STMICROELECTRONICS STM8L151K6T3

STM8L151x4, STM8L151x6,
STM8L152x4, STM8L152x6
8-bit ultralow power MCU, up to 32 KB Flash, 1 KB Data EEPROM
RTC, LCD, timers, USART, I2C, SPI, ADC, DAC, comparators
Features
■
■
Operating conditions
– Operating power supply range 1.8 V to
3.6 V (down to 1.65 V at power down)
– Temperature range: - 40 °C to 85 or 125 °C
Low power features
– 5 low power modes: Wait , Low power run
(5.1 µA), Low power wait (3 µA), Active-halt
with full RTC (1.3 µA), Halt (350 nA)
– Dynamic consumption: 195 µA/MHz+440µA
– Ultralow leakage per I/0: 50 nA
– Fast wakeup from Halt: 4.7 µs
■
Advanced STM8 core
– Harvard architecture and 3-stage pipeline
– Max freq. 16 MHz, 16 CISC MIPS peak
– Up to 40 external interrupt sources
■
Reset and supply management
– Low power, ultrasafe BOR reset with 5
selectable thresholds
– Ultralow power POR/PDR
– Programmable voltage detector (PVD)
■
Clock management
– 1 to 16 MHz crystal oscillator
– 32 kHz crystal oscillator
– Internal 16 MHz factory-trimmed RC
– Internal 38 kHz low consumption RC
– Clock security system
■
Low power RTC
– BCD calendar with alarm interrupt
– Auto-wakeup from Halt w/ periodic interrupt
■
LCD: up to 4x28 segments w/ step-up converter
■
Memories
– Up to 32 KB of Flash program memory and
1 Kbyte of data EEPROM with ECC, RWW
– Flexible write and read protection modes
– Up to 2 Kbytes of RAM
■
■
LQFP48
UFQFPN48
UFQFPN32
CSP
LQFP32
UFQFPN28
WLCSP28
■
12-bit ADC up to 1 Msps/25 channels
– T. sensor and internal reference voltage
■
2 Ultralow power comparators
– 1 with fixed threshold and 1 rail to rail
– Wakeup capability
■
Timers
– Two 16-bit timers with 2 channels (used as
IC, OC, PWM), quadrature encoder
– One 16-bit advanced control timer with 3
channels, supporting motor control
– One 8-bit timer with 7-bit prescaler
– 2 watchdogs: 1 Window, 1 Independent
– Beeper timer with 1, 2 or 4 kHz frequencies
■
Communication interfaces
– Synchronous serial interface (SPI)
– Fast I2C 400 kHz SMBus and PMBus
– USART (ISO 7816 interface and IrDA)
■
Up to 41 I/Os, all mappable on interrupt vectors
■
Up to 16 capacitive sensing channels with free
firmware
■
Development support
– Fast on-chip programming and non intrusive
debugging with SWIM
– Bootloader using USART
■
96-bit unique ID
Table 1.
Device summary
Reference
Part number
DMA
– 4 channels; supported peripherals: ADC,
DAC, SPI, I2C, USART, timers
– 1 channel for memory-to-memory
STM8L151xx
(without LCD)
STM8L151C6, STM8L151C4,
STM8L151K6, STM8L151K4,
STM8L151G6, STM8L151G4
12-bit DAC with output buffer
STM8L152xx
(with LCD)
STM8L152C6, STM8L152C4,
STM8L152K6, STM8L152K4
July 2010
Doc ID 15962 Rev 5
1/122
www.st.com
1
Contents
STM8L151xx, STM8L152xx
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
2.1
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2
Ultralow power continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2
Central processing unit STM8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3
Advanced STM8 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2
Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5
Low power real-time clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6
LCD (Liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.8
DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9
Analog-to-digital converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.10
Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11
Ultralow power comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12
System configuration controller and routing interface . . . . . . . . . . . . . . . 20
3.13
Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.14
3.15
2/122
3.2.1
3.13.1
TIM1 - 16-bit advanced control timer . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13.2
16-bit general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13.3
8-bit basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14.1
Window watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.14.2
Independent watchdog timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
3.16
4
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16.1
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16.2
I²C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16.3
USART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.17
Infrared (IR) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.18
Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1
5
Contents
System configuration options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2
Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6
Interrupt vector mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7
Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8
Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
9.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
9.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.3.2
Power-up / power-down operating conditions . . . . . . . . . . . . . . . . . . . . 64
9.3.3
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
9.3.4
Clock and timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.3.5
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
9.3.6
I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.3.7
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.3.8
LCD controller (STM8L152xx only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Doc ID 15962 Rev 5
3/122
Contents
STM8L151xx, STM8L152xx
9.4
10
9.3.9
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.3.10
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.3.11
Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.3.12
12-bit DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
9.3.13
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
10.1
ECOPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
10.2
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
11
Device ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
12
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM8L15x low power device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . 11
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Legend/abbreviation for table 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
STM8L15x pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Flash and RAM boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
I/O port hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Interrupt mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Option byte addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Unique ID registers (96 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Total current consumption in Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Total current consumption in Wait mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Total current consumption and timing in Low power run mode at VDD = 1.65 V to
3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Total current consumption in Low power wait mode at VDD = 1.65 V to 3.6 V . . . . . . . . . 73
Total current consumption and timing in Active-halt mode
at VDD = 1.65 V to 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal . . 77
Total current consumption and timing in Halt mode at VDD = 2 V . . . . . . . . . . . . . . . . . . . 77
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Current consumption under external reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
LSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Flash program and data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Output driving current (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Output driving current (true open drain ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Output driving current (PA0 with high sink LED driver capability). . . . . . . . . . . . . . . . . . . . 88
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
SPI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
LCD characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Reference voltage characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Doc ID 15962 Rev 5
5/122
List of tables
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
6/122
STM8L151xx, STM8L152xx
Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
DAC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
DAC output on PB4-PB5-PB6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
ADC1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
ADC1 accuracy with VDDA = 3.3 V to 2.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
ADC1 accuracy with VDDA = 2.4 V to 3.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . 104
EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
UFQFPN28 – 28-lead ultra thin fine pitch quad flat no-lead package (4 x 4),
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
WLCSP28 – 28-pin wafer level chip scale package,
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package (5 x 5),
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
LQFP32 – 32-pin low profile quad flat package, package mechanical data . . . . . . . . . . . 116
UFQFPN48 – ultra thin fine pitch quad flat pack no-lead 7 × 7 mm, 0.5 mm
pitch package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
LQFP48 – 48-pin low profile quad flat package (7x7), package mechanical data . . . . . . 118
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
STM8L15xxx device block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
STM8L15x clock tree diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
STM8L151Gx UFQFPN 28 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
STM8L151Gx WLCSP28 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
STM8L151Kx 32-pin package pinout (without LCD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
STM8L152Kx 32-pin package pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
STM8L151Cx 48-pin pinout (without LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
STM8L152Cx 48-pin pinout (with LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
POR/BOR thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Typ. IDD(LPR) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Typ. IDD(LPW) vs. VDD (LSI clock source) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
LSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Typical HSI frequency vs VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Typical LSI frequency vs. VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Typical VIL and VIH vs VDD (standard I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Typical VIL and VIH vs VDD (true open drain I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Typical pull-up resistance RPU vs VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Typical pull-up current Ipu vs VDD with VIN=VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Typ. VOL @ VDD = 3.0 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Typ. VOL @ VDD = 1.8 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Typ. VOL @ VDD = 3.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Typ. VOL @ VDD = 1.8 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Typ. VDD - VOH @ VDD = 3.0 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Typ. VDD - VOH @ VDD = 1.8 V (standard ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Typical NRST pull-up resistance RPU vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Typical NRST pull-up current Ipu vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Recommended NRST pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
SPI1 timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
SPI1 timing diagram - slave mode and CPHA=1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
SPI1 timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Typical application with I2C bus and timing diagram 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ADC1 accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 106
Power supply and reference decoupling (VREF+ connected to VDDA) . . . . . . . . . . . . . . 106
UFQFPN28 – 28-lead very very thin fine pitch quad flat no-lead package outline (4 x 4) 111
Recommended footprint (dimensions in mm)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
WLCSP28 – 28-pin wafer level chip scale package,
package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package outline (5 x 5). . . . . 115
UFQFPN32 recommended footprint(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
LQFP32 – 32-pin low profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Doc ID 15962 Rev 5
7/122
List of figures
Figure 48.
