AD SSM2804CBZ-RL

Audio Subsystem with Class-D Speaker
and Capless Headphone Driver
SSM2804
FEATURES
3 single-ended stereo audio inputs with optional
differential mode
Stereo, 1.4 W, filterless Class-D amplifiers with Σ-Δ modulation
Integrated receiver path bypass switch
Configurable, high performance capless headphone output
with true ground Class-G technology
Optional hardware-based headphone level limiter
I2C control interface
Volume control
Flexible input/output mixing
Output mode control
EMI emissions control
Automatic level control (ALC)
Adjustable headphone level limiter
Low shutdown current
Short-circuit and thermal protection
Pop-and-click suppression
Available in a 30-ball, 2.5 mm × 3.0 mm WLCSP
APPLICATIONS
Mobile phones
Portable multimedia devices
GENERAL DESCRIPTION
The SSM2804 is an audio subsystem designed specifically for
mobile phones and portable multimedia devices. This highly
flexible subsystem includes three input channels that can be
configured as single-ended stereo or monaural differential for
multimedia audio sources.
Each set of inputs is independently adjustable with the 2-wire
I2C interface and features an adjustable gain over a 30 dB range
in steps of 1 dB. Each set of input channels also offers the choice
of variable input impedance PGA mode or fixed input impedance
boost mode. The input signals are then mixed and routed to the
desired set of outputs. This configuration is set using the 2-wire
I2C control interface.
The SSM2804 includes three selectable output modes.
The first output mode is a stereo Class-D speaker driver capable
of delivering 2 × 1.4 W of continuous power to an 8 Ω bridge-tied
load (BTL) with 1% THD + N when using a 5 V supply. This
Class-D amplifier incorporates three-level Σ-Δ output modulation
designed to increase battery life and improve EMI performance.
The Class-D amplifier offers an I2C-adjustable volume control
with a gain range from +12 dB to −63 dB in 31 steps.
The second output mode is a pair of high performance headphone drivers capable of delivering 20 mW per channel into
stereo 32 Ω single-ended loads with 1% THD + N. The stereo
headphone drivers use a highly efficient, true ground centered
Class-G architecture. The headphone outputs incorporate
I2C-adjustable volume control with a gain range from 0 dB
to −75 dB in 32 steps.
The third output mode is an integrated receiver path bypass
switch for passing voice signals from the audio baseband.
The SSM2804 is specified over the industrial temperature range
of −40°C to +85°C. It has built-in thermal shutdown and output
short-circuit protection. The SSM2804 is available in a 30-ball,
2.5 mm × 3.0 mm wafer level chip scale package (WLCSP).
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2011 Analog Devices, Inc. All rights reserved.
SSM2804
TABLE OF CONTENTS
Features .............................................................................................. 1 Register Map Details ...................................................................... 21 Applications ....................................................................................... 1 Input Channel Mode Control, Address 0x00 ......................... 21 General Description ......................................................................... 1 Channel A Line Input Volume, Address 0x01 ........................ 22 Revision History ............................................................................... 2 Channel B Line Input Volume, Address 0x02 ........................ 23 Functional Block Diagram .............................................................. 3 Channel C Line Input Volume, Address 0x03 ........................ 24 Specifications..................................................................................... 4 Class-D Left Loudspeaker Output Volume, Address 0x04 ... 25 I C Timing Characteristics .......................................................... 6 Class-D Right Loudspeaker Output Volume, Address 0x05 ... 26 Absolute Maximum Ratings............................................................ 7 Left Headphone Output Volume, Address 0x06 .................... 27 Thermal Resistance ...................................................................... 7 Right Headphone Output Volume, Address 0x07 ................. 28 ESD Caution .................................................................................. 7 Headphone Input Mixer Control, Address 0x08.................... 29 Pin Configuration and Function Descriptions ............................. 8 Class-D Input Mixer Control, Address 0x09 .......................... 29 Typical Performance Characteristics ............................................. 9 ALC Control 1, Address 0x0A .................................................. 30 Theory of Operation ...................................................................... 13 ALC Control 2, Address 0x0B .................................................. 31 Pop-and-Click Suppression ....................................................... 13 ALC Control 3, Address 0x0C .................................................. 32 Output Modulation Description .............................................. 13 Power-Down Control, Address 0x0D ...................................... 32 Hardware-Based Headphone Limiter ...................................... 14 Additional Control, Address 0x0E ........................................... 34 Activating or Deactivating the Emission Limiting Circuitry...14 Chip Status Register, Address 0x0F.......................................... 35 Automatic Level Control (ALC) ............................................... 14 Software Reset Register, Address 0x10 .................................... 35 Typical Application Circuits.......................................................... 17 Outline Dimensions ....................................................................... 36 I C Software Control Interface...................................................... 19 Ordering Guide .......................................................................... 36 2
2
Register Map.................................................................................... 20 REVISION HISTORY
7/11—Revision 0: Initial Version
Rev. 0 | Page 2 of 36
SSM2804
FUNCTIONAL BLOCK DIAGRAM
AVDD
PVDD
RCV+
EP+
RCV–
EP–
SSM2804
INA2
BOOST = 0dB TO +20dB
PGA = –12dB TO +18dB
LSPK+
LSPK–
INA1
RSPK+
RSPK–
+12dB TO –63dB
31 STEPS
INB2
BOOST = 0dB TO +20dB
PGA = –12dB TO +18dB
CLASS-D
MIX/MUX
INB1
HPL
INC2
BOOST = 0dB TO +20dB
PGA = –12dB TO +18dB
HPR
INC1
CLASS-G
CLASS-G
SUPPLY
BIAS
CF1
CF2
I2C
CPVDD
BIAS
AGND PGND
SCL
Figure 1.
Rev. 0 | Page 3 of 36
SDA
CPVSS
09960-001
SD
0dB TO –75dB
32 STEPS
SSM2804
SPECIFICATIONS
TA = 25°C, AVDD = 3.3 V, PVDD = 3.6 V, gain = 0 dB, unless otherwise noted.
Table 1.
