Cjitter –5 5 % fclkout 10 CLKOUT Cycle-to-cycle Jitter,9, 10 9,10, 11 Cjitter – 0.05 0.05 % fclkout 11 Frequency Modulation Depth 1% Setting (fsysMax must not be exceeded) 12,13 Cmod 0.5 2 %fsys 12 Frequency Modulation Depth 2% Setting 12,13 (fsysMax must not be exceeded) Cmod 1 3 %fsys 10a CLKOUT Jitter at 10 µs period 1 VDDSYN = 3.0V to 3.6 V, VSSSYN = 0 V, TA = TL to TH The maximum value is without frequency modulation turned on. If frequency modulation is turned on, the maximum value (average frequency) must be de-rated by the percentage of modulation enabled. 3 80 MHz is only available in the 208 pin package. 4 Optimum performance is achieved with the highest VCO frequency feasible based on the highest ERFD that results in the desired PLL frequency. 5 The VCO frequency range is higher than the maximum allowable PLL frequency. The synthesizer control register 2’s enchanced reduced frequency divider (FMPLL_SYNCR2[ERFD]) in enhanced operation mode must be programmed to divide the VCO frequency within the PLL frequency range. 6 Loss of reference frequency is the reference frequency detected by the PLL which then transitions into self clocked mode. 7 Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below f LOR. 8 This specification applies to the period required for the PLL to relock after changing the enhanced multiplication factor divider (EMFD) bits in the synthesizer control register 1 (SYNCR1) in enhanced operation mode. 9 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f . sys Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via VDDSYN and VSSSYN and variation in crystal oscillator frequency increase the jitter percentage for a given interval. CLKOUT divider set to divide-by-2. 10 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of C jitter + Cmod. 11 The PLL % jitter reduces with more cycles. 10 µs was picked for a reference point for LIN (100 Kbits), slower speeds will have even less % jitter. 12 Modulation depth selected must not result in f sys value greater than the fsys maximum specified value. 13 These depth ranges are obtained by filtering the raw cycle-to-cycle clock frequency data to eliminate the presence of the the normal clock jitter riding on top of the FM waveform. The allowable modulation rates are 400 kHz to 1 MHz. 2 MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 33 Electrical Characteristics 2.10 eQADC Electrical Characteristics Table 15. eQADC Conversion Specifications (Operating) Num Characteristic Symbol Min Max Unit FADCLK 1 12 MHz 1 ADC Clock (ADCLK) Frequency1 2 Conversion Cycles CC 14+2 (or 16) 14+128 (or 142) ADCLK cycles 3 Stop Mode Recovery Time2 TSR 20 — μs 4 Resolution — 1.25 — mV INL12 — 10 Counts DNL12 — 10 Counts OFFWC — 10 Counts GAINWC — 10 Counts IINJ — ±1 mA 5 6 INL: 12 MHz ADC Clock3 3 DNL: 12 MHz ADC Clock Calibration3 7 Offset Error with 8 Full Scale Gain Error with Calibration Current 4, 5, 6, 7 9 Disruptive Input Injection 10 Incremental Error due to injection current. All channels have same 10kΩ < Rs <100kΩ 8 Channel under test has Rs=10kΩ, IINJ=IINJMAX,IINJMIN EINJ — ±6 Counts 11 Total Unadjusted Error for single ended conversions with calibration3, 9, 10, 11, 12 TUE — ±10 Counts 12 Source Impedance13 RS — 100k Ohm 1 Conversion characteristics vary with FADCLK rate. Reduced conversion accuracy occurs at maximum FADCLK rate. The maximum value is based on 800KS/s and the minimum value is based on 20MHz oscillator clock frequency divided by a maximum 16 factor. 2 The specified value is for the case when the 100nF capacitor is not connected to the REFBYPC pin. When the capacitor is connected to the REFBPYC pin, the recovery time is 10ms. 3 At V RH – VRL = 5.12 V, one lsb = 1.25 mV = one count. 