STMICROELECTRONICS STM690AM6E

STM690A, STM692A, STM703
STM704, STM802, STM805, STM817/8/9
5 V supervisor with battery switchover
Features
■
5 V operating voltage
■
NVRAM supervisor for external LPSRAM
■
Chip-enable gating (STM818 only) for external
LPSRAM (7 ns max prop delay)
■
RST and RST outputs
■
200 ms (typ) trec
■
Watchdog timer - 1.6 sec (typ)
■
Automatic battery switchover
■
Low battery supply current - 0.4 µA (typ)
■
Power-fail comparator (PFI/PFO)
■
Low supply current - 40 µA (typ)
■
Guaranteed RST (RST) assertion down to
VCC = 1.0 V
■
Operating temperature:
–40 °C to +85 °C (industrial grade)
■
RoHS compliance
– Lead-free components are compliant with
the RoHS directive
Table 1.
8
1
SO8 (M)
TSSOP8 3 x 3 (DS)(1)
1. Contact local ST sales office for availability.
Device summary
Part number
Watchdog Active-low Activehigh RST
input
RST(1)
Manual
reset
input(1)
Battery
Power-fail
switchcomparator
over
STM690A
✓
✓
✓
✓
STM692A
✓
✓
✓
✓
STM703
✓
✓
✓
✓
STM704
✓
✓
✓
✓
✓
✓
✓
✓
✓
STM802L/M
✓
STM805L
✓
STM817L/M
✓
✓
✓
STM818L/M
✓
✓
✓
STM819L/M
✓
✓
✓
✓
✓
Chipenable
gating
✓
✓
✓
Battery
freshness
seal
✓
✓
1. All RST and RST outputs are push-pull.
August 2010
Doc ID 10522 Rev 10
1/43
www.st.com
1
Contents
STM690A/692A/703/704/802/805/817/818/819
Contents
1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1
2
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.1
MR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.2
WDI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3
RST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.4
RST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.5
1.1.6
VOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
VBAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.7
E .......................................................9
1.1.8
1.1.9
ECON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
PFI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.10
PFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1
Reset output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2
Push-button reset input (STM703/704/819) . . . . . . . . . . . . . . . . . . . . . . . 13
2.3
Watchdog input (NOT available on STM703/704/819) . . . . . . . . . . . . . . . 13
2.4
Backup battery switchover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5
Chip-enable gating (STM818 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6
Chip-enable input (STM818 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7
Chip-enable output (STM818 only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8
Power-fail input/output (NOT available on STM818) . . . . . . . . . . . . . . . . 16
2.9
Applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.10
Using a SuperCap™ as a backup power source . . . . . . . . . . . . . . . . . . . 17
2.11
Negative-going VCC transients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.12
Battery freshness seal (STM817/818/819) . . . . . . . . . . . . . . . . . . . . . . . . 19
3
Typical operating characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2/43
Doc ID 10522 Rev 10
STM690A/692A/703/704/802/805/817/818/819
Contents
6
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Doc ID 10522 Rev 10
3/43
List of tables
STM690A/692A/703/704/802/805/817/818/819
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
4/43
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
I/O status in battery backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Operating and AC measurement conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DC and AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
SO8 - 8-lead plastic small outline, 150 mils body width, package mechanical data . . . . . . 38
TSSOP8 - 8-lead, thin shrink small outline, 3 x 3 mm body size, mechanical data . . . . . . 39
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Marking description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Doc ID 10522 Rev 10
STM690A/692A/703/704/802/805/817/818/819
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Logic diagram (STM690A/692/802/805/817) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Logic diagram (STM703/704/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Logic diagram (STM818) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
STM690A/692A/802/805/817 connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
STM703/704/819 connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
STM818 connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Block diagram (STM690A/692A/802/805/817) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Block diagram (STM703/704/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Block diagram (STM818) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Hardware hookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Chip-enable gating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Chip-enable waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Power-fail comparator waveform (STM817/818/819) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Power-fail comparator waveform (STM690A/692A/703/704/802/805) . . . . . . . . . . . . . . . . 17
Using a SuperCap™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Freshness seal enable waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
VCC to VOUT on-resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
VBAT to VOUT on-resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Supply current vs. temperature (no load) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Battery current vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
VPFI threshold vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Reset comparator propagation delay vs. temperature (other than STM817/818/819) . . . . 22
Reset comparator propagation delay vs. temperature (VBAT = 3.0 V; STM817/818/819) . 23
Power-up tREC vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Normalized reset threshold vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Watchdog time-out period vs. temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
E to ECON on-resistance vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
PFI to PFO propagation delay vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Output voltage vs. load current (VCC = 5 V; VBAT = 2.8 V; TA = 25 °C) . . . . . . . . . . . . . . . 26
Output voltage vs. load current (VCC = 0 V; VBAT = 2.8 V; TA = 25 °C) . . . . . . . . . . . . . . . 26
RST output voltage vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
RST output voltage vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
RST response time (assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
RST response time (assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Power-fail comparator response time (assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Power-fail comparator response time (de-assertion) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Maximum transient duration vs. reset threshold overdrive . . . . . . . . . . . . . . . . . . . . . . . . . 30
E to ECON propagation delay vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
E to ECON propagation delay test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
AC testing input/output waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
MR timing waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Watchdog timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
SO8 - 8-lead plastic small outline, 150 mils body width, package mechanical drawing . . . 38
TSSOP8 - 8-lead, thin shrink small outline, 3 x 3 mm body size, outline . . . . . . . . . . . . . . 39
Doc ID 10522 Rev 10
5/43
Description
1
STM690A/692A/703/704/802/805/817/818/819
Description
The STM690A/692A/703/704/802/805/817/818/819 supervisors are self-contained devices
which provide microprocessor supervisory functions with the ability to non-volatize and
write-protect external LPSRAM. A precision voltage reference and comparator monitors the
VCC input for an out-of-tolerance condition. When an invalid VCC condition occurs, the reset
output (RST) is forced low (or high in the case of RST). These devices also offer a watchdog
timer (except for STM703/704/819) as well as a power-fail comparator (except for STM818)
to provide the system with an early warning of impending power failure.