Parameter
POWER SUPPLY
Analog Voltage Supply (AVDD)
Speaker Voltage Supply (PVDD)
Total Quiescent Current (IDD)
Min
Typ
Max
Unit
Test Conditions/Comments
2.5
2.7
3.3
3.6
3.5
6.0
9.8
400
1
3.6
5.5
V
V
mA
mA
mA
μA
μA
HP mode only
Stereo Class-D mode only
HP and Class-D modes
Receiver path mode
SD pin low
10
ms
SD rising edge from AGND to AVDD
54
6.5
+18
kΩ
kΩ
dB
Minimum gain setting
Maximum gain setting
INAx, INBx, INCx inputs, 31 steps
20
kΩ
dB
INAx, INBx, INCx inputs, 3 steps
Power-Down Current (ISD)
INPUT CHARACTERISTICS
Turn-On Time
PGA Mode Operation
Input Impedance
Gain Range
Boost Mode Operation
Input Impedance
Gain Range
CLASS-D AMPLIFIER
Output Offset Voltage (VOS)
38
4.5
−12
20
0
2.3
12
mV
mV
310
700
1.0
1.4
700
1.5
2.0
2.9
400
860
1.2
1.7
900
1.8
2.5
3.6
0.01
mW
mW
W
W
mW
W
W
W
mW
mW
W
W
mW
W
W
W
%
40
94
80
80
55
89
μV
dB
dB
dB
dB
%
Ω
kHz
dB
Output Power (POUT)
Total Harmonic Distortion Plus Noise
(THD + N)
Output Noise (Vn)
Signal-to-Noise Ratio (SNR)
Power Supply Rejection Ratio (PSRR)
Common-Mode Rejection Ratio (CMRR)
Efficiency
Minimum Load Resistance (RLOAD)
Average Switching Frequency (fSW)
Volume Control Gain Range
4
400
−63
+12
Rev. 0 | Page 4 of 36
Output muted
Output unmuted
f = 1 kHz, mono operation
PVDD = 2.7 V, RL = 8 Ω + 33 μH, THD + N = 1%
PVDD = 3.6 V, RL = 8 Ω + 33 μH, THD + N = 1%
PVDD = 4.2 V, RL = 8 Ω + 33 μH, THD + N = 1%
PVDD = 5.0 V, RL = 8 Ω + 33 μH, THD + N = 1%
PVDD = 2.7 V, RL = 4 Ω + 15 μH, THD + N = 1%
PVDD = 3.6 V, RL = 4 Ω + 15 μH, THD + N = 1%
PVDD = 4.2 V, RL = 4 Ω + 15 μH, THD + N = 1%
PVDD = 5.0 V, RL = 4 Ω + 15 μH, THD + N = 1%
PVDD = 2.7 V, RL = 8 Ω + 33 μH, THD + N = 10%
PVDD = 3.6 V, RL = 8 Ω + 33 μH, THD + N = 10%
PVDD = 4.2 V, RL = 8 Ω + 33 μH, THD + N = 10%
PVDD = 5.0 V, RL = 8 Ω + 33 μH, THD + N = 10%
PVDD = 2.7 V, RL = 4 Ω + 15 μH, THD + N = 10%
PVDD = 3.6 V, RL = 4 Ω + 15 μH, THD + N = 10%
PVDD = 4.2 V, RL = 4 Ω + 15 μH, THD + N = 10%
PVDD = 5.0 V, RL = 4 Ω + 15 μH, THD + N = 10%
RL = 8 Ω + 33 μH, POUT = 250 mW
20 Hz to 20 kHz, A-weighted
2.0 V rms output, A-weighted, PVDD = 5 V
217 Hz, 200 mV p-p ripple
1 kHz, 200 mV p-p ripple
Differential input mode, 1 kHz, 10 mV rms
POUT = 700 mW
SSM2804
Parameter
HEADPHONE OUTPUT
Output Offset Voltage (VOS)
Min
Output Power (POUT)
Total Harmonic Distortion Plus Noise
(THD + N)
Output Noise (Vn)
Signal-to-Noise Ratio (SNR)
Power Supply Rejection Ratio (PSRR)
Crosstalk
Minimum Load Resistance (RLOAD)
Maximum Capacitive Load (CLOAD)
Gain Range
ESD Protection
RECEIVER PATH (BYPASS SWITCH)
Path Impedance (RON), Receiver Inputs
to Speaker Outputs
Signal Path THD + N
Typ
Max
Unit
Test Conditions/Comments
2
8
20
40
mV
mV
mW
mW
0.012
%
Headphone only
INAx, INBx, INCx inputs
RL = 32 Ω, THD + N = 1%
RL = 16 Ω, THD + N = 1%, 1 μF charge pump
capacitor
RL = 32 Ω, POUT = 15 mW
0.02
16
96
95
85
90
RL = 16 Ω, POUT = 10 mW
20 Hz to 20 kHz, A-weighted
800 mV rms output, A-weighted
217 Hz, 200 mV p-p ripple
1 kHz, 200 mV p-p ripple
1 kHz, POUT = 12 mW
±8
%
μV
dB
dB
dB
dB
Ω
pF
dB
kV
1.5
Ω
RCV+ to EP+ and RCV− to EP−
0.1
%
10
90
μV
dB
V
POUT = 70 mW, RL = 32 Ω or POUT = 17.5 mW,
RL = 8 Ω
20 Hz to 20 kHz, A-weighted
217 Hz, 200 mV p-p ripple
16
500
0
−75
Output Noise
Off Channel Isolation
Input Common Mode
PVDD/2
Table 2. Digital Logic Levels (CMOS Levels)
Parameter
Input Low Level (VIL)
Input High Level (VIH)
Output Low Level (VOL)
Output High Level (VOH)
Min
Typ
Max
0.35
1.35
0.1 × AVDD
0.9 × AVDD
Rev. 0 | Page 5 of 36
Unit
V
V
V
V
SSM2804
I2C TIMING CHARACTERISTICS
Table 3.
Parameter
tSCS
tSCH
tPH
tPL
fSCL
tDS
tDH
tRT
tFT
tHCS
tMIN
600
600
600
1.3
0
100
Limit
tMAX
Unit
ns
ns
ns
μs
kHz
ns
ns
ns
ns
ns
526
900
300
300
600
Description
Start condition setup time
Start condition hold time
SCL pulse width high
SCL pulse width low
SCL frequency
Data setup time
Data hold time
SDA and SCL rise time
SDA and SCL fall time
Stop condition setup time
Timing Diagram
tSCH
tHCS
SDA
tDS
tSCS
tPH
SCL
tRT
tDH
Figure 2. I2C Timing
Rev. 0 | Page 6 of 36
tFT
09960-002
tPL
SSM2804
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
THERMAL RESISTANCE
Table 4.
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Parameter
Analog Supply Voltage (AVDD)
Speaker Supply Voltage (PVDD)
Input Voltage
SD, SCL, SDA, RCV+, RCV−
INA1, INA2, INB1, INB2, INC1, INC2
ESD (HBM) on Headphone Output
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range
Lead Temperature (Soldering, 60 sec)
Rating
−0.3 V to +3.6 V
−0.3 V to +3.6 V
VDD
−0.3 V to +6.0 V
−0.3 V to AVDD + 0.3 V
8 kV
−65°C to +150°C
−40°C to +85°C
−65°C to +165°C
300°C
Table 5. Thermal Resistance
Package Type
30-Ball, 2.5 mm × 3.0 mm WLCSP
ESD CAUTION
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Rev. 0 | Page 7 of 36
PCB
1S0P
2S0P
θJA
162
76
θJB
39
21
Unit
°C/W
°C/W
SSM2804
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
2
3
4
5
6
A
LSPK+
PVDD
RSPK+
EP+
RCV+
INA1
B
LSPK–
PGND
RSPK–
EP–
RCV–
INA2
C
CF2
CPVSS
SCL
SDA
INB2
INB1
D
AGND
CPVDD
HPR
SD
INC2
INC1
E
CF1
AVDD
HPL
AGND
AVDD
BIAS
TOP VIEW
(BALL SIDE DOWN)
Not to Scale
09960-003
BALL A1
CORNER
Figure 3. Pin Configuration
Table 6. Pin Function Descriptions
Pin No.