Figure 49.
Figure 50.
Figure 51.
8/8
STM8L151xx, STM8L152xx
UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Recommended footprint (dimensions in mm)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
LQFP48 – 48-pin low profile quad flat package outline (7x7) . . . . . . . . . . . . . . . . . . . . . . 118
STM8L15xxx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
1
Introduction
Introduction
This document describes the STM8L15xxx family features, pinout, mechanical data and
ordering information. The STM8L15xxx devices are referred to as medium-density devices
in the STM8L15xxx reference manual (RM0031) and in the STM8L Flash programming
manual (PM0054)
For more details on the whole STMicroelectronics ultralow power family please refer to
Section 2.2: Ultralow power continuum on page 12.
For information on the debug module and SWIM (single wire interface module), refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).For
information on the STM8 core, please refer to the STM8 CPU programming manual
(PM0044).
The STM8L15xxx devices provide the following benefits:
●
●
●
●
Integrated system
–
Up to 32 Kbytes of medium-density embedded Flash program memory
–
1 Kbyte of data EEPROM
–
Internal high speed and low-power low speed RC.
–
Embedded reset
Ultralow power consumption
–
195 µA/MHZ + 440 µA (dynamic consumption)
–
0.9 µA with LSI in Active-halt mode
–
Clock gated system and optimized power management
–
Capability to execute from RAM for Low power wait mode and Low power run
mode
Advanced features
–
Up to 16 MIPS at 16 MHz CPU clock frequency
–
Direct memory access (DMA) for memory-to-memory or peripheral-to-memory
access.
Short development cycles
–
Application scalability across a common family product architecture with
compatible pinout, memory map and modular peripherals.
–
Wide choice of development tools
All devices offer 12-bit ADC, DAC, two comparators, Real-time clock three 16-bit timers, one
8-bit timer as well as standard communication interface such as SPI, I2C and USART. A
4x28-segment LCD is available on the STM8L152xx line. Table 2: STM8L15x low power
device features and peripheral counts and Section 3 on page 13 give an overview of the
complete range of peripherals proposed in this family.
The STM8L15xxx microcontroller family is suitable for a wide range of applications:
●
Medical and handheld equipment
●
Application control and user interface
●
PC peripherals, gaming, GPS and sport equipment
●
Alarm systems, wired and wireless sensors
Figure 1 on page 13 shows the general block diagram of the device family.
Doc ID 15962 Rev 5
9/122
Description
2
STM8L151xx, STM8L152xx
Description
The STM8L15xxx devices are members of the STM8L Ultralow power 8-bit family. The
STM8L15xxx family operates from 1.8 V to 3.6 V (down to 1.65 V at power down) and is
available in the -40 to +85 °C and -40 to +125 °C temperature ranges.
The STM8L15xxx Ultralow power family features the enhanced STM8 CPU core providing
increased processing power (up to 16 MIPS at 16 MHz) while maintaining the advantages of
a CISC architecture with improved code density, a 24-bit linear addressing space and an
optimized architecture for low power operations.
The family includes an integrated debug module with a hardware interface (SWIM) which
allows non-intrusive In-Application debugging and ultrafast Flash programming.
All STM8L15xxx microcontrollers feature embedded data EEPROM and low power lowvoltage single-supply program Flash memory.
They incorporate an extensive range of enhanced I/Os and peripherals.
The modular design of the peripheral set allows the same peripherals to be found in different
ST microcontroller families including 32-bit families. This makes any transition to a different
family very easy, and simplified even more by the use of a common set of development
tools.
Six different packages are proposed from 28 to 48 pins. Depending on the device chosen,
different sets of peripherals are included. .
All STM8L Ultralow power products are based on the same architecture with the same
memory mapping and a coherent pinout.
10/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Description
2.1
Device overview
Table 2.
STM8L15x low power device features and peripheral counts
Features
Flash (Kbytes)
STM8L151Gx
16
32
STM8L15xKx
16
32
Data EEPROM (Kbytes)
RAM-Kbytes
Timers
16
32
1
2
LCD
STM8L15xCx
2
No
4x17
2
(1)
4x28 (1)
Basic
1
(8-bit)
1
(8-bit)
1
(8-bit)
General purpose
2
(16-bit)
2
(16-bit)
2
(16-bit)
Advanced control
1
(16-bit)
1
(16-bit)
1
(16-bit)
1
1
1
1
1
1
SPI
Communication
I2C
interfaces
USART
1
1
(3)
30
(2)(3)
or 29
1
(1)(3)
41(3)
GPIOs
26
12-bit synchronized ADC
(number of channels)
1
(18)
1
(22 (2) or 21 (1))
1
(25)
12-Bit DAC
(number of channels)
1
(1)
1
(1)
1
(1)
2
2
2
Comparators COMP1/COMP2
Others
RTC, window watchdog, independent watchdog,
16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external oscillator
CPU frequency
Operating voltage
16 MHz
1.8 V to 3.6 V (down to 1.65 V at power down)
Operating temperature
Packages
-40 to +85 °C / -40 to +125 °C
UFQFPN28 (4x4;
0.6 mm thickness)
WLCSP28
UFQFPN32 (5x5;
0.6 mm thickness)
LQFP32(7x7)
UFQFPN48 (4x4;
0.6 mm thickness)
LQFP48
1. STM8L152xx versions only
2. STM8L151xx versions only
3. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as
general purpose output only (PA1).
Doc ID 15962 Rev 5
11/122
Description
2.2
STM8L151xx, STM8L152xx
Ultralow power continuum
The Ultralow power STM8L151xx and STM8L152xx are fully pin-to-pin, software and feature
compatible. Besides the full compatibility within the family, the devices are part of
STMicroelectronics microcontrollers UtraLowPower strategy which also includes
STM8L101xx and STM32L15xxx. The STM8L and STM32L families allow a continuum of
performance, peripherals, system architecture, and features.
They are all based on STMicroelectronics 0.13 µm ultralow leakage process.
Note:
1
The STM8L151xx and STM8L152xx are pin-to-pin compatible with STM8L101xx devices.
2
The STM32L family is pin-to-pin compatible with the general purpose STM32F family.
Please refer to STM32L15x documentation for more information on these devices.
Performance
All families incorporate highly energy-efficient cores with both Harvard architecture and
pipelined execution: advanced STM8 core for STM8L families and ARM Cortex™-M3 core
for STM32L family. In addition specific care for the design architecture has been taken to
optimize the mA/DMIPS and mA/MHz ratios.
This allows the Ultralow power performance to range from 5 up to 33.3 DMIPs.
Shared peripherals
STM8L151xx/152xx and STM32L15xx share identical peripherals which ensure a very easy
migration from one family to another:
●
Analog peripherals: ADC1, DAC, and comparators COMP1/COMP2
●
Digital peripherals: RTC and some communication interfaces
Common system strategy
To offer flexibility and optimize performance, the STM8L151xx/152xx and STM32L15xx
devices use a common architecture:
●
Same power supply range from 1.8 to 3.6 V, down to 1.65 V at power down
●
Architecture optimized to reach ultralow consumption both in low power modes and
Run mode
●
Fast startup strategy from low power modes
●
Flexible system clock
●
Ultrasafe reset: same reset strategy for both STM8L15xxx and STM32L15xxx including
power-on reset, power-down reset, brownout reset and programmable voltage detector.