These devices are available in a standard 8-pin SOIC package or a space-saving 8-pin
TSSOP package.
Figure 1.
Logic diagram (STM690A/692/802/805/817)
VCC VBAT
VOUT
WDI
PFI
STM690A/
692A/802/
805/817
RST(RST)(1)
PFO
VSS
AI07894
1. For STM805, reset output is active-high.
Figure 2.
Logic diagram (STM703/704/819)
VCC VBAT
VOUT
MR
PFI
STM703/
704/819
RST
PFO
VSS
6/43
Doc ID 10522 Rev 10
AI07895
STM690A/692A/703/704/802/805/817/818/819
Figure 3.
Description
Logic diagram (STM818)
VCC VBAT
VOUT
WDI
RST
STM818
E
ECON
VSS
Table 2.
AI07896
Signal names
MR
Push-button reset input
WDI
Watchdog input
RST
Active-low reset output
RST
Active-high reset outpu
E(1)
Chip-enable input
ECON
(1)
Conditioned chip-enable output
VOUT
Supply voltage output
VCC
Supply voltage
VBAT
Backup supply voltage
PFI
Power-fail input
PFO
Power-fail output
VSS
Ground
1. STM818
Figure 4.
STM690A/692A/802/805/817 connections
SO8/TSSOP8
VOUT
VCC
VSS
PFI
1
2
3
4
8
7
6
5
VBAT
RST(RST)(1)
WDI
PFO
AI07889
1. For STM805, reset output is active-high.
Doc ID 10522 Rev 10
7/43
Description
STM690A/692A/703/704/802/805/817/818/819
Figure 5.
STM703/704/819 connections
SO8/TSSOP8
VOUT
VCC
VSS
PFI
1
2
3
4
8
7
6
5
VBAT
RST
MR
PFO
AI07890
Figure 6.
STM818 connections
SO8/TSSOP8
VOUT
VCC
VSS
E
1
2
3
4
8
7
6
5
VBAT
RST
WDI
ECON
AI07892
1.1
Pin descriptions
1.1.1
MR
A logic low on MR asserts the reset output. Reset remains asserted as long as MR is low
and for trec after MR returns high. This active-low input has an internal pull-up. It can be
driven from a TTL or CMOS logic line, or shorted to ground with a switch. Leave open if
unused.
1.1.2
WDI
If WDI remains high or low for 1.6 sec, the internal watchdog timer runs out and reset is
triggered. The internal watchdog timer clears while reset is asserted or when WDI sees a
rising or falling edge.
The watchdog function can be disabled by allowing the WDI pin to float.
1.1.3
RST
Pulses low for trec when triggered, and stays low whenever VCC is below the reset threshold
or when MR is a logic low. It remains low for trec after either VCC rises above the reset
threshold, the watchdog triggers a reset, or MR goes from low to high.
1.1.4
RST
Pulses high for trec when triggered, and stays high whenever VCC is above the reset
threshold or when MR is a logic high. It remains high for trec after either VCC falls below the
reset threshold, the watchdog triggers a reset, or MR goes from high to low.
8/43
Doc ID 10522 Rev 10
STM690A/692A/703/704/802/805/817/818/819
1.1.5
Description
VOUT
When VCC is above the switchover voltage (VSO), VOUT is connected to VCC through a Pchannel MOSFET switch. When VCC falls below VSO, VBAT connects to VOUT.
1.1.6
VBAT
When VCC falls below VSO, VOUT switches from VCC to VBAT. When VCC rises above VSO +
hysteresis, VOUT reconnects to VCC. VBAT may exceed VCC. Connect to VCC if no battery is
used.
1.1.7
E
The input to the chip-enable gating circuit. Connect to ground if unused.
1.1.8
ECON
ECON goes low only when E is low and reset is not asserted. If ECON is low when reset is
asserted, ECON will remain low for 15 µs or until E goes high, whichever occurs first. In the
disabled mode, ECON is pulled up to VOUT.
1.1.9
PFI
When PFI is less than VPFI or when VCC falls below 2.4 V (or VSO), PFO goes low;
otherwise, PFO remains high. Connect to ground if unused.
1.1.10
PFO
When PFI is less than VPFI, or VCC falls below 2.4 V (or VSO), PFO goes low; otherwise,
PFO remains high. Leave open if unused. Output type is push-pull.
Doc ID 10522 Rev 10
9/43
Description
Table 3.
STM690A/692A/703/704/802/805/817/818/819
Pin description
Pin
STM690A
STM692A
STM818
STM802
STM817
STM703
STM704
Name
Function
STM805
STM819
-
-
6
-
MR
Push-button reset input
6
6
-
6
WDI
Watchdog input
7
7
7
-
RST
Active-low reset output
-
-
-
7
RST
Active-high reset output
1
1
1
1
VOUT
Supply output for external LPSRAM
2
2
2
2
VCC
Supply voltage
8
8
8
8
VBAT
Backup battery input
4
-
-
-
E
5
-
-
-
ECON
-
4
4
4
PFI
Power-fail input
-
5
5
5
PFO
Power-fail output (push-pull)
3
3
3
3
VSS
Ground
Figure 7.
Chip-enable input
Conditioned chip-enable output
Block diagram (STM690A/692A/802/805/817)
VCC
VOUT
VBAT
VSO
COMPARE
VRST
COMPARE
WATCHDOG
TIMER
WDI
PFI
VPFI
COMPARE
trec
Generator
(1)
RST(RST)
PFO
AI07897
1. For STM805, reset output is active-high.
10/43
Doc ID 10522 Rev 10
STM690A/692A/703/704/802/805/817/818/819
Figure 8.
Description
Block diagram (STM703/704/819)
VCC
VOUT
VBAT
VSO
COMPARE
VRST
COMPARE
trec
Generator
MR
PFI
VPFI
COMPARE
RST
PFO
AI07898
Figure 9.