A1
B1
C1
D1
E1
A2
B2
C2
D2
E2
A3
B3
C3
D3
E3
A4
B4
C4
D4
E4
A5
B5
C5
D5
E5
A6
B6
C6
D6
E6
Mnemonic
LSPK+
LSPK−
CF2
AGND
CF1
PVDD
PGND
CPVSS
CPVDD
AVDD
RSPK+
RSPK−
SCL
HPR
HPL
EP+
EP−
SDA
SD
AGND
RCV+
RCV−
INB2
INC2
AVDD
INA1
INA2
INB1
INC1
BIAS
Description
Class-D Loudspeaker Output Left +
Class-D Loudspeaker Output Left −
Charge Pump Flyback Capacitor, Terminal 2
Analog Ground
Charge Pump Flyback Capacitor, Terminal 1
Speaker Power Supply
Speaker Ground
Charge Pump Negative Supply for Class-G
Charge Pump Positive Supply for Class-G
Analog Power Supply
Class-D Loudspeaker Output Right +
Class-D Loudspeaker Output Right −
2-Wire I2C Control Interface Clock Input
Class-G Headphone Output, Right Channel
Class-G Headphone Output, Left Channel
Integrated Switch Output +
Integrated Switch Output −
2-Wire I2C Control Interface Data Input/Output
Shutdown Control, Active Low (Optional Limiter Threshold Voltage)
Analog Ground
Baseband Receiver (Voice) Input +
Baseband Receiver (Voice) Input −
Configurable Input B2 (Single-Ended Input B− or Stereo Input B, Left Channel)
Configurable Input C2 (Single-Ended Input C− or Stereo Input C, Left Channel)
Analog Power Supply
Configurable Input A1 (Single-Ended Input A+ or Stereo Input A, Right Channel)
Configurable Input A2 (Single-Ended Input A− or Stereo Input A, Left Channel)
Configurable Input B1 (Single-Ended Input B+ or Stereo Input B, Right Channel)
Configurable Input C1 (Single-Ended Input C+ or Stereo Input C, Right Channel)
Device Bias Pin
Rev. 0 | Page 8 of 36
SSM2804
TYPICAL PERFORMANCE CHARACTERISTICS
100
100
RL = 8Ω + 33µH
RL = 4Ω + 15µH
10
10
PVDD = 3.6V
1
0.1
THD + N (%)
THD + N (%)
PVDD = 3.6V
PVDD = 2.7V
1
PVDD = 2.7V
PVDD = 4.2V
0.1
PVDD = 4.2V
0.01
0.01
PVDD = 5V
0.01
0.1
1
10
OUTPUT POWER (W)
0.001
0.0001
PVDD = 5V
0.001
0.01
10
Figure 4. THD + N vs. Output Power into 8 Ω, Class-D Amplifier,
Mono Operation
Figure 7. THD + N vs. Output Power into 4 Ω, Class-D Amplifier,
Mono Operation
100
100
RL = 4Ω + 15µH
10
10
PVDD = 2.7V
0.1
PVDD = 4.2V
0.01
1
PVDD = 2.7V
0.1
PVDD = 4.2V
0.01
PVDD = 5V
PVDD = 5V
0.001
0.01
0.1
1
10
OUTPUT POWER (W)
0.001
0.0001
09960-006
0.001
0.01
0.1
1
10
OUTPUT POWER (W)
Figure 5. THD + N vs. Output Power into 8 Ω, Class-D Amplifier,
Stereo Operation
Figure 8. THD + N vs. Output Power into 4 Ω, Class-D Amplifier,
Stereo Operation
100
100
PVDD = 2.7V
RL = 8Ω + 33µH
10
10
500mW
300mW
THD + N (%)
1
PVDD = 2.7V
RL = 4Ω + 15µH
125mW
0.1
0.01
1
0.1
250mW
62.5mW
0.01
125mW
0.001
10
100
1k
10k
100k
FREQUENCY (Hz)
09960-008
62.5mW
0.001
10
100
1k
FREQUENCY (Hz)
10k
100k
09960-009
0.001
0.0001
09960-007
1
PVDD = 3.6V
THD + N (%)
PVDD = 3.6V
THD + N (%)
1
OUTPUT POWER (W)
RL = 8Ω + 33µH
THD + N (%)
0.1
09960-005
0.001
09960-004
0.001
0.0001
Figure 9. THD + N vs. Frequency, Class-D Amplifier, Mono Operation,
RL = 4 Ω, PVDD = 2.7 V
Figure 6. THD + N vs. Frequency, Class-D Amplifier, Mono Operation,
RL = 8 Ω, PVDD = 2.7 V
Rev. 0 | Page 9 of 36
SSM2804
100
100
PVDD = 3.6V
RL = 4Ω + 15µH
PVDD = 3.6V
RL = 8Ω + 33µH
600mW
0.1
500mW
1.1W
1
0.1
250mW
125mW
125mW
0.01
0.01
1k
10k
100k
FREQUENCY (Hz)
09960-010
100
0.001
10
Figure 10. THD + N vs. Frequency, Class-D Amplifier, Mono Operation,
RL = 8 Ω, PVDD = 3.6 V
PVDD = 4.2V
RL = 4Ω + 15µH
10
10
1
1
0.1
900mW
1.5W
0.1
125mW
250mW
1W
250mW
0.01
0.01
10k
100k
0.001
10
09960-012
1k
Figure 11. THD + N vs. Frequency, Class-D Amplifier, Mono Operation,
RL = 8 Ω, PVDD = 4.2 V
100
1k
10k
100k
FREQUENCY (Hz)
09960-013
500mW
500mW
100
FREQUENCY (Hz)
Figure 14. THD + N vs. Frequency, Class-D Amplifier, Mono Operation,
RL = 4 Ω, PVDD = 4.2 V
100
100
PVDD = 5V
RL = 8Ω + 33µH
10
PVDD = 5V
RL = 4Ω + 15µH
10
THD + N (%)
1.2W
1
0.1
1
2.2W
0.1
250mW
1W
250mW
0.01
1.5W
0.01
500mW
100
1k
FREQUENCY (Hz)
500mW
10k
100k
0.001
10
09960-014
0.001
10
100k
100
THD + N (%)
THD + N (%)
10k
Figure 13. THD + N vs. Frequency, Class-D Amplifier, Mono Operation,
RL = 4 Ω, PVDD = 3.6 V
PVDD = 4.2V
RL = 8Ω + 33µH
THD + N (%)
1k
FREQUENCY (Hz)
100
0.001
10
100
09960-011
500mW
250mW
0.001
10
Figure 12. THD + N vs. Frequency, Class-D Amplifier, Mono Operation,
RL = 8 Ω, PVDD = 5.0 V
100
1k
FREQUENCY (Hz)
10k
100k
09960-015
1
10
THD + N (%)
THD + N (%)
10
Figure 15. THD + N vs. Frequency, Class-D Amplifier, Mono Operation,
RL = 4 Ω, PVDD = 5.0 V
Rev. 0 | Page 10 of 36
SSM2804
2.0
3.5
f = 1kHz
RL = 8Ω + 33µH
1.8
f = 1kHz
RL = 4Ω + 15µH
3.0
1.4
1.2
OUTPUT POWER (W)
OUTPUT POWER (W)
1.6
THD + N = 1%
1.0
0.8
THD + N = 10%
THD + N = 0.1%
0.6
2.5
THD + N = 1%
2.0
1.5
THD + N = 10%
THD + N = 0.1%
1.0
0.4
3.0
3.5
4.0
4.5
5.0
SUPPLY VOLTAGE (V)
0
2.5
09960-016
0
2.5
Figure 16. Output Power vs. Supply Voltage, Class-D Amplifier, RL = 8 Ω
3.0
3.5
5.0
800
RL = 8Ω + 33µH
RL = 4Ω + 15µH
350
700
PVDD = 5V
PVDD = 4.2V
300
SUPPLY CURRENT (mA)
PVDD = 3.6V
250
PVDD = 2.7V
200
150
100
50
PVDD = 4.2V
600
PVDD = 5V
500
PVDD = 3.6V
400
300
PVDD = 2.7V
200
100
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
OUTPUT POWER (W)
0
09960-018
0
Figure 17. Supply Current vs. Output Power into 8 Ω, Class-D Amplifier
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
OUTPUT POWER (W)
09960-019
SUPPLY CURRENT (mA)
4.5
Figure 19. Output Power vs. Supply Voltage, Class-D Amplifier, RL = 4 Ω
400
0
4.0
SUPPLY VOLTAGE (V)
09960-017
0.5
0.2
Figure 20. Supply Current vs. Output Power into 4 Ω, Class-D Amplifier
100
100
PVDD = 2.7V
90
90
80
80
PVDD = 5V
70
EFFICIENCY (%)
PVDD = 4.2V
60
PVDD = 3.6V
50
40
30
20
50
40
20
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
RL = 4Ω + 15µH
10
1.8
OUTPUT POWER (W)
Figure 18. Efficiency vs. Output Power into 8 Ω, Class-D Amplifier
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
OUTPUT POWER (W)
Figure 21. Efficiency vs. Output Power into 4 Ω, Class-D Amplifier
Rev. 0 | Page 11 of 36
09960-021
RL = 8Ω + 33µH
10
0
PVDD = 2.7V
PVDD = 3.6V
PVDD = 4.2V
PVDD = 5V
60
30
09960-020
EFFICIENCY (%)
70
SSM2804
100
100
RL = 32Ω
10
10
1
1
THD + N (%)
0.1
0.1
0.001
0.01
0.1
1
10
OUTPUT POWER (W)
0.001
0.0001
09960-023
0.001
0.0001
Figure 22. THD + N vs. Output Power into 16 Ω, Headphone Amplifier,
Stereo Operation
0.01
0.1
100
PVDD = 2.7V
RL = 32Ω
10
1
1
THD + N (%)
10
10mW
0.1
0.01
5mW
0.1
0.01
1k
10k
100k
FREQUENCY (Hz)
0.001
10
09960-025
100
–30
–40
–40
–50
–50
–60
–60
PSRR (dB)
–30
–70
–80
–80
–90
–100
–100
–110
–110
100k
FREQUENCY (Hz)
100k
–70
–90
09960-022
PSRR (dB)
–20
10k
10k
Figure 26. THD + N vs. Frequency, Headphone Amplifier,
RL = 32 Ω, PVDD = 2.7 V
–20
1k
1k
FREQUENCY (Hz)
Figure 23. THD + N vs. Frequency, Headphone Amplifier,
RL = 16 Ω, PVDD = 2.7 V
100
100
09960-026
10mW
20mW
–120
10
10
Figure 25. THD + N vs. Output Power into 32 Ω, Headphone Amplifier,
Stereo Operation
PVDD = 2.7V
RL = 16Ω
0.001
10
1
OUTPUT POWER (W)
100
THD + N (%)
0.001
09960-024
0.01
0.01
–120
10
100
1k
10k
100k
FREQUENCY (Hz)
Figure 27. Power Supply Rejection Ratio (PSRR) vs. Frequency,
Headphone Amplifier
Figure 24. Power Supply Rejection Ratio (PSRR) vs. Frequency,
Class-D Amplifier
Rev. 0 | Page 12 of 36
09960-027
THD + N (%)
RL = 16Ω
SSM2804
THEORY OF OPERATION
The SSM2804 audio subsystem features a filterless modulation
scheme that greatly reduces the external component count, conserving board space and, thus, reducing system cost. The SSM2804
does not require an output filter but, instead, relies on the inherent
inductance of the speaker coil and the natural filtering of the
speaker and human ear to fully recover the audio component
of the square wave output.