4 Below disruptive current conditions, the channel being stressed has conversion values of 0x3FF for analog inputs greater than VRH and 0x000 for values less than VRL. This assumes that VRH ≤ VDDA and VRL ≥ VSSA due to the presence of the sample amplifier. Other channels are not affected by non-disruptive conditions. 5 Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit do not affect device reliability or cause permanent damage. 6 Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values using VPOSCLAMP = VDDA + 0.5V and VNEGCLAMP = – 0.3 V, then use the larger of the calculated values. 7 Condition applies to two adjacent pads on the internal pad. 8 At VRH – VRL = 5.12 V, one lsb = 1.25 mV = one count. This count error is in addition to the TUE count error. 9 The TUE specification will always be better than the sum of the INL, DNL, offset, and gain errors due to canceling errors. 10 TUE includes all internal device error such as internal reference variation (75% Ref, 25% Ref) 11 Depending on the customer input impedance, the Analog Input Leakage current (DC Electrical specification) may affect the actual TUE measured on analog channels shared digital pins. 12 It is possible to see up to one additional count added for the 144 pin packages since the VRL and VRH functions are shared with the VSSA and VDDA, respectively. On Analog pins above PA15, the accuracy effects from adjacent digital port pin activity is application dependent because of frequency, level, noise, etc. 13 If R is greater than 1 k Ohm, be sure to calculate the affect of pin leakage and use the proper sampling time, to ensure that S you get the accuracy required. MPC5510 Microcontroller Family Data Sheet, Rev. 3 34 Freescale Semiconductor Electrical Characteristics 2.11 Flash Memory Electrical Characteristics Table 16. Flash Program and Erase Specifications1 Num 1 Characteristic Double Word (64 bits) Program Time 4 4 Symbol Min Typ Initial Max2 Max3 Unit Tdwprogram — 10 — 500 μs Tpprogram — 15 44 500 μs 2 Page (128 bits) Program Time 3 16 Kbyte Block Pre-program and Erase Time T16kpperase — 325 525 5000 ms 4 64 Kbyte Block Pre-program and Erase Time T64kpperase — 525 675 5000 ms 5 128 Kbyte Block Pre-program and Erase Time T128kpperase — 675 1800 7500 ms 6 Minimum operating frequency for program and erase operations — 25 — — — MHz 7 Wait States Relative to System Frequency PFCRPn[RWSC] = 0b000; PFCRPn[WWSC] = 0b01 PFCRPn[RWSC] = 0b001; PFCRPn[WWSC] = 0b01 PFCRPn[RWSC] = 0b010; PFCRPn[WWSC] = 0b01 — — — — — — — — — 25 50 80 — — — — — — 20 120 8 Recovery Time Stop mode exit or STOP bit negated Sleep mode exit (with CRP_RECPTR[FASTREC]=1) 5 Trwsc MHz Trecover μs μs 1 Typical program and erase times assume nominal supply values and operation at 25 oC. Initial factory condition: < 100 program/erase cycles, nomial supply values and operation at 25 oC. 3 The maximum time is at worst case conditions after the specified number of program/erase cycles. This maximum value is characterized but not guaranteed. 4 This does not include software overhead. 