Block diagram (STM818)
VCC
VOUT
VBAT
WDI
VSO
COMPARE
VRST
COMPARE
WATCHDOG
TIMER
trec
Generator
RST
ECON OUTPUT
CONTROL
E
ECON
AI07899a
Doc ID 10522 Rev 10
11/43
Description
STM690A/692A/703/704/802/805/817/818/819
Figure 10. Hardware hookup
Regulator
Unregulated
Voltage
VIN
VCC
VCC
VCC
VOUT
VCC
STM690A/692A/
703/704/802/805/
817/818/819
0.1 F
LPSRAM
E
E
0.1 F
WDI(1)
From Microprocessor
E(2)
ECON(2)
R1
PFI(3)
PFO(3)
MR(4)
RST
To Microprocessor NMI
R2
Push-Button
(5)
To Microprocessor Reset
VBAT
AI07893
1. For STM690A/692A/802/805/817/818.
2. For STM818 only.
3. Not available on STM818.
4. For STM703/704/819.
5. Active high on STM805.
12/43
Doc ID 10522 Rev 10
STM690A/692A/703/704/802/805/817/818/819
2
Operation
2.1
Reset output
Operation
The STM690A/692A/703/704/802/805/817/818/819 Supervisor asserts a reset signal to the
MCU whenever VCC goes below the reset threshold (VRST), a watchdog time-out occurs, or
when the Push-button Reset Input (MR) is taken low. RST is guaranteed to be a logic low
(logic high for STM805) for 0V < VCC < VRST if VBAT is greater than 1 V. Without a backup
battery, RST is guaranteed valid down to VCC =1 V.
During power-up, once VCC exceeds the reset threshold an internal timer keeps RST low for
the reset time-out period, trec. After this interval RST returns high.
If VCC drops below the reset threshold, RST goes low. Each time RST is asserted, it stays
low for at least the reset time-out period (trec). Any time VCC goes below the reset threshold
the internal timer clears. The reset timer starts when VCC returns above the reset threshold.
2.2
Push-button reset input (STM703/704/819)
A logic low on MR asserts reset. Reset remains asserted while MR is low, and for trec (see
Figure 41) after it returns high. The MR input has an internal 40 kΩ pull-up resistor, allowing
it to be left open if not used. This input can be driven with TTL/CMOS-logic levels or with
open-drain/collector outputs. Connect a normally open momentary switch from MR to GND
to create a manual reset function; external debounce circuitry is not required. If MR is driven
from long cables or the device is used in a noisy environment, connect a 0.1 µF capacitor
from MR to GND to provide additional noise immunity. MR may float, or be tied to VCC when
not used.
2.3
Watchdog input (NOT available on STM703/704/819)
The watchdog timer can be used to detect an out-of-control MCU. If the MCU does not
toggle the Watchdog Input (WDI) within tWD(1.6 sec typ), the reset is asserted. The internal
watchdog timer is cleared by either:
1.
a reset pulse, or
2.
by toggling WDI (high-to-low or low-to-high), which can detect pulses as short as 50ns.
If WDI is tied high or low, a reset pulse is triggered every 1.8 sec (tWD + trec).
The timer remains cleared and does not count for as long as reset is asserted. As soon as
reset is released, the timer starts counting (see Figure 42).
Note:
1
The watchdog function may be disabled by floating WDI or tri-stating the driver connected to
WDI. When tri-stated or disconnected, the maximum allowable leakage current is 10 µA and
the maximum allowable load capacitance is 200 pF.
2
Input pulses less than 20 ns will be ignored.
Doc ID 10522 Rev 10
13/43
Operation
2.4
STM690A/692A/703/704/802/805/817/818/819
Backup battery switchover
In the event of a power failure, it may be necessary to preserve the contents of external
SRAM through VOUT. With a backup battery installed with voltage VBAT, the devices
automatically switch the SRAM to the backup supply when VCC falls.
Note:
When the battery is first connected without VCC power applied, the device does not
immediately provide backup battery voltage on VOUT. Only after VCC exceeds VRST will the
switchover operate as described below. This mode allows a battery to be attached during
manufacturing but not used until after the system has been activated for the first time. As a
result, no battery power is consumed by the device during storage and shipment. For the
STM81x devices, the battery freshness seal can be initiated again by following the
procedure outlined in Section 2.12. If the backup battery is not used, connect both VBAT and
VOUT to VCC .
Whenever VCC falls below the switchover voltage, VSO, VOUT is connected to VBAT through a
100 Ω switch. VSO is the lesser of VBAT and VRST. Choosing the lesser allows the device to
be powered by VCC for as long as possible before switching over thereby maximizing the
battery life.
Assuming VBAT > 2.0 V, switchover at VSO ensures that battery backup mode is entered
before VOUT gets too close to the 2.0 V minimum required to reliably retain data in most
external SRAMs. When VCC recovers, hysteresis is used to avoid oscillation around the VSO
point. VOUT is connected to VCC through a 3 Ω PMOS power switch.
Note:
The backup battery may be removed while VCC is valid, assuming VBAT is adequately
decoupled (0.1 µF typ), without danger of triggering a reset.
Table 4.
I/O status in battery backup
VOUT
Connected to VBAT through internal switch
VCC
Disconnected from VOUT
PFI
Disabled
PFO
Logic low
E
14/43
High impedance
ECON
Logic high
WDI
Watchdog timer is disabled
MR
Disabled
RST
Logic low
RST
Logic high
VBAT
Connected to VOUT
Doc ID 10522 Rev 10
STM690A/692A/703/704/802/805/817/818/819
2.5
Operation
Chip-enable gating (STM818 only)
Internal gating of the chip-enable (E) signal prevents erroneous data from corrupting the
external CMOS RAM in the event of an undervoltage condition. The STM818 uses a series
transmission gate from E to ECON (see Figure 11). During normal operation (reset not
asserted), the E transmission gate is enabled and passes all E transitions. When reset is
asserted, this path becomes disabled, preventing erroneous data from corrupting the CMOS
RAM. The short propagation delay from E to ECON enables the STM818 to be used with
most µPs. If E is low when reset asserts, ECON remains low for typically 15 µs (or until E
goes high) to permit the current WRITE cycle to complete. Connect E to VSS if unused.