Most Class-D amplifiers use some variation of pulse-width
modulation (PWM), but the SSM2804 uses Σ-Δ modulation to
determine the switching pattern of the output devices, resulting
in a number of important benefits.
•
•
•
Σ-Δ modulators do not produce a sharp peak with many
harmonics in the AM frequency band, as pulse-width
modulators often do.
Σ-Δ modulation provides the benefits of reducing the
amplitude of spectral components at high frequencies,
that is, reducing EMI emissions that might otherwise
be radiated by speakers and long cable traces.
The SSM2804 does not require external EMI filtering for
twisted speaker cable lengths shorter than 10 cm. If longer
speaker cables are used, the SSM2804 has emission limiting
circuitry that allows significantly longer speaker cable.
Due to the inherent spread-spectrum nature of Σ-Δ modulation, the need for modulator synchronization is eliminated
for designs that incorporate multiple SSM2804 amplifiers.
2
Using the I C control interface, the gain of the SSM2804 can
be selected from a range of +12 dB to −63 dB in 32 steps. Other
features accessed from the I2C interface include the following:
•
•
•
•
OUTPUT MODULATION DESCRIPTION
The SSM2804 uses three-level, Σ-Δ output modulation. Each
output can swing from GND to VDD and vice versa. Ideally, when
no input signal is present, the output differential voltage is 0 V
because there is no need to generate a pulse. In a real-world
situation, noise sources are always present.
Due to the constant presence of noise, a differential pulse is
generated, when required, in response to this stimulus. A small
amount of current flows into the inductive load when the differential pulse is generated.
Most of the time, however, the output differential voltage is 0 V,
due to the Analog Devices, Inc., three-level, Σ-Δ output modulation. This feature ensures that the current flowing through the
inductive load is small.
When the user wants to send an input signal, an output pulse
(OUT+ and OUT−) is generated to follow the input voltage.
The differential pulse density (VOUT) is increased by raising the
input signal level. Figure 28 depicts three-level, Σ-Δ output
modulation with and without input stimulus.
OUTPUT = 0V
OUT+
+5V
0V
+5V
OUT–
0V
+5V
VOUT
0V
–5V
Independent left/right channel shutdown
Variable ultralow EMI emission limiting circuitry
Automatic level control (ALC) for high quality speaker
protection
Stereo-to-mono mixing operation
OUTPUT > 0V
OUT+
0V
+5V
OUT–
0V
+5V
VOUT
The SSM2804 also offers protection circuits for overcurrent and
overtemperature protection.
POP-AND-CLICK SUPPRESSION
0V
OUTPUT < 0V
OUT+
0V
0V
VOUT
Rev. 0 | Page 13 of 36
+5V
0V
+5V
OUT–
Voltage transients at the output of audio amplifiers can occur
when shutdown is activated or deactivated. Voltage transients
as low as 10 mV can be heard as an audio pop in the speaker.
Clicks and pops can also be classified as undesirable audible
transients generated by the amplifier system and, therefore, as
not coming from the system input signal. Such transients may
be generated when the amplifier system changes its operating
mode. For example, the following may be sources of audible
transients: system power-up and power-down, mute and
unmute, input source change, and sample rate change.
+5V
–5V
Figure 28. Three-Level, Σ-Δ Output Modulation
With and Without Input Stimulus
09960-104
•
The SSM2804 has a pop-and-click suppression architecture that
reduces these output transients, resulting in noiseless activation
and deactivation.
SSM2804
HARDWARE-BASED HEADPHONE LIMITER
To provide fail-safe headphone level limiting independent of
the register values sent to the amplifier over the I2C bus, the
SSM2804 incorporates an optional hardware-based headphone
limiter feature. The user controls the limiter level by supplying
a voltage at the SD pin (see Table 7). The hardware limiter is
activated by setting the LIM_MODE bit to 0 in the additional
control register (Bit D3 of Register 0x0E). After the desired
limiter value is set, the user can lock the limiter setting by
setting the LIMLOCK bit (Bit D7 of Register 0x0E).
Table 7. Hardware Limiter Options
Limiter
Level
Shutdown
±0.40 V
Power into
32 Ω (mW)
N/A
2.5
Power into
16 Ω (mW)
N/A
5
<0.87 V
0.87 V < VSD < 1.08 V
±8 V
10
20
1.08 V < VSD < 1.29 V
±1.13 V
20
40
VSD > 1.29 V
SD Pin Voltage
Note that after the hardware limiter lock bit is set, the locked
levels cannot be reset until the SSM2804 is powered down, the
SD pin is strobed low, or all eight bits of the software reset
register (Register 0x10) are set to 0.
In addition to the hardware-based limiter, several other limiter
levels can be selected using the I2C-based limiter function (set
the HPLIM bits of Register 0x0E; see Table 44). The effect of
the limiter function on the headphone output is shown in
Figure 29.
The trade-off is slightly lower efficiency and noise performance.
The penalty for using the emission control circuitry is far less
than the decreased performance observed when using a ferrite
bead based EMI filter for emission limiting purposes.
AUTOMATIC LEVEL CONTROL (ALC)
Automatic level control (ALC) is a function that automatically
adjusts amplifier gain to generate the desired output amplitude
with reference to a particular input stimulus. The primary use for
the ALC is to protect an audio power amplifier or speaker load
from the damaging effects of clipping or current overloading.
This is accomplished by limiting the output amplitude of the
amplifier upon reaching a preset threshold voltage. Another
benefit of the ALC is that it makes sound sources with a wide
dynamic range more intelligible by boosting low level signals
and limiting very high level signals.
Before activating the ALC by setting the ALCEN bit (Bit D7
of Register 0x0B), the user has full control of the left and right
channel PGA gain. After the ALC is activated (ALCEN = 1),
the user has no control over the gain settings; the left channel
PGA gain is locked into the device and controls the gain for both
the left and right channels. To change the gain, the user must
reset the ALCEN bit to 0 and then load the new gain settings.
Figure 30 shows the response of the SSM2804 to a linearly
increasing input signal. When the output reaches the current
threshold value, the amplifier gain decreases by 0.5 dB so that
the output voltage remains under the threshold. As more attenuation is added to the system, the threshold increases according
to a profile determined by the compressor setting bits in the
ALC Control 2 register (Bits[D6:D5] of Register 0x0B), causing
a rounded “knee” as the output voltage approaches the output
limiter level. The effect of this compression curve is shown in
Figure 30.
5.6
5.2
CH1 500mV BW
M20.0ms
A CH1
110mV
Figure 29. Limited Headphone Signal
ACTIVATING OR DEACTIVATING THE EMISSION
LIMITING CIRCUITRY
4.4
4.0
3.6
3.2
2.8
2.4
2.0
INPUT
GAIN = 6dB
GAIN = 12dB
GAIN = 18dB
GAIN = 24dB
1.6
1.2
0.8
0.4
To activate or deactivate the emission limiting circuitry, change
the value of the EDGE bits in the additional control register
(Bits[D1:D0] of Register 0x0E). Four levels of emission control
are available, allowing the user to determine the best trade-off
between efficiency and EMI reduction.