Features
ST UtraLowPower continuum also lies in feature compatibility:
12/122
●
More than 10 packages with pin count from 20 to 100 pins and size down to 3 x 3 mm
●
Memory density ranging from 4 to 128 Kbytes
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Functional overview
3
Functional overview
Figure 1.
STM8L15xxx device block diagram
OSC_IN,
OSC_OUT
16 MHz internal RC
OSC32_IN,
OSC32_OUT
@VDD
1-16 MHz oscillator
32 kHz oscillator
Clock
controller
and
CSS
38 kHz internal RC
VDD18
Clocks
to core and
peripherals
Interrupt controller
Debug module
(SWIM)
BOR
16-bit Timer 2
2 channels
16-bit Timer 3
3 channels
16-bit Timer 1
8-bit Timer 4
Infrared interface
DMA1
(4 channels)
VREFINT out
COMP1_INP
COMP2_INP
COMP2_INM
DAC_OUT
VREF+
VLCD = 2.5 V to
3.6 V
32 Kbytes
Program memory
1 Kbyte
Data EEPROM
2 Kbytes RAM
PB[7:0]
Port C
PC[7:0]
Port D
PD[7:0]
Port E
PE[7:0]
12-bit ADC1
Port F
PF0
Temp sensor
Beeper
BEEP
RTC
ALARM, CALIB
SPI1
VREF+
VREF-
PVD_IN
Port B
I²C1
ADC1_INx
NRST
PA[7:0]
MOSI, MISO,
SCK, NSS
VDDA
VSSA
PVD
VDD1 =1.65 V
to 3.6 V
VSS1
Port A
SCL, SDA,
SMB
RX, TX, CK
RESET
POR/PDR
2 channels
IR_TIM
VOLT. REG.
STM8 Core
Address, control and data buses
SWIM
Power
USART1
@VDDA/VSSA
Internal reference
voltage
IWDG
(38 kHz clock)
COMP 1
WWDG
COMP 2
12-bitDAC
DAC
12-bit
LCD driver
4x28
SEGx, COMx
LCD booster
1. Legend:
ADC: Analog-to-digital converter
BOR: Brownout reset
DMA: Direct memory access
DAC: Digital-to-analog converter
I²C: Inter-integrated circuit multimaster interface
IWDG: Independent watchdog
LCD: Liquid crystal display
POR/PDR: Power on reset / power down reset
RTC: Real-time clock
SPI: Serial peripheral interface
SWIM: Single wire interface module
USART: Universal synchronous asynchronous receiver transmitter
WWDG: Window watchdog
Doc ID 15962 Rev 5
13/122
Functional overview
3.1
STM8L151xx, STM8L152xx
Low power modes
The STM8L15xxx supports five low power modes to achieve the best compromise between
low power consumption, short startup time and available wakeup sources:
●
Wait mode: CPU clock is stopped, but selected peripherals keep running. An internal
or external interrupt or a Reset can be used to exit the microcontroller from Wait mode
(WFE or WFI mode). Wait consumption: refer to Table 20.
●
Low power run mode: The CPU and the selected peripherals are running. Execution
is done from RAM with a low speed oscillator (LSI or LSE). Flash and data EEPROM
are stopped and the voltage regulator is configured in Ultralow power mode. The
microcontroller enters Low power run mode by software and can exit from this mode by
software or by a reset.
All interrupts must be masked. They cannot be used to exit the microcontroller from this
mode. Low power run mode consumption: refer to Table 21.
●
Low power wait mode: This mode is entered when executing a Wait for event in Low
power run mode. It is similar to Low power run mode except that the CPU clock is
stopped. The wakeup from this mode is triggered by a Reset or by an internal or
external event (peripheral event generated by the timers, serial interfaces, DMA
controller (DMA1), comparators and I/O ports). When the wakeup is triggered by an
event, the system goes back to Low power run mode.
All interrupts must be masked. They cannot be used to exit the microcontroller from this
mode. Low power wait mode consumption: refer to Table 22.
●
Active-halt mode: CPU and peripheral clocks are stopped, except RTC. The wakeup
can be triggered by RTC interrupts, external interrupts or reset. Active-halt
consumption: refer to Table 23 and Table 24.
●
Halt mode: CPU and peripheral clocks are stopped, the device remains powered on.
The wakeup is triggered by an external interrupt or reset. A few peripherals have also a
wakeup from Halt capability. Switching off the internal reference voltage reduces power
consumption. Through software configuration it is also possible to wake up the device
without waiting for the internal reference voltage wakeup time to have a fast wakeup
time of 5 µs. Halt consumption: refer to Table 25.
3.2
Central processing unit STM8
3.2.1
Advanced STM8 Core
The 8-bit STM8 core is designed for code efficiency and performance with an Harvard
architecture and a 3-stage pipeline.
It contains 6 internal registers which are directly addressable in each execution context, 20
addressing modes including indexed indirect and relative addressing, and 80 instructions.
Architecture and registers
14/122
●
Harvard architecture
●
3-stage pipeline
●
32-bit wide program memory bus - single cycle fetching most instructions
●
X and Y 16-bit index registers - enabling indexed addressing modes with or without
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Functional overview
offset and read-modify-write type data manipulations
●
8-bit accumulator
●
24-bit program counter - 16 Mbyte linear memory space
●
16-bit stack pointer - access to a 64 Kbyte level stack
●
8-bit condition code register - 7 condition flags for the result of the last instruction
Addressing
●
20 addressing modes
●
Indexed indirect addressing mode for lookup tables located anywhere in the address
space
●
Stack pointer relative addressing mode for local variables and parameter passing
Instruction set
3.2.2
●
80 instructions with 2-byte average instruction size
●
Standard data movement and logic/arithmetic functions
●
8-bit by 8-bit multiplication
●
16-bit by 8-bit and 16-bit by 16-bit division
●
Bit manipulation
●
Data transfer between stack and accumulator (push/pop) with direct stack access
●
Data transfer using the X and Y registers or direct memory-to-memory transfers
Interrupt controller
The STM8L15xxx features a nested vectored interrupt controller:
●
Nested interrupts with 3 software priority levels
●
32 interrupt vectors with hardware priority
●
Up to 40 external interrupt sources on 11 vectors
●
Trap and reset interrupts
Doc ID 15962 Rev 5
15/122
Functional overview
STM8L151xx, STM8L152xx
3.3
Reset and supply management
3.3.1
Power supply scheme
The device requires a 1.65 V to 3.6 V operating supply voltage (VDD). The external power
supply pins must be connected as follows:
3.3.2
●
VSS1 ; VDD1 = 1.8 to 3.6 V, down to 1.65 V at power down: external power supply for
I/Os and for the internal regulator. Provided externally through VDD1 pins, the
corresponding ground pin is VSS1.
●
VSSA ; VDDA = 1.8 to 3.6 V, down to 1.65 V at power down: external power supplies for
analog peripherals (minimum voltage to be applied to VDDA is 1.8 V when the ADC1 is
used). VDDA and VSSA must be connected to VDD1 and VSS1, respectively.
●
VSS2 ; VDD2 = 1.8 to 3.6 V, down to 1.65 V at power down: external power supplies for
I/Os. VDD2 and VSS2 must be connected to VDD1 and VSS1, respectively.
●
VREF+ ; VREF- (for ADC1): external reference voltage for ADC1. Must be provided
externally through VREF+ and VREF- pin.
●
VREF+ (for DAC): external voltage reference for DAC must be provided externally
through VREF+.
Power supply supervisor
The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset
(PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active,
and ensures proper operation starting from 1.8 V. After the 1.8 V BOR threshold is reached,
the option byte loading process starts, either to confirm or modify default thresholds, or to
disable BOR permanently (in which case, the VDD min value at power down is 1.65 V).
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To
reduce the power consumption in Halt mode, it is possible to automatically switch off the
internal reference voltage (and consequently the BOR) in Halt mode. The device remains
under reset when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need
for any external reset circuit.
The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An
interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when
VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.
3.3.3
Voltage regulator
The STM8L15xxx embeds an internal voltage regulator for generating the 1.8 V power
supply for the core and peripherals.