2.6
Chip-enable input (STM818 only)
The chip-enable transmission gate is disabled and E is high impedance (disabled mode)
while reset is asserted. During a power-down sequence when VCC passes the reset
threshold, the chip-enable transmission gate disables and E immediately becomes high
impedance if the voltage at E is high. If E is low when reset asserts, the chip-enable
transmission gate will disable 15 µs after reset asserts (see Figure 12). This permits the
current WRITE cycle to complete during power-down.
Any time a reset is generated, the chip-enable transmission gate remains disabled and E
remains high impedance (regardless of E activity) for the reset time-out period. When the
chip-enable transmission gate is enabled, the impedance of E appears as a 40 Ω resistor in
series with the load at ECON. The propagation delay through the chip-enable transmission
gate depends on VCC, the source impedance of the drive connected to E, and the loading
on ECON. The chip-enable propagation delay is production tested from the 50% point on E to
the 50% point on ECON using a 50 Ω driver and a 50 pF load capacitance (see Figure 39).
For minimum propagation delay, minimize the capacitive load at ECON and use a low-output
impedance driver.
2.7
Chip-enable output (STM818 only)
When the chip-enable transmission gate is enabled, the impedance of ECON is equivalent to
a 40 Ω resistor in series with the source driving E. In the disabled mode, the transmission
gate is off and an active pull-up connects ECON to VOUT (see Figure 11). This pull-up turns
off when the transmission gate is enabled.
Figure 11. Chip-enable gating
VCC
VRST
COMPARE
trec
Generator
RST
VOUT
ECON OUTPUT
CONTROL
E
ECON
AI08802
Doc ID 10522 Rev 10
15/43
Operation
STM690A/692A/703/704/802/805/817/818/819
Figure 12. Chip-enable waveform
VCC
ECON
RST
E
VRST
VBAT
trec
15µs
XX
trec
XX
AI08803b
2.8
Power-fail input/output (NOT available on STM818)
The Power-fail Input (PFI) is compared to an internal reference voltage (independent from
the VRST comparator). If PFI is less than the power-fail threshold (VPFI), the Power-Fail
Output (PFO) will go low. This function is intended for use as an undervoltage detector to
signal a failing power supply. Typically PFI is connected through an external voltage divider
(see Figure 12) to either the unregulated DC input (if it is available) or the regulated output
of the VCC regulator. The voltage divider can be set up such that the voltage at PFI falls
below VPFI several milliseconds before the regulated VCC input to the
STM690A/692A/703/704/802/805/817/818/819 Supervisor or before the microprocessor
drops below the minimum operating voltage. This provides several milliseconds of advanced
warning that power is about to fail.
During battery backup, the power-fail comparator turns off and PFO goes (or remains) low
(see Figure 13 below and Figure 14). This occurs after VCC drops below 2.4 V (or VSO).
When power returns, PFO is forced high (STM817/819 only), irrespective of VPFI for the
WRITE protect time (trec). At the end of this time, the power-fail comparator is enabled and
PFO follows PFI. If the comparator is unused, PFI should be connected to VSS and PFO left
unconnected. PFO may be connected to MR on the STM703/704/818 so that a low voltage
on PFI will generate a reset output.
2.9
Applications information
These supervisor circuits are not short-circuit protected. Shorting VOUT to ground excluding power-up transients such as charging a decoupling capacitor - destroys the
device. Decouple both VCC and VBAT pins to ground by placing 0.1 µF capacitors as close to
the device as possible.
16/43
Doc ID 10522 Rev 10
STM690A/692A/703/704/802/805/817/818/819
Operation
Figure 13. Power-fail comparator waveform (STM817/818/819)
VCC
VRST
VSO (or 2.4V)
trec
PFO
(STM817/819)
PFO follows PFI
PFO follows PFI
RST to ECON Delay (STM818)
RST
ECON (STM818)
AI08804a
Figure 14. Power-fail comparator waveform (STM690A/692A/703/704/802/805)
VCC
VRST
2.4V (or VSO)
trec
PFO
PFO follows PFI
PFO follows PFI
RST
AI08832a
2.10
Using a SuperCap™ as a backup power source
SuperCaps™ are capacitors with extremely high capacitance values (e.g., 0.47 F) for their
size. Figure 15 shows how to use a SuperCap as a backup power source. The SuperCap
may be connected through a diode to the 5 V supply. Since VBAT can exceed VCC while VCC
is above the reset threshold, there are no special precautions for using these supervisors
with a SuperCap.
Doc ID 10522 Rev 10
17/43
Operation
2.11
STM690A/692A/703/704/802/805/817/818/819
Negative-going VCC transients
The STM690A/692A/703/704/802/805/817/818/819 Supervisors are relatively immune to
negative-going VCC transients (glitches). Figure 37 shows typical transient duration versus
reset comparator overdrive (for which the STM690A/692A/703/704/802/805/817/818/819
will NOT generate a reset pulse). The graph was generated using a negative pulse applied
to VCC, starting at VRST + 0.3 V and ending below the reset threshold by the magnitude
indicated (comparator overdrive). The graph indicates the maximum pulse width a negative
VCC transient can have without causing a reset pulse. As the magnitude of the transient
increases (further below the threshold), the maximum allowable pulse width decreases. Any
combination of duration and overdrive which lies under the curve will NOT generate a reset
signal. Typically, a VCC transient that goes 100 mV below the reset threshold and lasts 40 µs
or less will not cause a reset pulse. A 0.1 µF bypass capacitor mounted as close as possible
to the VCC pin provides additional transient immunity.
18/43
Doc ID 10522 Rev 10
STM690A/692A/703/704/802/805/817/818/819
2.12
Operation
Battery freshness seal (STM817/818/819)
The battery freshness seal disconnects the backup battery from internal circuitry and VOUT
until it is needed. This allows an OEM to ensure that the backup battery connected to VBAT
will be fresh when the final product is put to use. To enable the freshness seal:
1.
Connect a battery to VBAT
2.
Ground PFO
3.
Bring VCC above the reset threshold and hold it there until reset is deasserted following
the reset timeout period and
4.