In the default (fastest edge) mode, the user can pass FCC
Class-B emission testing with 10 cm twisted pair speaker wire
for loudspeaker connection. If longer speaker wire is desired,
change the EDGE setting to a slower edge rate mode.
0
0
20
40
60
80
100 120
TIME (ms)
140
160
180
200
09960-034
09960-028
OUTPUT VOLTAGE LEVEL (V)
4.8
Figure 30. Output Response to Linearly Increasing Input Ramp Signal
When the input level is small and the output voltage is smaller
than the ALC threshold value, the gain of the amplifier stays at
the preset gain setting. When the input exceeds the ALC threshold value, the ALC gradually reduces the gain from the preset
gain setting down to 1 dB.
Rev. 0 | Page 14 of 36
SSM2804
2.5
ALC Compression and Limiter Modes
00 (COMPRESSION MODE 1)
01 (COMPRESSION MODE 2)
10 (COMPRESSION MODE 3)
11 (LIMITER MODE)
2.7V × 0.78 = 2.106V
0
0
0.05
0.10
0.15
0.20 0.25 0.30 0.35
INPUT VOLTAGE (V)
0.40
0.45 0.50
Figure 31. Adjustable Compression Settings, PVDD = 2.7 V,
ALC Threshold Level = 78%
3.5
3.0
2.5
2.0
1.5
1.0
00 (COMPRESSION MODE 1)
01 (COMPRESSION MODE 2)
10 (COMPRESSION MODE 3)
11 (LIMITER MODE)
3.6V × 0.78 = 2.808V
0.5
The attack time is the time taken to reduce the gain from maximum to minimum. The hold time is the time that the reduced
gain is maintained. The release time is the time taken to increase
the gain from minimum to maximum. These times are shown
in Table 8. The attack time and the release time can be set using
the ALC 1 control register (Address 0x0A).
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
INPUT VOLTAGE (V)
0.8
0.9
1.0
09960-118
When the amplifier input signal exceeds a preset threshold,
the ALC reduces amplifier gain rapidly until the output voltage
settles to a target level. This target level is maintained for a certain
period. If the input voltage does not exceed the threshold again,
the ALC increases the gain gradually.
Figure 32. Adjustable Compression Settings, PVDD = 3.6 V,
ALC Threshold Level = 78%
4.5
4.0
Table 8. ALC Attack, Hold, and Release Times
3.5
Duration
32 μs to 4 ms (per 0.5 dB step)
90 ms to 120 ms
4 ms to 512 ms (per 0.5 dB step)
The attack time and release time can be adjusted using the I2C interface.
The hold time cannot be adjusted.
3.0
2.5
2.0
1.5
00 (COMPRESSION MODE 1)
01 (COMPRESSION MODE 2)
10 (COMPRESSION MODE 3)
11 (LIMITER MODE)
5.0V × 0.78 = 3.9V
1.0
0.5
Soft-Knee Compression
Often performed using sophisticated DSP algorithms, soft-knee
compression provides maximum sound quality with effective
speaker protection. Instead of using a fixed compression setting
prior to limiting, the SSM2804 allows for a much more subtle
transition into limiting mode, preserving the original sound
quality of the source audio. Figure 31 to Figure 33 show the
various soft-knee compression settings that can be selected
using the COMP bit settings (Bits[D6:D5] of Register 0x0B).
Rev. 0 | Page 15 of 36
0
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
INPUT VOLTAGE (V)
1.6
1.8
2.0
Figure 33. Adjustable Compression Settings, PVDD = 5.0 V,
ALC Threshold Level = 78%
09960-119
OUTPUT VOLTAGE (V)
1
1.0
0.5
Attack Time, Hold Time, and Release Time
Time1
Attack Time
Hold Time
Release Time
1.5
09960-107
OUTPUT VOLTAGE (V)
As the input signal becomes very large, the ALC transitions to
limiter mode. In this mode, the output stays at a given threshold
level, VTH, even if the input signal grows larger. As an example of
limiter mode operation, when a large input signal increases by
3 dB, the ALC reduces the amplifier gain by 3 dB and, thus, the
output increases by 0 dB. When the amplifier gain is reduced to
1 dB, the ALC cannot reduce the gain further, and the output
increases again. This is because the total range of the ALC operation has bottomed out due to extreme input voltage at high gain. To
avoid potential speaker damage, the maximum input amplitude
should not be large enough to exceed the maximum attenuation
(to a level of 1 dB) of the limiter mode.
2.0
OUTPUT VOLTAGE (V)
The ALC implemented on the SSM2804 has two operation
modes: compression mode and limiter mode. When the ALC
is triggered for medium-level input signals, the ALC is in compression mode. In this mode, an increase of the output signal is
one-third the increase of the input signal. For example, if the
input signal increases by 3 dB, the ALC reduces the amplifier
gain by 2 dB and, thus, the output signal increases by only 1 dB.
SSM2804
NORMAL TRANSITION
The ALC operation of the SSM2804 incorporates techniques to
reduce the audible artifacts associated with gain change transitions. First, the gain is changed in small increments of 0.5 dB.
In addition to this small step size, the rate of gain change is
reduced, proportional to the attack time setting. This feature
drastically reduces and virtually eliminates the presence of zipper
noise and other artifacts associated with gain transitions during
ALC operation. Figure 34 shows the soft transition operation.
0.5dB
SOFT TRANSITION (32µs TO 256µs)
0.5dB
09960-108
ALC Soft Transition
Figure 34. Soft Transition
Rev. 0 | Page 16 of 36
SSM2804
TYPICAL APPLICATION CIRCUITS
0.1µF
10µF
0.1µF
AVDD
2.5V TO 3.6V
10µF
VBATT
2.7V TO 5.5V
AVDD
PVDD
EARPIECE
EP+
RCV+
RCV IN+
RCV–
RCV IN–
EP–
SSM2804
LSPK IN–
(DIFF IN1–)
0.1µF
INA2
CLASS-D
OUTPUT LEFT
LSPK+
BOOST = 0dB TO +20dB
PGA = –12dB TO +18dB
0.1µF
LSPK IN+
(DIFF IN1+)
LSPK–
INA1
RSPK+
RSPK–
MP3 INL
(DIFF IN2–)
0.1µF
+12dB TO –63dB
31 STEPS
INB2
MIX/MUX
BOOST = 0dB TO +20dB
PGA = –12dB TO +18dB
MP3 INR
(DIFF IN2+)
0.1µF
CLASS-D
OUTPUT RIGHT
CLASS-D
INB1
HEADPHONE
OUTPUT LEFT
HPL
0.1µF
FM INL
(DIFF IN3–)
INC2
BOOST = 0dB TO +20dB
PGA = –12dB TO +18dB
SHUTDOWN
HPR
INC1
0dB TO –75dB
32 STEPS
SD
HEADPHONE
OUTPUT RIGHT
CLASS-G
CF1
BIAS
CLASS-G
SUPPLY
I2C
1µF
CF2
CPVDD
1µF TO 2.2µF
BIAS
AGND
PGND
SCL
SDA
CPVSS
I2C DATA
I2C CLOCK
CPVDD
1.2V TO 2.2V
1µF TO 2.2µF
CPVSS
–2.2V TO +1.2V
Figure 35. Application Circuit with External Components
Rev. 0 | Page 17 of 36
09960-031
0.1µF
FM INR
(DIFF IN3+)
SSM2804
BYPASS
CLASS-D
MIX/MUX
CLASS-G
09960-032
1.2V < CPVDD < +2.2V/–2.2V < CPVSS < –1.2V (INTERNALLY GENERATED)
2.7V < PVDD < 5V
2.5V < AVDD < 3.6V
Figure 36. Power Supply Domains
Rev. 0 | Page 18 of 36
SSM2804
I2C SOFTWARE CONTROL INTERFACE
The I2C interface provides access to the user-selectable control
registers and operates with a 2-wire interface.
SDA generates the serial control data-word, and SCL
clocks the serial data. The I2C bus address (Bits[A7:A1]) is
0x3B (01110110 for write and 01110111 for read). Bit A0 is
the designated read/write bit.