This regulator has two different modes:
16/122
●
Main voltage regulator mode (MVR) for Run, Wait for interrupt (WFI) and Wait for event
(WFE) modes.
●
Low power voltage regulator mode (LPVR) for Halt, Active-halt, Low power run and Low
power wait modes.
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Functional overview
When entering Halt or Active-halt modes, the system automatically switches from the MVR
to the LPVR in order to reduce current consumption.
3.4
Clock management
The clock controller distributes the system clock (SYSCLK) coming from different oscillators
to the core and the peripherals. It also manages clock gating for low power modes and
ensures clock robustness.
Features
●
Clock prescaler: to get the best compromise between speed and current consumption
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler
●
Safe clock switching: Clock sources can be changed safely on the fly in run mode
through a configuration register.
●
Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
●
System clock sources: 4 different clock sources can be used to drive the system
clock:
–
1-16 MHz High speed external crystal (HSE)
–
16 MHz High speed internal RC oscillator (HSI)
–
32.768 Low speed external crystal (LSE)
–
38 kHz Low speed internal RC (LSI)
●
RTC and LCD clock sources: the above four sources can be chosen to clock the RTC
and the LCD, whatever the system clock.
●
Startup clock: After reset, the microcontroller restarts by default with an internal
2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the
application program as soon as the code execution starts.
●
Clock security system (CSS): This feature can be enabled by software. If a HSE clock
failure occurs, the system clock is automatically switched to HSI.
●
Configurable main clock output (CCO): This outputs an external clock for use by the
application.
Doc ID 15962 Rev 5
17/122
Functional overview
Figure 2.
STM8L151xx, STM8L152xx
STM8L15x clock tree diagram
#33
/3#?).
/3#?/54
(3%
(3%/3#
-(Z
393#,+ TOCOREAND
(3)
(3)2#
-(Z
393#,+
0RESCALER
,3)
,3%
,3% #,+"%%03%,;=
,3)
,3)2#
K (Z
24#3%,;=
/3#?).
/3#?/54
24#
PRESCALER
,3%/3#
K(Z
24##,+
MEMORY
0#,+
TOPERIPHERALS
0ERIPHERAL
#LOCKENABLEBITS
"%%0#,+
TO"%%0
)7$'#,+
TO)7$'
24##,+
TO24#
,#$PERIPHERAL
CLOCKENABLEBIT
24##,+
TO,#$
(ALT
##/
CONFIGURABLE
CLOCKOUTPUT
##/
PRESCALER
(3)
,3)
(3%
,3% 393#,+
,#$#,+
TO,#$
,#$PERIPHERAL
CLOCKENABLEBIT
AIG
1. The HSE clock source can be either an external crystal/ceramic resonator or an external source (HSE
bypass). Refer to Section HSE clock in the STM8L15x reference manual (RM0031).
2. The LSE clock source can be either an external crystal/ceramic resonator or a external source (LSE
bypass). Refer to Section LSE clock in the STM8L15x reference manual (RM0031).
3.5
Low power real-time clock
The real-time clock (RTC) is an independent binary coded decimal (BCD) timer/counter.
Six byte locations contain the second, minute, hour (12/24 hour), week day, date, month,
year, in BCD (binary coded decimal) format. Correction for 28, 29 (leap year), 30, and 31
day months are made automatically.
It provides a programmable alarm and programmable periodic interrupts with wakeup from
Halt capability.
18/122
●
Periodic wakeup time using the 32.768 kHz LSE with the lowest resolution (of 61 µs) is
from min. 122 µs to max. 3.9 s. With a different resolution, the wakeup time can reach
36 hours
●
Periodic alarms based on the calendar can also be generated from every second to
every year
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
3.6
Functional overview
LCD (Liquid crystal display)
The liquid crystal display drives up to 4 common terminals and up to 28 segment terminals
to drive up to 112 pixels.
●
Internal step-up converter to guarantee contrast control whatever VDD.
●
Static 1/2, 1/3, 1/4 duty supported.
●
Static 1/2, 1/3 bias supported.
●
Phase inversion to reduce power consumption and EMI.
●
Up to 4 pixels which can programmed to blink.
●
The LCD controller can operate in Halt mode.
Note:
Unnecessary segments and common pins can be used as general I/O pins.
3.7
Memories
The STM8L15xxx devices have the following main features:
●
Up to 2 Kbytes of RAM
●
The non-volatile memory is divided into three arrays:
–
Up to 32 Kbytes of medium-density embedded Flash program memory
–
1 Kbyte of Data EEPROM
–
Option bytes.
The EEPROM embeds the error correction code (ECC) feature. It supports the read-whilewrite (RWW): it is possible to execute the code from the program matrix while
programming/erasing the data matrix.
The option byte protects part of the Flash program memory from write and readout piracy.
3.8
DMA
A 4-channel direct memory access controller (DMA1) offers a memory-to-memory and
peripherals-from/to-memory transfer capability. The 4 channels are shared between the
following IPs with DMA capability: ADC1, DAC, I2C1, SPI1, USART1, the 4 Timers.
3.9
Note:
Analog-to-digital converter
●
12-bit analog-to-digital converter (ADC1) with 25 channels (including 1 fast channel),
temperature sensor and internal reference voltage
●
Conversion time down to 1 µs with fSYSCLK= 16 MHz
●
Programmable resolution
●
Programmable sampling time
●
Single and continuous mode of conversion
●
Scan capability: automatic conversion performed on a selected group of analog inputs
●
Analog watchdog
●
Triggered by timer
ADC1 can be served by DMA1.
Doc ID 15962 Rev 5
19/122
Functional overview
3.10
STM8L151xx, STM8L152xx
Digital-to-analog converter (DAC)
●
12-bit DAC with output buffer
●
Synchronized update capability using TIM4
●
DMA capability
●
External triggers for conversion
●
Input reference voltage VREF+ for better resolution
Note:
DAC can be served by DMA1.
3.11
Ultralow power comparators
The STM8L15x embeds two comparators (COMP1 and COMP2) sharing the same current
bias and voltage reference. The voltage reference can be internal or external (coming from
an I/O).
●
One comparator with fixed threshold (COMP1).
●
One comparator rail to rail with fast or slow mode (COMP2). The threshold can be one
of the following:
–
DAC output
–
External I/O
–
Internal reference voltage or internal reference voltage submultiple (1/4, 1/2, 3/4)
The two comparators can be used together to offer a window function. They can wake up
from Halt mode.
3.12
System configuration controller and routing interface
The system configuration controller provides the capability to remap some alternate
functions on different I/O ports. TIM4 and ADC1 DMA channels can also be remapped.
The highly flexible routing interface allows application software to control the routing of
different I/Os to the TIM1 timer input captures. It also controls the routing of internal analog
signals to ADC1, COMP1, COMP2, DAC and the internal reference voltage VREFINT. Finally,
it provides a set of registers for efficiently managing a set of dedicated I/Os supporting up to
16 capacitive sensing channels using the ProxSenseTM technology.
3.13
Timers
STM8L15xxx devices contain one advanced control timer (TIM1), two 16-bit general
purpose timers (TIM2 and TIM3) and one 8-bit basic timer (TIM4).
All the timers can be served by DMA1.
Table 3 compares the features of the advanced control, general-purpose and basic timers.
20/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 3.
Timer
Timer feature comparison
Counter Counter
resolution
type
Prescaler factor
16-bit
3.13.1
Capture/compare
channels
Complementary
outputs
3+1
3
up/down
Any power of 2
from 1 to 128
TIM3
TIM4
DMA1
request
generation
Any integer
from 1 to 65536
TIM1
TIM2
Functional overview
Yes
2
None
8-bit
up
Any power of 2
from 1 to 32768
0
TIM1 - 16-bit advanced control timer
This is a high-end timer designed for a wide range of control applications. With its
complementary outputs, dead-time control and center-aligned PWM capability, the field of
applications is extended to motor control, lighting and half-bridge driver.