Bring VCC down again (Figure 16)
Use the same procedure for the STM818, but ground ECON instead of PFO. Once the
battery freshness seal is enabled (disconnecting the backup battery from internal circuitry
and anything connected to VOUT), it remains enabled until VCC is brought above VRST.
Figure 15. Using a SuperCap™
5V
VCC
VOUT
To external SRAM
STMXXX
VBAT
RST
To µP
GND
AI08805
Figure 16. Freshness seal enable waveform
VRST
VCC
trec
RST
ECON
(Externally held at 0V)
(STM818)
PFO
(Externally held at 0V)
ECON out state latched
at 1/2 trec, Freshness
Seal enabled
PFO out state latched
at 1/2 trec, Freshness
Seal Enabled
(STM817/819)
Doc ID 10522 Rev 10
AI08806
19/43
Typical operating characteristics
STM690A/692A/703/704/802/805/817/818/819
3
Typical operating characteristics
Note:
Typical values are at TA = 25 °C.
Figure 17. VCC to VOUT on-resistance vs. temperature
VCC to V OUT on-resistance (
)
5.0
VCC = 3.0V
4.0
VCC = 4.5V
VCC = 5.5V
3.0
2.0
1.0
0.0
–40
–20
0
20
40
60
80
100
120
Temperature (°C)
AI10498
Figure 18. VBAT to VOUT on-resistance vs. temperature
VBAT to VOUT on-resistance (
)
160
140
120
100
80
60
VBAT = 2.0V
40
VBAT = 3.0V
VBAT = 3.3V
20
VBAT = 3.6V
0
–40
–20
0
20
40
60
Temperature (°C)
20/43
Doc ID 10522 Rev 10
80
100
120
AI09140b
STM690A/692A/703/704/802/805/817/818/819
Typical operating characteristics
Figure 19. Supply current vs. temperature (no load)
30
Supply Current (µA)
25
20
15
VCC = 2.7V
VCC = 3.0V
VCC = 3.6V
VCC = 4.5V
VCC = 5.5V
10
5
0
–40
–20
0
20
40
60
80
100
120
Temperature (°C)
AI09141b
Figure 20. Battery current vs. temperature
Battery Supply Current (nA)
1000
100
VBAT = 2.0V
VBAT = 3.0V
VBAT = 3.6V
10
1
0.1
–40
–20
0
20
40
60
80
100
120
Temperature (°C)
AI10499
Doc ID 10522 Rev 10
21/43
Typical operating characteristics
STM690A/692A/703/704/802/805/817/818/819
Figure 21. VPFI threshold vs. temperature
1.270
1.265
VCC = 3.0V
VCC = 4.5V
VCC = 4.75V
VCC = 5.5V
VPFI Threshold (V)
1.260
1.255
1.250
1.245
1.240
1.235
1.230
1.225
–40
–20
0
20
40
60
80
100
120
Temperature (°C)
AI09142c
Figure 22. Reset comparator propagation delay vs. temperature (other than STM817/818/819)
30
28
Propagation Delay (µs)
26
24
22
20
18
16
14
12
10
–40
–20
0
20
40
60
Temperature (°C)
22/43
Doc ID 10522 Rev 10
80
100
120
AI09143b
STM690A/692A/703/704/802/805/817/818/819
Typical operating characteristics
Figure 23. Reset comparator propagation delay vs. temperature (VBAT = 3.0 V; STM817/818/819)
350
1v/ms
Propagation Delay (µs)
300
10V/ms
250
200
150
100
50
0
–40
–20
0
20
40
60
80
100
120
Temperature (°C)
AI11100
Figure 24. Power-up tREC vs. temperature
240
235
trec (ms)
230
VCC = 3.0V
225
VCC = 4.5V
VCC = 5.5V
220
215
210
–40
–20
0
20
40
60
80
Temperature (°C)
Doc ID 10522 Rev 10
100
120
AI09144b
23/43
Typical operating characteristics
STM690A/692A/703/704/802/805/817/818/819
Figure 25. Normalized reset threshold vs. temperature
Normalized Reset Threshold
1.004
1.002
1.000
0.998
0.996
–40
–20
0
20
40
60
80
100
120
Temperature (°C)
AI09145b
Figure 26. Watchdog time-out period vs. temperature
Watchdog Time-out Period (sec)
1.90
1.85
1.80
1.75
VCC = 3.0V
VCC = 4.5V
VCC = 5.5V
1.70
1.65
1.60
–40
–20
0
20
40
60
Temperature (°C)
24/43
Doc ID 10522 Rev 10
80
100
120
AI09146b
STM690A/692A/703/704/802/805/817/818/819
Typical operating characteristics
Figure 27. E to ECON on-resistance vs. temperature
60
E to ECON On-Resistance ( )
50
40
30
VCC = 3.0V
VCC = 4.5V
VCC = 5.5V
20
10
0
–40
–20
0
20
40
60
80
100
120
Temperature (°C)
AI09147b
Figure 28. PFI to PFO propagation delay vs. temperature
PFI to PFO Propagation Delay (µs)
4.0
VCC = 3.0V
VCC = 3.6V
3.0
VCC = 4.5V
VCC = 5.5V
2.0
1.0
0.0
–40
–20
0
20
40
60
80
100
120
Temperature (°C)
AI09148b
Doc ID 10522 Rev 10
25/43
Typical operating characteristics
STM690A/692A/703/704/802/805/817/818/819
Figure 29. Output voltage vs. load current (VCC = 5 V; VBAT = 2.8 V; TA = 25 °C)
5.00
VOUT (V)
4.98
4.96
4.94
0
10
20
30
40
50
IOUT (mA)
AI10496
Figure 30. Output voltage vs. load current (VCC = 0 V; VBAT = 2.8 V; TA = 25 °C)
2.80
2.78
VOUT (V)
2.76
2.74
2.72
2.70
2.68
2.66
0.0
0.2
0.4
0.6
IOUT (mA)
26/43
Doc ID 10522 Rev 10
0.8
1.0
AI10497
STM690A/692A/703/704/802/805/817/818/819
Typical operating characteristics
Figure 31. RST output voltage vs. supply voltage
VRST (V)
VRST
VCC
4
4
3
3
2
2
1
1
0
0
VCC (V)
5
5
500ms/div
AI09149b
Figure 32. RST output voltage vs. supply voltage
5
VRST
VCC
VRST (V)
4
4
3
3
2
2
1
1
VCC (V)
5
0
0
500ms/div
Doc ID 10522 Rev 10
AI09150b
27/43
Typical operating characteristics
STM690A/692A/703/704/802/805/817/818/819
Figure 33. RST response time (assertion)
5V
1V/div
VCC
4V
5V
4V
RST
1V/div
0V
AI09151b
5µs/div
Figure 34. RST response time (assertion)
5V
VCC
4V
1V/div
4V
RST
1V/div
0V
5µs/div
28/43
Doc ID 10522 Rev 10
AI09152b
STM690A/692A/703/704/802/805/817/818/819
Typical operating characteristics
Figure 35. Power-fail comparator response time (assertion)
5V
1V/div
PFO
0V
1.3V
PFI
500mV/div
0V
500ns/div
AI09153b
Figure 36. Power-fail comparator response time (de-assertion)
5V
1V/div
PFO
0V
1.3V
PFI
500mV/div
0V
500ns/div
Doc ID 10522 Rev 10
AI09154b
29/43
Typical operating characteristics
STM690A/692A/703/704/802/805/817/818/819
Figure 37. Maximum transient duration vs. reset threshold overdrive
6000
Transient Duration (µs)
5000
4000
Reset occurs
above the curve.