Each control register consists of 16 bits, MSB first. Bits[B15:B9]
are the register map address, and Bits[B8:B0] are the register data
for the associated register map.
SCL
S
START
1 TO 7
8
9
ADDR
R/W
ACK
8
1 TO 7
SUBADDRESS
9
1 TO 7
ACK
DATA
8
9
P
ACK
STOP
09960-029
SDA
Figure 37. 2-Wire I2C Generalized Clocking Diagram
WRITE
SEQUENCE
S
A7
...
A1
A0
A(S)
B15 ...
B9
B8
A(S)
B7
...
B0
A(S)
P
0
DEVICE
ADDRESS
READ
SEQUENCE
S
A7
...
A1
REGISTER
ADDRESS
A0
A(S)
B15
...
REGISTER
DATA
B9
0
A(S)
S
A7
...
A1
0
DEVICE
ADDRESS
A0
A(S)
B7
...
B0
A(M)
0
...
0
B8
A(M)
P
1
REGISTER
ADDRESS
DEVICE
ADDRESS
09960-030
S/P = START/STOP BIT.
A0 = I2C R/W BIT.
A(S) = ACKNOWLEDGE BY SLAVE.
A(M) = ACKNOWLEDGE BY MASTER.
A(M) = ACKNOWLEDGE BY MASTER (INVERSION).
REGISTER
DATA
(SLAVE DRIVE)
Figure 38. I2C Write and Read Sequences
Rev. 0 | Page 19 of 36
SSM2804
REGISTER MAP
The 7-bit I2C address of the SSM2804 is 0x3B (0111011).
Table 9. Register Map
Address
0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F
0x10
1
2
Name
Input mode
INA volume
INB volume
INC volume
Class-D left
volume
Class-D right
volume
LHP volume
RHP volume
HP input mixer
Class-D input
mixer
ALC Control 1
ALC Control 2
ALC Control 3
Power-down
control
Additional
control
Chip status1
Software reset2
D7
0
0
0
0
0
D6
ZCD
0
0
0
0
0
0
0
0
INAVOL[4:0]
INBVOL[4:0]
INCVOL[4:0]
LCDVOL[4:0]
Default
0x00
0x00
0x00
0x00
0x00
0
0
0
RCDVOL[4:0]
0x00
0
0
LHPVOL[4:0]
RHPVOL[4:0]
0x00
0x00
0x00
0x00
0
0
0
0
POPTIME[1:0]
CDSM[1:0]
0
ALCEN
0
PASSPDB
D4
D3
GAINMOD[2:0]
D2
RHPMOD[2:0]
RCDMOD[2:0]
D1
D0
INMOD[2:0]
LHPMOD[2:0]
LCDMOD[2:0]
0
RECTIME[2:0]
ATTIME[2:0]
COMP[1:0]
ALCLV_FIX
ALCLV[3:0]
LCDBOOST RCDBOOST SOFTSTART SOFTCLIPEN NGEN
NGATE[1:0]
INCPDB
INBPDB
INAPDB
RCDPDB
LCDPDB
HPPDB
PWDB
LIMLOCK
0
D5
HPLIM[2:0]
0
0
LIM_MOD
0
OCCD
SOFTRESET
This byte is read-only.
This byte is write-only.
Rev. 0 | Page 20 of 36
TO
OCHP
EDGE[1:0]
OW
OT
0x2B
0x4B
0x00
0x00
0x00
0x00
0x00
SSM2804
REGISTER MAP DETAILS
INPUT CHANNEL MODE CONTROL, ADDRESS 0x00
Table 10. Input Channel Mode Control Register Bit Map
D7
0
D6
ZCD
D5
D4
GAINMOD[2:0]
D3
D2
D1
INMOD[2:0]
D0
Table 11. Input Channel Mode Control Register Bit Descriptions
Bit Name
ZCD
Description
Zero cross-detector enable
GAINMOD[2:0]
Input amplifier gain mode
INMOD[2:0]
Input mode control
Settings
0 = disable (default)
1 = enable
xx0 = Input A PGA mode
xx1 = Input A boost mode
x0x = Input B PGA mode
x1x = Input B boost mode
0xx = Input C PGA mode
1xx = Input C boost mode
xx0 = Input A stereo mode (INA1, INA2 > INAL, INAR)
xx1 = Input A differential mode (INA1, INA2 > INA+, INA−)
x0x = Input B stereo mode (INB1, INB2 > INBL, INBR)
x1x = Input B differential mode (INB1, INB2 > INB+, INB−)
0xx = Input C stereo mode (INC1, INC2 > INCL, INCR)
1xx = Input C differential mode (INC1, INC2 > INC+, INC−)
See Table 12 for complete information about the naming table
Table 12. Input Mode Naming Table
INMOD[2:0]
000
001
010
011
100
101
110
111
INA1 Pin
INAL
INAL
INAL
INAL
INA+
INA+
INA+
INA+
INA2 Pin
INAR
INAR
INAR
INAR
INA−
INA−
INA−
INA−
INB1 Pin
INBL
INBL
INB+
INB+
INBL
INBL
INB+
INB+
Rev. 0 | Page 21 of 36
INB2 Pin
INBR
INBR
INB−
INB−
INBR
INBR
INB−
INB−
INC1 Pin
INCL
INC+
INCL
INC+
INCL
INC+
INCL
INC+
INC2 Pin
INCR
INC−
INCR
INC−
INCR
INC−
INCR
INC−
SSM2804
CHANNEL A LINE INPUT VOLUME, ADDRESS 0x01
Table 13. Channel A Line Input Volume Register Bit Map
D7
0
D6
0
D5
0
D4
D3
Table 14. Channel A Line Input Volume Register Bit Descriptions
Bit Name
INAVOL[4:0]
Description
Analog Channel A input volume control
Settings
See Table 15
Table 15. Descriptions of Channel A Volume Register Bits
INAVOL[4:0]
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111
PGA Mode (dB)
Mute
−12
−11
−10
−9
−8
−7
−6
−5
−4
−3
−2
−1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Boost Mode (dB)
Mute
0
0
0
0
0
0
0
0
0
0
0
0
0
9
9
9
9
9
9
20
20
20
20
20
20
20
20
20
20
20
20
Rev. 0 | Page 22 of 36
D2
INAVOL[4:0]
D1
D0
SSM2804
CHANNEL B LINE INPUT VOLUME, ADDRESS 0x02
Table 16. Channel B Line Input Volume Register Bit Map
D7
0
D6
0
D5
0
D4
D3
Table 17. Channel B Line Input Volume Register Bit Descriptions
Bit Name
INBVOL[4:0]
Description
Analog Channel B input volume control
Settings
See Table 18
Table 18. Descriptions of Channel B Input Volume Register Bits
INBVOL[4:0]
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111
PGA Mode (dB)
Mute
−12
−11
−10
−9
−8
−7
−6
−5
−4
−3
−2
−1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Boost Mode (dB)
Mute
0
0
0
0
0
0
0
0
0
0
0
0
0
9
9
9
9
9
9
20
20
20
20
20
20
20
20
20
20
20
20
Rev. 0 | Page 23 of 36
D2
INBVOL[4:0]
D1
D0
SSM2804
CHANNEL C LINE INPUT VOLUME, ADDRESS 0x03
Table 19. Channel C Line Input Volume Register Bit Map
D7
0
D6
0
D5
0
D4
D3
Table 20. Channel C Line Input Volume Register Bit Descriptions
Bit Name
INCVOL[4:0]
Description
Analog Channel C input volume control
Settings
See Table 21
Table 21. Descriptions of Channel C Input Volume Register Bits
INCVOL[4:0]
00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111
PGA Mode (dB)
Mute
−12
−11
−10
−9
−8
−7
−6
−5
−4
−3
−2
−1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Boost Mode (dB)
Mute
0
0
0
0
0
0
0
0
0
0
0
0
0
9
9
9
9
9
9
20
20
20
20
20
20
20
20
20
20
20
20
Rev. 0 | Page 24 of 36
D2
INCVOL[4:0]
D1
D0
SSM2804
CLASS-D LEFT LOUDSPEAKER OUTPUT VOLUME, ADDRESS 0x04
Table 22. Class-D Left Loudspeaker Output Volume Register Bit Map
D7
0
D6
0
D5
0
D4
D3
D2
LCDVOL[4:0]
Table 23. Class-D Left Loudspeaker Output Volume Register Bit Descriptions
Bit Name
LCDVOL[4:0]
Description