3.13.2
3.13.3
●
16-bit up, down and up/down autoreload counter with 16-bit prescaler
●
3 independent capture/compare channels (CAPCOM) configurable as input capture,
output compare, PWM generation (edge and center aligned mode) and single pulse
mode output
●
1 additional capture/compare channel which is not connected to an external I/O
●
Synchronization module to control the timer with external signals
●
Break input to force timer outputs into a defined state
●
3 complementary outputs with adjustable dead time
●
Encoder mode
●
Interrupt capability on various events (capture, compare, overflow, break, trigger)
16-bit general purpose timers
●
16-bit autoreload (AR) up/down-counter
●
7-bit prescaler adjustable to fixed power of 2 ratios (1…128)
●
2 individually configurable capture/compare channels
●
PWM mode
●
Interrupt capability on various events (capture, compare, overflow, break, trigger)
●
Synchronization with other timers or external signals (external clock, reset, trigger and
enable)
8-bit basic timer
The 8-bit timer consists of an 8-bit up auto-reload counter driven by a programmable
prescaler. It can be used for timebase generation with interrupt generation on timer overflow
or for DAC trigger generation.
Doc ID 15962 Rev 5
21/122
Functional overview
3.14
STM8L151xx, STM8L152xx
Watchdog timers
The watchdog system is based on two independent timers providing maximum security to
the applications.
3.14.1
Window watchdog timer
The window watchdog (WWDG) is used to detect the occurrence of a software fault, usually
generated by external interferences or by unexpected logical conditions, which cause the
application program to abandon its normal sequence.
3.14.2
Independent watchdog timer
The independent watchdog peripheral (IWDG) can be used to resolve processor
malfunctions due to hardware or software failures.
It is clocked by the internal LSI RC clock source, and thus stays active even in case of a
CPU clock failure.
3.15
Beeper
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in
the range of 1, 2 or 4 kHz.
3.16
Communication interfaces
3.16.1
SPI
The serial peripheral interface (SPI1) provides half/ full duplex synchronous serial
communication with external devices.
●
Maximum speed: 8 Mbit/s (fSYSCLK/2) both for master and slave
●
Full duplex synchronous transfers
●
Simplex synchronous transfers on 2 lines with a possible bidirectional data line
●
Master or slave operation - selectable by hardware or software
●
Hardware CRC calculation
●
Slave/master selection input pin
Note:
SPI1 can be served by the DMA1 Controller.
3.16.2
I²C
The I2C bus interface (I2C1) provides multi-master capability, and controls all I²C busspecific sequencing, protocol, arbitration and timing.
22/122
●
Master, slave and multi-master capability
●
Standard mode up to 100 kHz and fast speed modes up to 400 kHz.
●
7-bit and 10-bit addressing modes.
●
SMBus 2.0 and PMBus support
●
Hardware CRC calculation
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Functional overview
Note:
I2C1 can be served by the DMA1 Controller.
3.16.3
USART
The USART interface (USART1) allows full duplex, asynchronous communications with
external devices requiring an industry standard NRZ asynchronous serial data format. It
offers a very wide range of baud rates.
●
1 Mbit/s full duplex SCI
●
SPI1 emulation
●
High precision baud rate generator
●
Smartcard emulation
●
IrDA SIR encoder decoder
●
Single wire half duplex mode
Note:
USART1 can be served by the DMA1 Controller.
3.17
Infrared (IR) interface
The STM8L15x devices contain an infrared interface which can be used with an IR LED for
remote control functions. Two timer output compare channels are used to generate the
infrared remote control signals.
3.18
Development support
Development tools
Development tools for the STM8 microcontrollers include:
●
The STice emulation system offering tracing and code profiling
●
The STVD high-level language debugger including C compiler, assembler and
integrated development environment
●
The STVP Flash programming software
The STM8 also comes with starter kits, evaluation boards and low-cost in-circuit
debugging/programming tools.
Single wire data interface (SWIM) and debug module
The debug module with its single wire data interface (SWIM) permits non-intrusive real-time
in-circuit debugging and fast memory programming.
The Single wire interface is used for direct access to the debugging module and memory
programming. The interface can be activated in all device operation modes.
The non-intrusive debugging module features a performance close to a full-featured
emulator. Beside memory and peripherals, CPU operation can also be monitored in realtime by means of shadow registers.
Bootloader
A bootloader is available to reprogram the Flash memory using the USART1 interface.
Doc ID 15962 Rev 5
23/122
Pin description
Pin description
PC3
PC2
PC1
27
PC5
PC6
28
PC4
PA0
STM8L151Gx UFQFPN 28 package pinout
26
25
24
23
22
NRST/PA1
1
21
PC0
PA2
2
20
PD4
PA3
3
19
PB7
PA4
4
18
PB6
PA5
5
17
PB5
6
16
PB4
15
PB3
8
9
10
11
12
13
14
PD3
PB0
PB1
PB2
7
PD2
VSS1/VSSA/VREFVDD1/VDDA/VREF+
PD1
Figure 3.
PD0
4
STM8L151xx, STM8L152xx
AI
Figure 4.
STM8L151Gx WLCSP28 package pinout
!
0!
0#
0#
0#
"
0!
0#
0#
0#
#
0!
0!
0#
0$
$
0!
0!
0"
0"
%
0$
0"
0"
0"
&
62%&
0$
0"
0"
'
62%&
0$
0$
0"
AI
24/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
STM8L151Kx 32-pin package pinout (without LCD)
0! 0#
0#
0#
0#
0#
0#
0#
Figure 5.
Pin description
.2340!
0!
0!
0!
0! 0! 633
6$$
0$
0$
0$
0$
0"
0"
0"
0"
0$
0$
0$
0$
0"
0"
0"
0"
AI
1. Example given for the UFQFPN32 package. The pinout is the same for the LQFP32 package.
STM8L152Kx 32-pin package pinout (with LCD)
0! 0#
0#
0#
0#
0#
0#
0#
Figure 6.
.2340!
0!
0!
0!
0! 0! 633
0$
0$
0$
0$
0"
0"
0"
0"
6,#$
0$
0$
0$
0"
0"
0"
0"
6$$
AI
1. Example given for the UFQFPN32 package. The pinout is the same for the LQFP32 package.
STM8L151Cx 48-pin pinout (without LCD)
PE7
PE6
PC7
PC6
PC5
PC4
PC3
PC2
VSS2
VDD2
PC1
PC0
Figure 7.
48 47 46 45 44 43 42 41 40 39 38 37
36
1
2
35
3
34
33
4
32
5
31
6
30
7
29
8
28
9
27
10
26
11
25
12
13 14 15 16 17 18 19 20 21 22 23 24
PD7
PD6
PD5
PD4
PF0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
Res. (1)
PE0
PE1
PE2
PE3
PE4
PE5
PD0
PD1
PD2
PD3
PB0
PA0
NRST/PA1
PA2
PA3
PA4
PA5
PA6
PA7
VSS1/VSSA/VREFVDD1
VDDA
VREF+
1. Reserved. Must be tied to VDD.
Doc ID 15962 Rev 5
25/122
Pin description
STM8L152Cx 48-pin pinout (with LCD)
PE7
PE6
PC7
PC6
PC5
PC4
PC3
PC2
VSS2
VDD2
PC1
PC0
Figure 8.
STM8L151xx, STM8L152xx
48 47 46 45 44 43 42 41 40 39 38 37
36
1
2
35
34
3
33
4
32
5
31
6
30
7
29
8
28
9
27
10
26
11
25
12
13 14 15 16 17 18 19 20 21 22 23 24
VLCD
PE0
PE1
PE2
PE3
PE4
PE5
PD0
PD1
PD2
PD3
PB0
PA0
NRST/PA1
PA2
PA3
PA4
PA5
PA6
PA7
VSS1/VSSA/VREFVDD1
VDDA
VREF+
26/122
Doc ID 15962 Rev 5
PD7
PD6
PD5
PD4
PF0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
STM8L151xx, STM8L152xx
Table 4.