3000
2000
1000
0
0.001
0.01
0.1
1
10
Reset Comparator Overdrive, VRST – VCC (V)
AI09156b
Figure 38. E to ECON propagation delay vs. temperature
E to ECON Propagation Delay (ns)
4.0
3.0
2.0
VCC = 3.0V
VCC = 4.5V
VCC = 5.5V
1.0
0.0
–40
–20
0
20
40
60
Temperature (°C)
30/43
Doc ID 10522 Rev 10
80
100
120
AI09157b
STM690A/692A/703/704/802/805/817/818/819
4
Maximum ratings
Maximum ratings
Stressing the device above the rating listed in the absolute maximum ratings table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the operating sections of
this specification is not implied. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability.
Table 5.
Absolute maximum ratings
Symbol
TSTG
TSLD(1)
VIO
Parameter
Storage temperature (VCC off)
Lead solder temperature for 10 seconds
Input or output voltage
Value
Unit
–55 to 150
°C
260
°C
–0.3 to VCC +0.3
V
VCC/VBAT
Supply voltage
–0.3 to 6.0
V
IO
Output current
20
mA
PD
Power dissipation
320
mW
1. Reflow at peak temperature of 260 °C. The time above 255 °C must not exceed 30 seconds.
Doc ID 10522 Rev 10
31/43
DC and AC parameters
5
STM690A/692A/703/704/802/805/817/818/819
DC and AC parameters
This section summarizes the operating measurement conditions, and the DC and AC
characteristics of the device. The parameters in the DC and AC characteristics Tables that
follow, are derived from tests performed under the measurement conditions summarized in
Table 6: Operating and AC measurement conditions. Designers should check that the
operating conditions in their circuit match the operating conditions when relying on the
quoted parameters.
Table 6.
Operating and AC measurement conditions
STM690A/692A/703/704/802/805/
817/818/819
Unit
VCC/VBAT supply voltage
1.0 to 5.5
V
Ambient operating temperature (TA)
–40 to 85
°C
≤5
ns
Input pulse voltages
0.2 to 0.8VCC
V
Input and output timing ref. voltages
0.3 to 0.7VCC
V
Parameter
Input rise and fall times
Figure 39. E to ECON propagation delay test circuit
VCC
VCC
VBAT
3.6V
STMXXX
25 Equivalent
Source Impedance
E
50
50
ECON
Cable
50pF CL(1)
50
GND
AI08854
1. CL includes load capacitance and scope probe capacitance.
32/43
Doc ID 10522 Rev 10
STM690A/692A/703/704/802/805/817/818/819
DC and AC parameters
Figure 40. AC testing input/output waveforms
0.8VCC
0.7VCC
0.3VCC
0.2VCC
AI02568
Figure 41. MR timing waveform
MR
tMLRL
RST
(1)
tMLMH
trec
AI07837a
1. RST for STM805.
Figure 42. Watchdog timing
VCC
RST
trec
tWD
WDI
AI07891
Doc ID 10522 Rev 10
33/43
DC and AC parameters
Table 7.
STM690A/692A/703/704/802/805/817/818/819
DC and AC characteristics
Alternative
Test condition(1)
Min
Operating voltage
TA = –40 to +85 °C
1.2(3)
VCC supply current
Excluding IOUT (VCC < 5.5 V)
ICC
VCC supply current in
battery backup mode
IBAT(4)
VBAT supply current in
battery backup mode
Sym
VCC ,
VBAT(2)
VOUT1
VOUT2
Description
VOUT voltage (active)
VOUT voltage (battery
backup)
Max
Unit
5.5
V
25
60
µA
Excluding IOUT (VBAT = 2.3 V,
VCC = 2.0 V, MR = VCC)
25
35
µA
Excluding IOUT
(VBAT = 3.6 V)
0.4
1.0
µA
IOUT1 = 5 mA(5)
VCC –
0.03
VCC – 0.015
V
IOUT1 = 75 mA
VCC –
0.3
VCC – 0.15
V
IOUT1 = 250 µA,
VCC > 2.5 V(5)
VCC –
0.0015
VCC –
0.0006
V
IOUT2 = 250 µA, VBAT = 2.3 V
VBAT –
0.1
VBAT – 0.034
V
VBAT – 0.14
V
IOUT2 = 1 mA, VBAT = 2.3 V
ILI
Typ
VCC to VOUT
on-resistance
3
VBAT to VOUT
on-resistance
100
4
Ω
Ω
Input leakage current
(MR)
4.5 V < VCC < 5.5 V
75
125
300
µA
Input leakage current
(PFI)
0 V < VIN < VCC
–25
2
+25
nA
120
160
µA
Input leakage current
(WDI)(6)
WDI = VCC , time average
WDI = GND, time average
–20
–15
µA
VIH
Input high voltage (MR)
4.5 V < VCC < 5.5 V
2.0
V
VIH
Input high voltage (WDI)
VRST (max) < VCC < 5.5 V
0.7VCC
V
VIL
Input low voltage (MR)
4.5 V < VCC < 5.5 V
0.8
V
VIL
Input low voltage (WDI)
VRST (max) < VCC < 5.5 V
0.3VCC
V
VCC = VRST (max),
ISINK = 3.2 mA
0.3
V
VCC = VRST (max),
IOUT = 1.6 mA, E = 0 V
0.2VCC
V
ISINK = 50 µA, VCC = 1.0 V,
VBAT = VCC , TA = 0°C to 85°C
0.3
V
ISINK = 100 µA, VCC = 1.2 V,
VBAT = VCC
0.3
V
Output low voltage (PFO,
RST, RST)
VOL
VOL
34/43
Output low voltage
(ECON)
Output low voltage (RST)
Doc ID 10522 Rev 10
STM690A/692A/703/704/802/805/817/818/819
Table 7.