Left channel Class-D volume control
Settings
00000 = mute (default)
00001 = −75 dB
00010 = −71 dB
00011 = −67 dB
00100 = −63 dB
00101 = −59 dB
00110 = −55 dB
00111 = −51 dB
01000 = −47 dB
01001 = −44 dB
01010 = −41 dB
01011 = −38 dB
01100 = −35 dB
01101 = −32 dB
01110 = −29 dB
01111 = −26 dB
10000 = −23 dB
10001 = −21 dB
10010 = −19 dB
10011 = −17 dB
10100 = −15 dB
10101 = −13 dB
10110 = −11 dB
10111 = −9 dB
11000 = −7 dB
11001 = −6 dB
11010 = −5 dB
11011 = −4 dB
11100 = −3 dB
11101 = −2 dB
11110 = −1 dB
11111 = 0 dB
Rev. 0 | Page 25 of 36
D1
D0
SSM2804
CLASS-D RIGHT LOUDSPEAKER OUTPUT VOLUME, ADDRESS 0x05
Table 24. Class-D Right Loudspeaker Output Volume Register Bit Map
D7
0
D6
0
D5
0
D4
D3
D2
RCDVOL[4:0]
Table 25. Class-D Right Loudspeaker Output Volume Register Bit Descriptions
Bit Name
RCDVOL[4:0]
Description
Right channel Class-D volume control
Settings
00000 = mute (default)
00001 = −75 dB
00010 = −71 dB
00011 = −67 dB
00100 = −63 dB
00101 = −59 dB
00110 = −55 dB
00111 = −51 dB
01000 = −47 dB
01001 = −44 dB
01010 = −41 dB
01011 = −38 dB
01100 = −35 dB
01101 = −32 dB
01110 = −29 dB
01111 = −26 dB
10000 = −23 dB
10001 = −21 dB
10010 = −19 dB
10011 = −17 dB
10100 = −15 dB
10101 = −13 dB
10110 = −11 dB
10111 = −9 dB
11000 = −7 dB
11001 = −6 dB
11010 = −5 dB
11011 = −4 dB
11100 = −3 dB
11101 = −2 dB
11110 = −1 dB
11111 = 0 dB
Rev. 0 | Page 26 of 36
D1
D0
SSM2804
LEFT HEADPHONE OUTPUT VOLUME, ADDRESS 0x06
Table 26. Left Headphone Output Volume Register Bit Map
D7
0
D6
0
D5
0
D4
D3
D2
LHPVOL[4:0]
Table 27. Left Headphone Output Volume Register Bit Descriptions
Bit Name
LHPVOL[4:0]
Description
Left headphone output volume control
Settings
00000 = mute (default)
00001 = −75 dB
00010 = −71 dB
00011 = −67 dB
00100 = −63 dB
00101 = −59 dB
00110 = −55 dB
00111 = −51 dB
01000 = −47 dB
01001 = −44 dB
01010 = −41 dB
01011 = −38 dB
01100 = −35 dB
01101 = −32 dB
01110 = −29 dB
01111 = −26 dB
10000 = −23 dB
10001 = −21 dB
10010 = −19 dB
10011 = −17 dB
10100 = −15 dB
10101 = −13 dB
10110 = −11 dB
10111 = −9 dB
11000 = −7 dB
11001 = −6 dB
11010 = −5 dB
11011 = −4 dB
11100 = −3 dB
11101 = −2 dB
11110 = −1 dB
11111 = 0 dB
Rev. 0 | Page 27 of 36
D1
D0
SSM2804
RIGHT HEADPHONE OUTPUT VOLUME, ADDRESS 0x07
Table 28. Right Headphone Output Volume Register Bit Map
D7
0
D6
0
D5
0
D4
D3
D2
RHPVOL[4:0]
Table 29. Right Headphone Output Volume Register Bit Descriptions
Bit Name
RHPVOL[4:0]
Description
Right headphone output volume control
Settings
00000 = mute (default)
00001 = −75 dB
00010 = −71 dB
00011 = −67 dB
00100 = −63 dB
00101 = −59 dB
00110 = −55 dB
00111 = −51 dB
01000 = −47 dB
01001 = −44 dB
01010 = −41 dB
01011 = −38 dB
01100 = −35 dB
01101 = −32 dB
01110 = −29 dB
01111 = −26 dB
10000 = −23 dB
10001 = −21 dB
10010 = −19 dB
10011 = −17 dB
10100 = −15 dB
10101 = −13 dB
10110 = −11 dB
10111 = −9 dB
11000 = −7 dB
11001 = −6 dB
11010 = −5 dB
11011 = −4 dB
11100 = −3 dB
11101 = −2 dB
11110 = −1 dB
11111 = 0 dB
Rev. 0 | Page 28 of 36
D1
D0
SSM2804
HEADPHONE INPUT MIXER CONTROL, ADDRESS 0x08
Table 30. Headphone Input Mixer Control Register Bit Map
D7
D6
POPTIME[1:0]
D5
D4
RHPMOD[2:0]
D3
D2
D1
LHPMOD[2:0]
D0
Table 31. Headphone Input Mixer Control Register Bit Descriptions
Bit Name
POPTIME[1:0]
Description
Headphone turn-on time constant setting
RHPMOD[2:0]
Right headphone input mixer
LHPMOD[2:0]
Left headphone input mixer
Settings
00 = 10 ms (default)
01 = 20 ms
10 = 40 ms
11 = 80 ms (smallest pop-and-click)
xx0 = Analog Input A disabled (default)
xx1 = Analog Input A enabled
x0x = Analog Input B disabled (default)
x1x = Analog Input B enabled
0xx = Analog Input C disabled (default)
1xx = Analog Input C enabled
xx0 = Analog Input A disabled (default)
xx1 = Analog Input A enabled
x0x = Analog Input B disabled (default)
x1x = Analog Input B enabled
0xx = Analog Input C disabled (default)
1xx = Analog Input C enabled
CLASS-D INPUT MIXER CONTROL, ADDRESS 0x09
Table 32. Class-D Input Mixer Control Register Bit Map
D7
D6
CDSM[1:0]
D5
D4
RCDMOD[2:0]
D3
D2
D1
LCDMOD[2:0]
Table 33. Class-D Input Mixer Control Register Bit Descriptions
Bit Name
CDSM[1:0]
Description
Class-D stereo/mono mode control
RCDMOD[2:0]
Right Class-D input mixer
LCDMOD[2:0]
Left Class-D input mixer
Settings
x0 = left channel disabled (default)
x1 = left channel enabled (left and right)
0x = right channel disabled (default)
1x = right channel enabled (left and right)
xx0 = Analog Input A disabled (default)
xx1 = Analog Input A enabled
x0x = Analog Input B disabled (default)
x1x = Analog Input B enabled
0xx = Analog Input C disabled (default)
1xx = Analog Input C enabled
xx0 = Analog Input A disabled (default)
xx1 = Analog Input A enabled
x0x = Analog Input B disabled (default)
x1x = Analog Input B enabled
0xx = Analog Input C disabled (default)
1xx = Analog Input C enabled
Rev. 0 | Page 29 of 36
D0
SSM2804
ALC CONTROL 1, ADDRESS 0x0A
Table 34. ALC Control 1 Register Bit Map
D7
0
D6
0
D5
D4
RECTIME[2:0]
D3
D2
D1
ATTIME[2:0]
Table 35. ALC Control 1 Register Bit Descriptions
Bit Name
RECTIME[2:0]
Description
ALC release rate
ATTIME[2:0]
ALC attack rate
Settings
000 = 4 ms per 0.5 dB step (6 dB/48 ms)
001 = 8 ms
010 = 16 ms
011 = 32 ms
100 = 64 ms
101 = 128 ms (default)
110 = 256 ms
111 = 512 ms
000 = 32 μs per 0.5 dB step (6 dB/384 μs)
001 = 64 μs
010 = 128 μs
011 = 256 μs (default)
100 = 512 μs
101 = 1 ms
110 = 2 ms
111 = 4 ms
Rev. 0 | Page 30 of 36
D0
SSM2804
ALC CONTROL 2, ADDRESS 0x0B
Table 36. ALC Control 2 Register Bit Map
D7
ALCEN
D6
D5
COMP[1:0]
D4
ALCLV_FIX
D3
D2
D1
ALCLV[3:0]
D0
Table 37. ALC Control 2 Register Bit Descriptions