Pin description
Legend/abbreviation for table 5
Type
I= input, O = output, S = power supply
Input
CM = CMOS
Output
HS = high sink/source (20 mA)
Level
Port and control Input
configuration
Output
Reset state
T = true open drain, OD = open drain, PP = push pull
Bold X (pin state after reset release).
Unless otherwise specified, the pin state is the same during the reset phase (i.e.
“under reset”) and after internal reset release (i.e. at reset state).
STM8L15x pin description
3 C4
5
-
6
X Reset
PA1
I/O
X
X
X
HS X
PA3/OSC_OUT/[USART1
I/O
_RX](3)/[SPI1_MOSI](3)
X
X
X
HS X
HSE oscillator output /
X Port A3 [USART1 receive]/ [SPI1
master out/slave in]/
HS X
Timer 2 - break input /
LCD COM 0 / ADC1
X Port A4
input 2 / Comparator 1
positive input
HS X
Timer 2 - break input /
[Timer 2 - trigger] /
LCD_COM 0 / ADC1
X Port A4
input 2 /
Comparator 1 positive
input
HS X
Timer 3 - break input /
LCD_COM 1 / ADC1
X Port A5 input 1/
Comparator 1 positive
input
PA4/TIM2_BKIN/
- LCD_COM0(2)/ADC1_IN2/ I/O
COMP1_INP
-
4
PA4/TIM2_BKIN/
[TIM2_TRIG](3)/
4 D3
LCD_COM0(2)/
ADC1_IN2/COMP1_INP
-
HS X
Default alternate
function
HSE oscillator input /
[USART1 transmit] /
X Port A2
[SPI1 master in- slave
out] /
-
-
Main function
(after reset)
3
PP
4
X
OD
2
I/O
Output
Ext. interrupt
3
PA2/OSC_IN/
2 B4 [USART1_TX](3)/
[SPI1_MISO] (3)
floating
1 C3 NRST/PA1(1)
I/O level
UFQFPN28
1
Pin name
Type
UFQFPN32
2
WLCSP28
UFQFPN48 and LQFP48
Input
High sink/source
Pin
number
wpu
Table 5.
float = floating, wpu = weak pull-up
I/O
PA5/TIM3_BKIN/
- LCD_COM1(2)/ADC1_IN1/ I/O
COMP1_INP
X
X
X
X
X
X
X
X
X
Doc ID 15962 Rev 5
27/122
Pin description
STM8L15x pin description (continued)
8
-
-
- PA7/LCD_SEG0(2)(4)
X
X
I/O FT
PB0(5)/TIM2_CH1/
24 13 12 E3 LCD_SEG10(2)/
I/O
ADC1_IN18/COMP1_INP
PB1/TIM3_CH1/
25 14 13 G1 LCD_SEG11(2)/
I/O
ADC1_IN17/COMP1_INP
PB2/ TIM2_CH2/
26 15 14 F2 LCD_SEG12(2)/
I/O
ADC1_IN16/COMP1_INP
27
-
-
16
28/122
-
PB3/TIM2_TRIG/
I/O
- LCD_SEG13(2)/
ADC1_IN15/COMP1_INP
-
PB3/[TIM2_TRIG](3)/
TIM1_CH2N/LCD_SEG13
I/O
- (2)
/ADC1_IN15/
COMP1_INP
X
X
X
X
X
X
X
Default alternate
function
HS X
Timer 3 - break input /
[Timer 3 - trigger] /
LCD_COM 1 /
X Port A5
ADC1 input 1 /
Comparator 1 positive
input
X
HS X
[ADC1 - trigger] /
LCD_COM2 /
X Port A6 ADC1 input 0 /
Comparator 1 positive
input
X
HS X
X Port A7 LCD segment 0
HS X
Timer 2 - channel 1 /
LCD segment 10 /
X Port B0 ADC1_IN18 /
Comparator 1 positive
input
HS X
Timer 3 - channel 1 /
LCD segment 11 /
X Port B1 ADC1_IN17 /
Comparator 1 positive
input
HS X
Timer 2 - channel 2 /
LCD segment 12 /
X Port B2 ADC1_IN16/
Comparator 1 positive
input
HS X
Timer 2 - trigger / LCD
segment 13 /ADC1_IN15
X Port B3
/ Comparator 1 positive
input
HS X
[Timer 2 - trigger] / Timer
1 inverted channel 2 /
LCD segment 13 /
X Port B3
ADC1_IN15 /
Comparator 1 positive
input
X
X(5) X(5) X
X
Main function
(after reset)
X
PP
X
X
OD
-
X
wpu
6
floating
7
PA6/[ADC1_TRIG](3)/
- LCD_COM2(2)/ADC1_IN0/ I/O
COMP1_INP
-
Pin name
Output
High sink/source
I/O level
5
PA5/TIM3_BKIN/
[TIM3_TRIG](3)/
5 D4
I/O
LCD_COM1(2)/ADC1_IN1/
COMP1_INP
WLCSP28
UFQFPN28
Type
Input
UFQFPN32
UFQFPN48 and LQFP48
Pin
number
Ext. interrupt
Table 5.
STM8L151xx, STM8L152xx
X
X
X
X
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
STM8L15x pin description (continued)
-
28
-
29
-
-
PB3/[TIM2_TRIG](3)/
TIM1_CH1N/
15 E2 LCD_SEG13(2)/
I/O
ADC1_IN15/RTC_ALARM
/COMP1_INP
-
PB4(5)/[SPI1_NSS](3)/
I/O
- LCD_SEG14(2)/
ADC1_IN14/COMP1_INP
-
PB4(5)/[SPI1_NSS](3)/
LCD_SEG14(2)/
17 16 D2
ADC1_IN14/
COMP1_INP/DAC_OUT
-
-
I/O
PB5/[SPI1_SCK](3)/
I/O
- LCD_SEG15(2)/
ADC1_IN13/COMP1_INP
PB5/[SPI1_SCK](3)/
LCD_SEG15(2)/
18 17 D1
ADC1_IN13/DAC_OUT/
COMP1_INP
I/O
X
X
X
X(5) X(5) X
X(5) X(5) X
X
X
X
X
X
X
-
-
-
PB6/[SPI1_MOSI]
I/O
- LCD_SEG16(2)/
ADC1_IN12/COMP1_INP
PB6/[SPI1_MOSI](3)/
LCD_SEG16(2)/
19 18 F1
I/O
ADC1_IN12/COMP1_INP/
DAC_OUT
X
X
X
X
X
X
Doc ID 15962 Rev 5
Main function
(after reset)
Default alternate
function
HS X
[Timer 2 - trigger] / Timer
1 inverted channel 1/
LCD segment 13 /
X Port B3
ADC1_IN15 /
RTC alarm/ Comparator
1 positive input
HS X
[SPI1 master/slave
select] / LCD segment
X Port B4 14 / ADC1_IN14 /
Comparator 1 positive
input
HS X
[SPI1 master/slave
select] / LCD segment
14 / ADC1_IN14 /
X Port B4
DAC output /
Comparator 1 positive
input
HS X
[SPI1 clock] / LCD
segment 15 /
X Port B5 ADC1_IN13 /
Comparator 1 positive
input
HS X
[SPI1 clock] / LCD
segment 15 /
ADC1_IN13 / DAC
X Port B5
output/
Comparator 1 positive
input
HS X
[SPI1 master out/slave
in]/
LCD segment 16 /
X Port B6
ADC1_IN12 /
Comparator 1 positive
input
HS X
[SPI1 master out]/
slave in / LCD segment
X Port B6 16 / ADC1_IN12 / DAC
output / Comparator 1
positive input
(3)/
30
PP
OD
High sink/source
Output
Ext. interrupt
floating
I/O level
Pin name
Type
Input
WLCSP28
UFQFPN28
UFQFPN32
UFQFPN48 and LQFP48
Pin
number
wpu
Table 5.