Sym
VOH
VOH
VOHB
DC and AC parameters
DC and AC characteristics (continued)
Alternative
Description
Test condition(1)
Min
Output high voltage
(RST, RST)
ISOURCE = 1 mA
VCC = VRST (max)
2.4
V
Output high voltage
(ECON)
VCC = VRST (max),
IOUT = 1.6 mA, E= VCC
0.8VCC
V
Output high voltage
(PFO)
ISOURCE = 75 µA,
VCC = VRST (max)
0.8VCC
V
Output high voltage
Typ
Max
Unit
ISOURCE = 4 µA, VCC = 1.1 V,
VBAT = VCC , TA = 0°C to 85°C
0.8
V
ISOURCE = 4 µA, VCC = 1.2 V,
VBAT = VCC
0.9
V
VOH battery backup
(RST, RST)
ISOURCE = 100 µA,
VCC = 0, VBAT = 2.8 V
0.8VBAT
V
VOH battery backup
(ECON)
ISOURCE = 75 µA,
VCC = 0, VBAT = 2.8 V
0.8VBAT
V
Power-fail comparator (NOT available on STM818)
VPFI
PFI input threshold
tPFD
PFI to PFO propagation
delay
ISC
PFO output short to GND
current
PFI falling
(VCC = 5 V)
All other
versions
1.20
1.25
1.30
V
STM802
1.225
1.250
1.275
V
2
VCC = 5 V, VPFO = 0 V
0.1
0.75
µs
2.0
mA
Battery switchover
VSO
Battery backup
switchover voltage(7)(8)
(VCC < VBAT &
VCC < VRST)
Power-down
Power-up
VRST > VBAT
VBAT
V
VRST < VBAT
VRST
V
VRST > VBAT
VBAT
V
VRST < VBAT
VRST
V
40
mV
Hysteresis
Reset thresholds
VRST
Reset threshold(9)
STM690A/703, STM8XXL
4.50
4.65
4.75
V
STM692A/704, STM8XXM
4.25
4.40
4.50
V
Reset threshold
hysteresis
VCC to RST delay (from
VRST, VCC falling at
10 V/ms)
STM817/818/819
Doc ID 10522 Rev 10
25
mV
100
µs
35/43
DC and AC parameters
Table 7.
Sym
STM690A/692A/703/704/802/805/817/818/819
DC and AC characteristics (continued)
Alternative
tREC
Description
Test condition(1)
RST pulse width
Min
Typ
Max
Unit
140
200
280
ms
Push-button reset input (STM703/704/819)
tMLMH
tMR
MR pulse width
tMLMR
tMRD
MR to RST output delay
STM703/704
150
ns
STM819
1
µs
STM703/704
250
ns
STM819
120
ns
MR glitch immunity
STM819
100
ns
MR pull-up resistor
MR = 0 V, VCC = 5 V
45
63
85
kΩ
1.60
2.24
s
Watchdog timer (NOT available on STM703/704/819)
tWD
Watchdog timeout period
VRST (max) < VCC < 5.5 V
1.12
WDI pulse width
VRST (max) < VCC < 5.5 V
50
ns
Chip-enable gating (STM818 only)
VCC = VRST (max)
40
150
Ω
4.5 V < VCC < 5.5 V
2
7
ns
Reset to ECON high delay
(Power-down)
15
ECON short circuit current
VCC = 5 V, disable mode,
E = logic high, ECON = 0 V
E to ECON resistance
E to ECON propagation
delay
0.1
0.75
µs
2.0
mA
1. Valid for ambient operating temperature: TA = –40 to 85 °C; VCC = 4.75 V to 5.5 V for “L” versions; VCC = 4.5 V to 5.5 V for
“M” versions; and VBAT = 2.8 V (except where noted).
2. VCC supply current, logic input leakage, watchdog functionality, push-button reset functionality, PFI functionality, state of
RST and RST tested at VBAT = 3.6 V, and VCC = 5.5 V. The state of RST or RST and PFO is tested at VCC = VCC (min).
Either VCC or VBAT can go to 0 V if the other is greater than 2.0 V.
3. VCC (min) = 1.0 V for TA = 0 °C to +85 °C.
4. Tested at VBAT = 3.6 V, VCC = 3.5 V and 0 V.
5. Guaranteed by design.
6. WDI input is designed to be driven by a three-state output device. To float WDI, the “high impedance mode” of the output
device must have a maximum leakage current of 10 µA and a maximum output capacitance of 200 pF. The output device
must also be able to source and sink at least 200 µA when active.
7. When VBAT > VCC > VRST, VOUT remains connected to VCC until VCC drops below VRST.
8. When VRST > VCC > VBAT, VOUT remains connected to VCC until VCC drops below the battery voltage (VBAT) – 75 mV.
9. For VCC falling.
36/43
Doc ID 10522 Rev 10
STM690A/692A/703/704/802/805/817/818/819
6
Package mechanical data
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Doc ID 10522 Rev 10
37/43
Package mechanical data
STM690A/692A/703/704/802/805/817/818/819
Figure 43. SO8 - 8-lead plastic small outline, 150 mils body width, package
mechanical drawing
A2
A
C
B
ddd
e
D
8
E
H
1
A1
L
SO-A
Note:
Drawing is not to scale.