5 If CRP_RECPTR[FASTREC]=0, then hardware will wait 2340 system clocks before exiting from Sleep mode to account for the flash recovery time. The default system clock source after Sleep is the 16MIRC. A nominal frequency of 16MHz equates to a hardware wait of 146μs. 2 Table 17. Flash EEPROM Module Life (Full Temperature Range) Num 1 2 1 Characteristic Number of Program/Erase cycles per block over the operating temperature range (TJ) 16 Kbyte and 64 Kbyte blocks 128 Kbyte blocks Data retention Blocks with 0 – 1,000 P/E cycles Blocks with 1,001 – 100,000 P/E cycles Symbol Min Typical1 100,000 1000 — 100,000 P/E Unit cycles Retention — years 20 5 Typical endurance is evaluated at 25C. Product qualification is performed to the minimum specification. For additional information on the Freescale definition of Typical Endurance, please refer to Engineering Bulletin EB619 “Typical Endurance for Nonvolatile Memory.” MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 35 Electrical Characteristics 2.12 Pad AC Specifications Table 18. Pad AC Specifications (VDDE = 3.0V - 5.5V)1 Num Pad Type SRC Out Delay2, 3 (ns) Rise/Fall3, 4 (ns) Load Drive (pF) 1 Slow (SH) 11 39 23 50 120 87 200 101 52 50 188 111 200 507 248 50 597 312 200 23 12 50 64 44 200 50 22 50 90 50 200 261 123 50 305 156 200 01 00 2 Medium (MH) 11 01 00 4 Pull Up/Down (3.6V max) — — 7500 50 5 Pull Up/Down (5.5V max) — — 9500 50 1 These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at VDDE = 3.0V to 5.5V, TA = TL to TH. 2 This parameter is supplied for reference and is not tested. Add a maximum of one system clock to the output delay for delay with respect to system clock. 3 Delay and rise/fall are measured to 20% or 80% of the respective signal. 4 This parameter is guaranteed by characterization before qualification rather than 100% tested. VDD/2 Pad Internal Data Input Signal Rising Edge Out Delay Falling Edge Out Delay VOH VOL Pad Output Figure 5. Pad Output Delay MPC5510 Microcontroller Family Data Sheet, Rev. 3 36 Freescale Semiconductor Electrical Characteristics 2.13 AC Timing 2.13.1 Reset and Boot Configuration Pins Table 19. Reset and Boot Configuration Timing Num Characteristic Symbol Min Max Unit 1 RESET Pulse Width tRPW 150 — ns 2 BOOTCFG Setup Time after RESET Valid tRCSU — 100 μs 3 BOOTCFG Hold Time from RESET Valid tRCH 0 — μs RESET 1 2 BOOTCFG 3 Figure 6. Reset and Boot Configuration Timing 2.13.2 External Interrupt (IRQ) and Non-Maskable Interrupt (NMI) Pins Table 20. IRQ/NMI Timing Num Symbol Min Max Unit 1 IRQ/NMI Pulse Width Low tIPWL 3 — tSYS 2 IRQ/NMI Pulse Width High TIPWH 3 — tSYS tICYC 6 — tSYS 3 1 Characteristic IRQ/NMI Edge to Edge Time1 Applies when IRQ/NMI pins are configured for rising edge or falling edge events, but not both. IRQ/NMI 1,2 1,2 3 Figure 7. IRQ and NMI Timing MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 37 Electrical Characteristics 2.13.3 JTAG (IEEE 1149.1) Interface Table 21. JTAG Interface Timing1 Num Characteristic Symbol Min Max Unit 1 TCK Cycle Time tJCYC 100 — ns 2 TCK Clock Pulse Width (Measured at VDDE/2) tJDC 40 60 ns 3 TCK Rise and Fall Times (40% – 70%) tTCKRISE — 3 ns 4 TMS, TDI Data Setup Time tTMSS, tTDIS 5 — ns 5 TMS, TDI Data Hold Time tTMSH, tTDIH 25 — ns 6 TCK Low to TDO Data Valid tTDOV — 20 ns 7 TCK Low to TDO Data Invalid tTDOI 0 — ns 8 TCK Low to TDO High Impedance tTDOHZ — 20 ns 9 JCOMP Assertion Time tJCMPPW 100 — ns 10 JCOMP Setup Time to TCK Low tJCMPS 40 — ns 11 TCK Falling Edge to Output Valid tBSDV — 50 ns 12 TCK Falling Edge to Output Valid out of High Impedance tBSDVZ — 50 ns 13 TCK Falling Edge to Output High Impedance tBSDHZ — 50 ns 14 Boundary Scan Input Valid to TCK Rising Edge tBSDST 50 — ns 15 TCK Rising Edge to Boundary Scan Input Invalid tBSDHT 50 — ns 1 These specifications apply to JTAG boundary scan only. JTAG timing specified at VDDE = 3.0V to 5.5V, TA = TL to TH, and CL = 30pF with SRC = 0b11. TCK 2 2 3 1 3 Figure 8. JTAG Test Clock Input Timing MPC5510 Microcontroller Family Data Sheet, Rev. 3 38 Freescale Semiconductor Electrical Characteristics TCK 4 5 TMS, TDI 6 8 7 TDO Figure 9. JTAG Test Access Port Timing TCK 10 JCOMP 9 Figure 10. JTAG JCOMP Timing MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 39 Electrical Characteristics TCK 11 13 Output Signals 12 Output Signals 14 15 Input Signals Figure 11. JTAG Boundary Scan Timing MPC5510 Microcontroller Family Data Sheet, Rev. 3 40 Freescale Semiconductor Electrical Characteristics 2.13.4 Nexus Debug Interface Table 22. Nexus Debug Port Timing1 Num Characteristic 1 MCKO Cycle Time 2 MCKO Duty Cycle 3 2 MCKO Low to MDO Data Valid 2 Symbol Min Max Unit tMCYC 40 — ns tMDC 40 60 % tMDOV –2 4.0 ns 4 MCKO Low to MSEO Data Valid tMSEOV –2 4.0 ns 5 2 MCKO Low to EVTO Data Valid tEVTOV –2 4.0 ns 6 EVTI Pulse Width tEVTIPW 4.0 — tTCYC 7 EVTO Pulse Width tEVTOPW 1 tTCYC 40 — ns tTDC 40 60 % 3 tMCYC 8 TCK Cycle Time 9 TCK Duty Cycle 10 TDI, TMS Data Setup Time tNTDIS, tNTMSS 8 — ns 11 TDI, TMS Data Hold Time tNTDIH, tNTMSH 4 — ns 12 TCK Low to TDO Data Valid tJOV 0 8 ns 1 JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at VDDE = 3.0V to 5.5V, TA = TL to TH, and CL = 30pF with SRC = 0b11. 2 MDO, MSEO, and EVTO data is held valid until next MCKO low cycle. 3 The system clock frequency needs to be three times faster that the TCK frequency. 1 2 MCKO 4 3 5 MDO MSEO EVTO Output Data Valid Figure 12. Nexus Output Timing MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 41 Electrical Characteristics TCK 10 11 TMS, TDI 12 TDO Figure 13. Nexus TDI, TMS, TDO Timing MPC5510 Microcontroller Family Data Sheet, Rev. 3 42 Freescale Semiconductor Electrical Characteristics 2.13.5 External Bus Interface (EBI) Table 23. External Bus Operation Timing1 Num Characteristic 1 CLKOUT Period2 2 CLKOUT duty cycle 3 CLKOUT rise time Symbol Min Max Unit TC 40.0 — ns tCDC 45% 55% TC tCRT — — 3 ns 3 ns 4 CLKOUT fall time tCFT — — 5 CLKOUT Positive Edge to Output Signal Invalid or High Z (Hold Time) tCOH 2.0 — ns 6 CLKOUT Positive Edge to Output Signal Valid (Output Delay) tCOV — 10.0 ns 7 Input Signal Valid to CLKOUT Posedge (Setup Time) tCIS 20.0 — ns 8 CLKOUT Posedge to Input Signal Invalid (Hold Time) tCIH 0 — ns 9 ALE Pulse Width High Time tALEPWH 20 — ns 10 ALE Fall to AD Invalid tALEAD 2 — ns 1 EBI timing specified at VDDE = 3.0V to 5.5V, TA = TL to TH, and CL = 50pF with SIU_PCRn[SRC] = 0b11. Initialize SIU_ECCR[EBDF] to meet maximum external bus frequency. 3 Refer to Medium High Voltage (MH) pad AC specification in Table 18. 2 Voh_f VDDE/2 CLKOUT Vol_f 3 2 2 4 1 Figure 14. CLKOUT Timing MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 43 Electrical Characteristics VDDE/2 CLKOUT 6 5 VDDE/2 5 OUTPUT BUS VDDE/2 AD[0:31] ADDR[8:15] 6 5 OUTPUT SIGNAL BDIP CS[0:3] OE RD_WR TA TEA TS WE[0:3] 5 VDDE/2 6 VDDE/2 Figure 15. Synchronous Output Timing MPC5510 Microcontroller Family Data Sheet, Rev. 3 44 Freescale Semiconductor Electrical Characteristics CLKOUT VDDE/2 7 8 INPUT BUS VDDE/2 AD[0:31] 7 INPUT SIGNAL RD_WR TA TEA TS 8 VDDE/2 Figure 16. Synchronous Input Timing MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 45 Electrical Characteristics CLKOUT VDDE/2 TS 10 VDDE/2 AD[0:31] 9 ALE VDDE/2 Figure 17. Address Latch Enable (ALE) Timing 2.13.6 Enhanced Modular I/O Subsystem (eMIOS) Table 24. eMIOS Timing Num Characteristic Symbol Min Max Unit 1 eMIOS Input Pulse Width tMIPW 4 — tCYC 2 eMIOS Output Pulse Width tMOPW 1 — tCYC MPC5510 Microcontroller Family Data Sheet, Rev. 3 46 Freescale Semiconductor Electrical Characteristics 2.13.7 Deserial Serial Peripheral Interface (DSPI) Table 25. DSPI Timing1 66 MHz Num 1 2 4 5 6 PCS to SCK Delay Delay5 Max tSCK 60 — ns tCSC 20 — ns tASC 20 — ns tSDC tSCK/2 –2ns tSCK/2 + 2ns ns tA — 25 ns tDIS — 25 ns 4 SCK Duty Cycle 5 Slave Access Time (SS active to SOUT driven) 6 Slave SOUT Disable