Pin description
29/122
Pin description
STM8L15x pin description (continued)
Main function
(after reset)
PP
OD
High sink/source
Output
Ext. interrupt
floating
Pin name
I/O level
Type
Input
WLCSP28
UFQFPN28
UFQFPN32
UFQFPN48 and LQFP48
Pin
number
wpu
Table 5.
STM8L151xx, STM8L152xx
Default alternate
function
[SPI1 master in- slave
out] /
LCD segment 17 /
X Port B7
ADC1_IN11 /
Comparator 1 positive
input
PB7/[SPI1_MISO](3)/
31 20 19 E1 LCD_SEG17(2)/
I/O
ADC1_IN11/COMP1_INP
X
37 25 21 B1 PC0(4)/I2C1_SDA
I/O FT
X
X
T(6)
Port C0 I2C1 data
38 26 22 A1 PC1(4)/I2C1_SCL
I/O FT
X
X
T(6)
Port C1 I2C1 clock
PC2/[USART1_RX](3)/
41 27 23 B2 LCD_SEG22/ADC1_IN6/ I/O
COMP1_INP/VREF_OUT
PC3/[USART1_TX](3)/
LCD_SEG23(2)/
42 28 24 A2
ADC1_IN5/COMP1_INP/
COMP2_INM
I/O
X
X
X
X
X
X
X
X
HS X
HS X
[USART1 receive] /
LCD segment 22 /
X Port C2 ADC1_IN6 / Comparator
1 positive input / Voltage
reference output
HS X
[USART1 transmit] /
LCD segment 23 /
ADC1_IN5 / Comparator
X Port C3
1 positive input /
Comparator 2 negative
input
HS X
[USART1 synchronous
clock] / I2C1_SMB /
Configurable clock
output / LCD segment 24
X Port C4
/ ADC1_IN4 /
Comparator 2 negative
input / Comparator 1
positive input
(3)/
PC4/[USART1_CK]
I2C1_SMB/CCO/
I/O
43 29 25 C2 LCD_SEG24(2)/
ADC1_IN4/COMP2_INM/
COMP1_INP
X
X
X
PC5/OSC32_IN
44 30 26 A3 /[SPI1_NSS](3)/
[USART1_TX](3)
I/O
X
X
X
HS X
LSE oscillator input /
[SPI1 master/slave
X Port C5
select] / [USART1
transmit]
PC6/OSC32_OUT/
45 31 27 B3 [SPI1_SCK](3)/
[USART1_RX](3)
I/O
X
X
X
HS X
LSE oscillator output /
X Port C6 [SPI1 clock] / [USART1
receive]
30/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
STM8L15x pin description (continued)
-
21
-
-
9
-
10
-
I/O
-
PD0/TIM3_CH2/
[ADC1_TRIG](3)/
I/O
ADC1_IN22/COMP2_INP/
COMP1_INP
-
PD1/TIM3_TRIG/
LCD_COM3(2)/
I/O
ADC1_IN21/COMP2_INP/
COMP1_INP
-
PD1/TIM1_CH3N/[TIM3_T
RIG](3)/ LCD_COM3(2)/
I/O
ADC1_IN21/COMP2_INP/
COMP1_INP
PD1/TIM1_CH3/[TIM3_TR
IG](3)/LCD_COM3(2)/
9 G2
I/O
ADC1_IN21/COMP2_INP/
COMP1_INP
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Doc ID 15962 Rev 5
Main function
(after reset)
PP
OD
High sink/source
-
PD0/TIM3_CH2/
[ADC1_TRIG](3)/
8 G3 LCD_SEG7(2)/ADC1_IN2
2/COMP2_INP/
COMP1_INP
X
Output
Ext. interrupt
-
floating
-
PC7/LCD_SEG25(2)/
- ADC1_IN3/COMP2_INM/ I/O
COMP1_INP
Pin name
I/O level
Type
WLCSP28
20
Input
UFQFPN28
46
UFQFPN32
UFQFPN48 and LQFP48
Pin
number
wpu
Table 5.
Pin description
Default alternate
function
HS X
LCD segment 25
/ADC1_IN3/ Comparator
X Port C7 negative input /
Comparator 1 positive
input
HS X
Timer 3 - channel 2 /
[ADC1_Trigger] / LCD
segment 7 / ADC1_IN22
X Port D0
/ Comparator 2 positive
input / Comparator 1
positive input
Port
D0(7)
Timer 3 - channel 2 /
[ADC1_Trigger] /
ADC1_IN22 /
Comparator 2 positive
input / Comparator 1
positive input
HS X
X
HS X
Timer 3 - trigger /
LCD_COM3 /
ADC1_IN21 /
X Port D1
comparator 2 positive
input / Comparator 1
positive input
HS X
[Timer 3 - trigger]/ TIM1
inverted channel 3 /
LCD_COM3/
X Port D1 ADC1_IN21 /
Comparator 2 positive
input / Comparator 1
positive input
HS X
Timer 1 channel 3 /
[Timer 3 - trigger] /
LCD_COM3/
X Port D1 ADC1_IN21 /
Comparator 2 positive
input / Comparator 1
positive input
31/122
Pin description
STM8L15x pin description (continued)
PD2/TIM1_CH1
22 11 10 E4 /LCD_SEG8(2)/
I/O
ADC1_IN20/COMP1_INP
23 12
-
-
-
PD3/ TIM1_TRIG/
- LCD_SEG9(2)/ADC1_IN1
9/COMP1_INP
PD3/ TIM1_TRIG/
LCD_SEG9(2)/
11 F3 ADC1_IN19/TIM1_BKIN/
COMP1_INP/
RTC_CALIB
X
I/O
X
I/O
X
PD4/TIM1_CH2
I/O
33 21 20 C1 /LCD_SEG18(2)/
ADC1_IN10/COMP1_INP
X
X
X
X
X
X
X
X
X
Main function
(after reset)
PP
OD
High sink/source
Output
Ext. interrupt
floating
I/O level
Pin name
Type
Input
WLCSP28
UFQFPN28
UFQFPN32
UFQFPN48 and LQFP48
Pin
number
wpu
Table 5.
STM8L151xx, STM8L152xx
Default alternate
function
HS X
Timer 1 - channel 1 /
LCD segment 8 /
X Port D2 ADC1_IN20 /
Comparator 1 positive
input
HS X
Timer 1 - trigger / LCD
segment 9 / ADC1_IN19
X Port D3
/ Comparator 1 positive
input
HS X
Timer 1 - trigger / LCD
segment 9 / ADC1_IN19
/ Timer 1 break input /
X Port D3
RTC calibration /
Comparator 1 positive
input
HS X
Timer 1 - channel 2 /
LCD segment 18 /
X Port D4 ADC1_IN10/
Comparator 1 positive
input
HS X
Timer 1 - channel 3 /
LCD segment 19 /
X Port D5
ADC1_IN9/ Comparator
1 positive input
HS X
Timer 1 - break input /
LCD segment 20 /
ADC1_IN8 / RTC
X Port D6 calibration / Voltage
reference output /
Comparator 1 positive
input
-
PD5/TIM1_CH3
- /LCD_SEG19(2)/
ADC1_IN9/COMP1_INP
-
PD6/TIM1_BKIN
/LCD_SEG20(2)/
- ADC1_IN8/RTC_CALIB/
VREF_OUT/
COMP1_INP
36 24
-
PD7/TIM1_CH1N
/LCD_SEG21(2)/
- ADC1_IN7/RTC_ALARM/ I/O
VREF_OUT/
COMP1_INP
X
X
X
HS X
Timer 1 - inverted
channel 1/ LCD segment
21 / ADC1_IN7 / RTC
X Port D7
alarm / Voltage reference
output /Comparator 1
positive input
14
-
- PE0(4)/LCD_SEG1(2)
X
X
X
HS X
X Port E0
34 22
35 23
-
32/122
I/O
X
I/O
X
I/O FT
X
X
X
X
Doc ID 15962 Rev 5
LCD segment 1
STM8L151xx, STM8L152xx
STM8L15x pin description (continued)
Ext. interrupt
-
-
PE1/TIM1_CH2N
/LCD_SEG2(2)
I/O
X
X
X
HS X
X Port E1
Timer 1 - inverted
channel 2 / LCD
segment 2
16
-
-
-
PE2/TIM1_CH3N
/LCD_SEG3(2)
I/O
X
X
X
HS X
X Port E2
Timer 1 - inverted
channel 3 / LCD
segment 3
17
-
-
- PE3/LCD_SEG4(2)
I/O
X
X
X
HS X
X Port E3
LCD segment 4
-
- PE4/LCD_SEG5
(2)
I/O
X
X
X
HS X
X Port E4
LCD segment 5
18
-
PP
wpu
-
OD
floating
15
Pin name
Type
WLCSP28
Main function
(after reset)
Output
UFQFPN28
I/O level
Input
UFQFPN32
UFQFPN48 and LQFP48
Pin
number
High sink/source
Table 5.