Bit Name
ALCEN
Description
ALC enable
COMP[1:0]
Compressor setting (see the Soft-Knee
Compression section for more information)
ALCLV_FIX
ALC threshold mode setting
ALCLV[3:0]
ALC threshold level setting
Settings
0 = ALC disabled (default)
1 = ALC enabled
00 = Compression Mode 1 (1:4 to 1:∞)
01 = Compression Mode 2 (1:1.7 to 1:4 to 1:∞)
10 = Compression Mode 3 (1:1.3 to 1:2.5 to 1:∞)
11 = Limiter mode (1:∞)
0 = supply tracking (threshold is a constant fraction of supply voltage)
1 = fixed power (threshold is a fixed voltage)
See Table 38
Table 38. ALC Threshold Levels
ALCLV[3:0] Value
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Supply Tracking Threshold (% of PVDD)
(ALCLV_FIX = 0)
65
67
69
72
75
78
81
85
88
93
97
102
108
114
122
130
Fixed Power Threshold (V)
(ALCLV_FIX = 1)
2.74
2.89
3.04
3.19
3.34
3.50
3.65
3.80
3.95
4.10
4.25
4.40
4.56
4.71
4.86
5.01
Rev. 0 | Page 31 of 36
SSM2804
ALC CONTROL 3, ADDRESS 0x0C
Table 39. ALC Control 3 Register Bit Map
D7
0
D6
LCDBOOST
D5
RCDBOOST
D4
SOFTSTART
D3
SOFTCLIPEN
D2
NGEN
D1
D0
NGATE[1:0]
Table 40. ALC Control 3 Register Bit Descriptions
Bit Name
LCDBOOST
Description
Left channel Class-D gain boost
RCDBOOST
Right channel Class-D gain boost
SOFTSTART
Soft start enable
SOFTCLIPEN
Soft clip enable
NGEN
Noise gate enable
NGATE[1:0]
Noise gate level
Settings
0 = 0 dB (default)
1 = +6 dB boost
0 = 0 dB (default)
1 = +6 dB boost
0 = soft start disabled (default)
1 = soft start enabled
0 = soft clip disabled (default)
1 = soft clip enabled
0 = noise gate disabled (default)
1 = noise gate enabled
00 = 2 mV (default)
01 = 4 mV
10 = 8 mV
11 = 16 mV
POWER-DOWN CONTROL, ADDRESS 0x0D
Table 41. Power-Down Control Register Bit Map
D7
PASSPDB
D6
INCPDB
D5
INBPDB
D4
INAPDB
D3
RCDPDB
D2
LCDPDB
Table 42. Power-Down Control Register Bit Descriptions
Bit Name
PASSPDB
Description
Passive switch power-down
INCPDB
Input Channel C power-down
INBPDB
Input Channel B power-down
INAPDB
Input Channel A power-down
RCDPDB
Class-D right channel power-down
LCDPDB
Class-D left channel power-down
HPPDB
Headphone power-down
PWDB
System power-down
Settings
0 = power down (default)
1 = power up
0 = power down (default)
1 = power up
0 = power down (default)
1 = power up
0 = power down (default)
1 = power up
0 = power down (default)
1 = power up
0 = power down (default)
1 = power up
0 = power down (default)
1 = power up
0 = power down (default)
1 = power up
Rev. 0 | Page 32 of 36
D1
HPPDB
D0
PWDB
SSM2804
AVDD
PVDD
RCV+
EP+
RCV–
EP–
SSM2804
PASSPDB
INA2
LCDPDB
LSPK+
INAPDB
LSPK–
INA1
RSPK+
RSPK–
INB2
RCDPDB
MIX/MUX
INBPDB
INB1
HPL
INC2
INCPDB
HPR
INC1
HPPDB
BIAS
CLASS-G
SUPPLY
PWDB
I2C
CF2
CF1
CF2
CPVDD
AGND PGND
SCL SDA
Figure 39. Power Management Control Register Blocks
Rev. 0 | Page 33 of 36
CPVSS
09960-035
CF1
SD
SSM2804
ADDITIONAL CONTROL, ADDRESS 0x0E
Table 43. Additional Control Register Bit Map
D7
LIMLOCK
D6
D5
HPLIM[2:0]
D4
D3
LIM_MODE
D2
TO
D1
D0
EDGE[1:0]
Table 44. Additional Control Register Bit Descriptions
Bit Name
LIMLOCK
HPLIM[2:0]
Description
Headphone limiter lock bit. After the limiter is
locked, the locked levels cannot be reset until
the SSM2804 is powered down, the SD pin is
strobed low, or all eight bits of the software
reset register (Register 0x10) are set to 0.
Headphone limiter level adjust.
LIM_MODE
Headphone limiter mode selection.
TO
Timeout control.
EDGE[1:0]
Class-D output stage edge control.
Settings
0 = disable (default)
1 = enable
000 = off (default)
001 = ±1.13 V
010 = ±0.98 V
011 = ±0.80 V
100 = ±0.57 V
101 = ±0.40 V
110 = ±0.28 V
111 = ±0.22 V
0 = hardware mode (external resistor limiter via SD pin; default)
1 = software mode (I2C adjustable limiter)
0 = 30 ms (default)
1 = 60 ms
00 = normal mode (default)
01 = slow edge
10 = slower edge (PVDD > 3.0 V recommended)
11 = slowest edge (PVDD > 4.0 V recommended)
Rev. 0 | Page 34 of 36
SSM2804
CHIP STATUS REGISTER, ADDRESS 0x0F
This register is read-only.
Table 45. Chip Status Register Bit Map
D7
0
D6
0
D5
0
D4
0
D3
OCCD
D2
OCHP
D1
OW
D0
OT
D1
D0
Table 46. Chip Status Register Bit Descriptions
Bit Name
OCCD
Description
Overcurrent for Class-D
OCHP
Overcurrent for headphone
OW
Overtemperature warning
OT
Overtemperature error (thermal shutdown)
Settings
0 = normal
1 = overcurrent
0 = normal
1 = overcurrent
0 = normal
1 = overtemperature warning
0 = normal
1 = overtemperature shutdown
SOFTWARE RESET REGISTER, ADDRESS 0x10
This register is write-only.
Table 47. Software Reset Register Bit Map
D7
D6
D5
D4
D3
SOFTRESET
D2
Table 48. Software Reset Register Bit Descriptions
Bit Name
SOFTRESET
Description
Software reset
Settings
00000000 = software reset
Rev. 0 | Page 35 of 36
SSM2804
OUTLINE DIMENSIONS
3.000
2.960
2.920
6
5
4
3
2
1
A
BALL A1
IDENTIFIER
2.500
2.460
2.420
B
2.00
REF
C
D
0.50
BALL PITCH
TOP VIEW
E
BOTTOM VIEW
(BALL SIDE UP)
(BALL SIDE DOWN)
2.50 REF
0.390
0.360
0.330
SIDE VIEW
COPLANARITY
0.05
0.360
0.320
0.280
SEATING
PLANE
0.270
0.240
0.210
06-29-2010-B
0.660
0.600
0.540
Figure 40. 30-Ball Wafer Level Chip Scale Package [WLCSP]
(CB-30-4)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
SSM2804CBZ-RL
SSM2804CBZ-R7
EVAL-SSM2804Z
1
Temperature Range
−40°C to +85°C
−40°C to +85°C
Package Description
30-Ball Wafer Level Chip Scale Package [WLCSP]
30-Ball Wafer Level Chip Scale Package [WLCSP]
Evaluation Board
Z = RoHS Compliant Part.
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).
©2011 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D09960-0-7/11(0)
Rev. 0 | Page 36 of 36
Package Option
CB-30-4
CB-30-4