Time (SS inactive to SOUT High-Z or invalid) 7 PCSx to PCSS time tPCSC 4 — ns 8 PCSS to PCSx time tPASC 5 — ns 9 Data Setup Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0)6 Master (MTFE = 1, CPHA = 1) tSUI 35 5 5 35 — — — — ns ns ns ns Data Hold Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0)6 Master (MTFE = 1, CPHA = 1) tHI –4 10 26 –4 — — — — ns ns ns ns — — — — 15 35 30 15 ns ns ns ns –15 5.5 0 –15 — — — — ns ns ns ns 12 3 4 Unit Min After SCK 11 2 SCK Cycle TIme2,3 Symbol 3 10 1 Characteristic Data Valid (after SCK edge) Master (MTFE = 0) Slave Master (MTFE = 1, CPHA=0) Master (MTFE = 1, CPHA=1) tSUO Data Hold Time for Outputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1) tHO DSPI timing specified at VDDE = 3.0V to 5.5V, TA = TL to TH, and CL = 50pF with SRC = 0b11. The minimum SCK Cycle Time restricts the baud rate selection for given system clock rate. These numbers are calculated based on two MPC55xx devices communicating over a DSPI link. The actual minimum SCK Cycle Time is limited by pad performance. The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK] The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC] This number is calculated assuming the SMPL_PT bit field in DSPI_MCR is set to 0b10. MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 47 Electrical Characteristics 2 3 PCSx 1 4 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 9 SIN 10 First Data Last Data Data 12 SOUT First Data 11 Data Last Data Figure 18. DSPI Classic SPI Timing — Master, CPHA = 0 PCSx SCK Output (CPOL=0) 10 SCK Output (CPOL=1) 9 SIN Data First Data 12 SOUT First Data Last Data 11 Data Last Data Figure 19. DSPI Classic SPI Timing — Master, CPHA = 1 MPC5510 Microcontroller Family Data Sheet, Rev. 3 48 Freescale Semiconductor Electrical Characteristics 3 2 SS 1 4 SCK Input (CPOL=0) 4 SCK Input (CPOL=1) 5 First Data SOUT 9 6 Data Last Data Data Last Data 10 First Data SIN 11 12 Figure 20. DSPI Classic SPI Timing — Slave, CPHA = 0 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 12 SOUT First Data 9 SIN Data Last Data Data Last Data 6 10 First Data Figure 21. DSPI Classic SPI Timing — Slave, CPHA = 1 MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 49 Electrical Characteristics 3 PCSx 4 1 2 SCK Output (CPOL=0) 4 SCK Output (CPOL=1) 9 SIN 10 First Data Last Data Data 12 SOUT 11 First Data Last Data Data Figure 22. DSPI Modified Transfer Format Timing — Master, CPHA = 0 PCSx SCK Output (CPOL=0) SCK Output (CPOL=1) 10 9 SIN First Data Data 12 SOUT First Data Data Last Data 11 Last Data Figure 23. DSPI Modified Transfer Format Timing — Master, CPHA = 1 MPC5510 Microcontroller Family Data Sheet, Rev. 3 50 Freescale Semiconductor Electrical Characteristics 3 2 SS 1 SCK Input (CPOL=0) 4 4 SCK Input (CPOL=1) 12 11 5 First Data SOUT Data Last Data 10 9 Data First Data SIN 6 Last Data Figure 24. DSPI Modified Transfer Format Timing — Slave, CPHA = 0 SS SCK Input (CPOL=0) SCK Input (CPOL=1) 11 5 6 12 First Data SOUT 9 Last Data Data Last Data 10 First Data SIN Data Figure 25. DSPI Modified Transfer Format Timing — Slave, CPHA = 1 7 8 PCSS PCSx Figure 26. DSPI PCS Strobe (PCSS) Timing MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 51 Package Information 3 Package Information The latest package outline drawings are available on the product summary pages on our web site: http://www.freescale.com/powerpc. The following table lists the package case number per device. Use these numbers in the web page’s “keyword” search engine to find the latest package outline drawings. Table 26. Package Information 4 Package Package Case Number 144 LQFP 98ASS23177W 176 LQFP 98ASS23479W 208 