Table 8.
SO8 - 8-lead plastic small outline, 150 mils body width, package
mechanical data
mm
inches
Symbol
Typ
Min
Max
Typ
Min
Max
A
-
1.35
1.75
-
0.053
0.069
A1
-
0.10
0.25
-
0.004
0.010
B
-
0.33
0.51
-
0.013
0.020
C
-
0.19
0.25
-
0.007
0.010
D
-
4.80
5.00
-
0.189
0.197
ddd
-
-
0.10
-
-
0.004
E
-
3.80
4.00
-
0.150
0.157
e
1.27
-
-
0.050
-
-
H
-
5.80
6.20
-
0.228
0.244
h
-
0.25
0.50
-
0.010
0.020
L
-
0.40
0.90
-
0.016
0.035
α
-
0°
8°
-
0°
8°
N
38/43
8
Doc ID 10522 Rev 10
8
STM690A/692A/703/704/802/805/817/818/819
Package mechanical data
Figure 44. TSSOP8 - 8-lead, thin shrink small outline, 3 x 3 mm body size, outline
D
8
5
c
E1
1
E
4
L
A1
A
A2
L1
CP
b
Note:
e
TSSOP8BM
Drawing is not to scale.
Table 9.
TSSOP8 - 8-lead, thin shrink small outline, 3 x 3 mm body size,
mechanical data
mm
inches
Symbol
Typ
Min
Max
Typ
Min
Max
A
-
-
1.10
-
-
0.043
A1
-
0.05
0.15
-
0.002
0.006
A2
0.85
0.75
0.95
0.034
0.030
0.037
b
-
0.25
0.40
-
0.010
0.016
c
-
0.13
0.23
-
0.005
0.009
CP
-
-
0.10
-
-
0.004
D
3.00
2.90
3.10
0.118
0.114
0.122
e
0.65
-
-
0.026
-
-
E
4.90
4.65
5.15
0.193
0.183
0.203
E1
3.00
2.90
3.10
0.118
0.114
0.122
L
0.55
0.40
0.70
0.022
0.016
0.030
L1
0.95
-
-
0.037
-
-
α
-
0°
6°
-
0°
6°
N
8
Doc ID 10522 Rev 10
8
39/43
Part numbering
7
STM690A/692A/703/704/802/805/817/818/819
Part numbering
Table 10.
Ordering information scheme
Example:
STM690A
M
6
E
Device type
STM690A/692A/703/704/802/805/817/818/819
Threshold voltage
STM690A, STM703: blank: VRST = 4.50 V to 4.75 V
STM692A, STM704: blank: VRST = 4.25 V to 4.50 V
STM8xx:
L: VRST = 4.50 V to 4.75 V
M: VRST = 4.25 V to 4.50 V
Package
M = SO8
DS(1) = TSSOP8
Temperature range
6: –40 °C to 85 °C
Shipping method
E = ECOPACK® package, tubes
F = ECOPACK® package, tape & reel
1. Contact local ST sales office for availability.
For other options or for more information on any aspect of this device, please contact the ST
sales office nearest you.
40/43
Doc ID 10522 Rev 10
STM690A/692A/703/704/802/805/817/818/819
Table 11.
Part numbering
Marking description
Part number
Reset threshold
Package
Topside marking
STM690A
4.65 V
SO8
690A
STM692A
4.40 V
SO8
692A
STM703
4.65 V
SO8
703
STM704
4.40 V
SO8
704
STM802L
4.65 V
SO8
802L
STM802M
4.40 V
SO8
802M
STM805L
4.65 V
SO8
805L
STM817L
4.65 V
SO8
817L
TSSOP8
SO8
STM817M
4.40 V
817M
TSSOP8
SO8
STM818L
4.65 V
818L
TSSOP8
SO8
STM818M
4.40 V
818M
TSSOP8
SO8
STM819L
4.65 V
819L
TSSOP8
SO8
STM819M
4.40 V
819M
TSSOP8
Doc ID 10522 Rev 10
41/43
Revision history
8
Revision history
Table 12.
42/43
STM690A/692A/703/704/802/805/817/818/819
Document revision history
Date
Revision
Changes
Oct-2003
1
31-Oct-2003
1.1
22-Dec-2003
2
Reformatted; updated characteristics (cover page, Figure 2, 3, 6, 7, 8, 9,
10, 11, 12, 13, 14, 16, Table 3, 4, 7, 9, 11).
16-Jan-2004
2.1
Add typical characteristics (Figure 18, 19, 21, 22, 24, 25, 26, 27, 28, 31,
32, 33, 34, 35, 36, 37, 38).
08-Apr-2004
2.2
Update characteristics (Figure 12, 22, 28, 32, 33, 34, 37; Table 1, 7).
25-May-2004
3
Remove references to “open drain” (cover page, 4, 7; Table 2); update
characteristics (Table 3, 7).
05-Jul-2004
4
Update package availability, pin description; promote document (cover
page, Figure 13, 14; Table 3, 7, 10).
29-Sep-2004
5
Clarify root part numbers, pin descriptions (Figure 10, 12, 39; Table 7, 10).
01-Mar-2005
6
Update characteristics (Figure 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38)
20-Jan-2006
7
Correct marking, update lead-free text (Table 10, 11)
21-Oct-2008
8
Reformatted, minor text changes; updated Table 3, 4, 7, 10, Figure 9, 10,
11, 12, 16, 39, Section 6: Package mechanical data.
20-Nov-2009
9
Updated text in Section 6, Table 5.
18-Aug-2010
10
Updated Section 2.4: Backup battery switchover.
Initial release.
Update DC characteristics (Table 7).
Doc ID 10522 Rev 10
STM690A/692A/703/704/802/805/817/818/819
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 10522 Rev 10
43/43