MAPBGA 98ARS23882W Product Documentation Documentation is available from a local Freescale distributor, a Freescale sales office, the Freescale Literature Distribution Center, or through the Freescale world-wide web address at http://www.freescale.com/powerpc. MPC5510 Microcontroller Family Data Sheet, Rev. 3 52 Freescale Semiconductor Product Documentation 4.1 Revision History Table 27 summarizes revisions to this document. Table 27. Revision History of MPC5510 Data Sheet Revision Date Substantive Changes Rev. 0 9/2007 Initial Release. Preliminary content. Rev. 1 6/2008 (Note: Change descriptions refer to locations in Rev. 0.) Changed MPC5516 to MPC5510 Family where appropriate. Modified Figure 1. MPC5510 Family Block Diagram. Deleted Table 1. MPC5510 Family Comparison, Maximum Feature Set Deleted Table 2. MPC5510 Peripheral Multiplexing Examples Corrected PK0 and PK1 pin assignments on 208 MAPBGA (Table 3 and Figure 4). Modified Table 4, footnote 4. Modified Table 8. DC Electrical Specifications and table footnotes. Modified Table 9. Operating Currents and table footnotes. Modified Table 12. 3.3V High Frequency External Oscillator, row 5. Modified Table 14. 5V High Frequency (16 MHz) Internal RC Oscillator, row 2. Modified Table 16. FMPLL Electrical Specifications, row 4. Modified Table 17. eQADC Conversion Specifications (Operating) and table footnotes. Modified Table 18. Flash Program and EraseSpecifications, row 5. Modified Table 19. Flash EEPROM Module Life (Full Temperature Range), row 1 Modified Table 28. Package Information. Rev. 2 12/2008 (Note: Change descriptions refer to locations in Rev. 1.) Modified Table 1. MPC5510 Signal Properties: added note to TEST signal. Modified Table 6. DC Electrical Specifications: rows 1b, 5, 8, 9, 10, 11, 16, 19, 25, and footnotes. Modified Table 7. Operating Currents: Max column header, rows 1, 2, 3, 4, and footnotes. Modified Table 9. Low Voltage Monitors: rows 2, 3, 4, 6. Modified Table 10. 3.3V High Frequence External Oscillator: row 1 added footnote, removed duplicate footnote #3. Modified Table 11. 5V Low Frequency (32 kHz) External Oscillator: row 1. Modified Table 12. 5V High Frequency (16 MHz) Internal RC Oscillator: row 2. Modified Table 13. 5V Low Frequency (32 kHz) Internal RC Oscillator: row 2. Modified Table 14. FMPLL Electrical Specifications: rows 1 and 4; added two new rows. Modified Table 15. eQADC Conversion Specifications (Operating): rows 5, 6, 7, 8, 10, 11, and footnotes. Modified Figure 5. Pad Output Delay: moved the dashed horizontal line up so that it crosses the signal midway between top and bottom. Rev. 3 3/2009 (Note: Change descriptions refer to locations in Rev. 2.) Modified Table 4. Thermal Characteristics: all values in 208 MAPBGA column. Modified Table 6. DC Electrical Specifications: spec #1c, added footnote; spec #25, added footnote. Modified Table 7. Operating Currents; spec #5. Modified Table 9. Low Voltage Monitors; spec #1. Modified Table 14. FMPLL Electrical Specifications: updated footnote 3; added spec #10a. Modified Table 15. eQADC Conversion Specifications (Operating): added another footnote. Modified Table 16: Flash Program and Erase Specifications: updated spec #7. Modified Figure 5: Pad Output Delay: adjusted lower timing diagram. Modified Figure 8: JTAG Test Clock Input Timing; updated so that it matches the spec definitions. MPC5510 Microcontroller Family Data Sheet, Rev. 3 Freescale Semiconductor 53 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © Freescale Semiconductor, Inc. 2007-2009. All rights reserved. For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Document Number: MPC5510 Rev. 3 3/2009