Pin description
Default alternate
function
X
X
X
HS X
X Port E5
LCD segment 6 /
ADC1_IN23
/ Comparator 2 positive
input / Comparator 1
positive input
I/O
X
X
X
HS X
X Port E6
LCD segment
26/PVD_IN
- PE7/LCD_SEG27(2)
I/O
X
X
X
HS X
X Port E7
LCD segment 27
PF0/ADC1_IN24/
DAC_OUT
I/O
X
X
X
HS X
X Port F0
ADC1_IN24 / DAC_OUT
19
-
-
PE5/LCD_SEG6(2)/
- ADC1_IN23/COMP2_INP/ I/O
COMP1_INP
47
-
-
-
PE6/LCD_SEG26(2)/
PVD_IN
48
-
-
32
-
-
-
13
9
-
- VLCD(2)
S
LCD booster external capacitor
(7)
Reserved. Must be tied to VDD
13
-
-
- Reserved
10
-
-
- VDD
S
Digital power supply
11
-
-
- VDDA
S
Analog supply voltage
12
-
-
- VREF+
S
ADC1 and DAC positive voltage
reference
-
8
7 G4 VDD1/VDDA/VREF+
S
Digital power supply / Analog
supply voltage / ADC1 positive
voltage reference
9
7
6 F4 VSS1/VSSA/VREF-
S
I/O ground / Analog ground voltage
/
ADC1 negative voltage reference
39
-
-
S
IOs supply voltage
- VDD2
Doc ID 15962 Rev 5
33/122
Pin description
STM8L15x pin description (continued)
1
PA0(8)/[USART1_CK](3)/
32 28 A4
SWIM/BEEP/IR_TIM (9)
S
I/O
Main function
(after reset)
PP
OD
High sink/source
Output
Ext. interrupt
- VSS2
floating
-
I/O level
WLCSP28
-
Pin name
Type
UFQFPN28
40
Input
UFQFPN32
UFQFPN48 and LQFP48
Pin
number
wpu
Table 5.
STM8L151xx, STM8L152xx
Default alternate
function
IOs ground voltage
X X(8) X
HS
(9)
X
X Port A0
[USART1 synchronous
clock](3) / SWIM input
and output /
Beep output / Infrared
Timer output
1. At power-up, the PA1/NRST pin is a reset input pin with pull-up. To be used as a general purpose pin (PA1), it can be
configured only as output open-drain or push-pull, not as a general purpose input. Refer to Section Configuring NRST/PA1
pin as general purpose output in the STM8L15x reference manual (RM0031).
2. Available on STM8L152xx devices only.
3. [ ] Alternate function remapping option (if the same alternate function is shown twice, it indicates an exclusive choice not a
duplication of the function).
4. In the 5 V tolerant I/Os, protection diode to VDD is not implemented.
5. A pull-up is applied to PB0 and PB4 during the reset phase. These two pins are input floating after reset release.
6. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer and protection diode to VDD are not
implemented).
7. Available on STM8L151xx devices only.
8. The PA0 pin is in input pull-up during the reset phase and after reset release.
9. High Sink LED driver capability available on PA0.
4.1
System configuration options
As shown in Table 5: STM8L15x pin description, some alternate functions can be remapped
on different I/O ports by programming one of the two remapping registers described in the “
Routing interface (RI) and system configuration controller” section in the STM8L15xxx
reference manual (RM0031).
34/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Memory and register map
5
Memory and register map
5.1
Memory mapping
The memory map is shown in Figure 9.
Figure 9.
Memory map
0x00 0000
0x00 07FF
0x00 0800
RAM (2 Kbytes) (1)
including
Stack (513 bytes) (1)
Reserved
0x00 0FFF
0x00 1000
0x00 13FF
0x00 1400
Data EEPROM
(1 Kbyte)
0x00 5000
0x00 5050
Reserved
0x00 47FF
0x00 4800
0x00 48FF
0x00 4900
0x00 4909
0x00 4910
0x00 4911
0x00 4912
0x00 4925
0x00 4926
0x00 4931
0x00 4932
0x00 4FFF
0x00 5000
0x00 57FF
0x00 5800
0x00 5FFF
0x00 6000
0x00 67FF
0x00 6800
0x00 5070
0x00 509E
Option bytes
0x00 50A0
0x00 50A6
Reserved
0x00 50B0
VREFINT_Factory_CONV(2)
TS_Factory_CONV_V90(3)
Reserved
0x00 7FFF
0x00 8000
0x00 807F
0x00 8080
0x00 FFFF
0x00 50C0
0x00 50D3
0x00 50E0
0x00 50F3
Unique ID
0x00 5140
Reserved
0x00 5200
0x00 5210
GPIO and peripheral registers
0x00 5230
0x00 5250
0x00 5280
Reserved
0x00 52B0
0x00 52E0
Boot ROM
(2 Kbytes)
0x00 52FF
0x00 5340
0x00 5380
Reserved
0x00 7EFF
0x00 7F00
0x00 50B2
0x00 5400
0x00 5430
CPU/SWIM/Debug/ITC
Registers
0x00 5440
GPIO Ports
Flash
DMA1
SYSCFG
ITC-EXTI
WFE
RST
PWR
CLK
WWDG
IWDG
BEEP
RTC
SPI1
I2C1
USART1
TIM2
TIM3
TIM1
TIM4
IRTIM
ADC1
DAC
LCD
RI
COMP
Reset and interrupt vectors
Medium-density
Flash program memory
(up to 32 Kbytes)
1. Table 6 lists the boundary addresses for each memory size. The top of the stack is at the RAM end
address.
2. The VREFINT_Factory_CONV byte represents the LSB of the VREFINT 12-bit ADC conversion result. The
MSB have a fixed value: 0x6.
3. The TS_Factory_CONV_V90 byte represents the LSB of the V90 12-bit ADC conversion result. The MSB
have a fixed value: 0x3.
4. Refer to Table 8 for an overview of hardware register mapping, to Table 7 for details on I/O port hardware
registers, and to Table 9 for information on CPU/SWIM/debug module controller registers.
Doc ID 15962 Rev 5
35/122
Memory and register map
Table 6.
STM8L151xx, STM8L152xx
Flash and RAM boundary addresses
Memory area
Size
Start address
End address
RAM
2 Kbytes
0x00 0000
0x00 07FF
16 Kbytes
0x00 8000
0x00 BFFF
32 Kbytes
0x00 8000
0x00 FFFF
Flash program memory
5.2
Register map
Table 7.
I/O port hardware register map
Register label
Register name
Reset
status
0x00 5000
PA_ODR
Port A data output latch register
0x00
0x00 5001
PA_IDR
Port A input pin value register
0xxx
PA_DDR
Port A data direction register
0x00
0x00 5003
PA_CR1
Port A control register 1
0x01
0x00 5004
PA_CR2
Port A control register 2
0x00
0x00 5005
PB_ODR
Port B data output latch register
0x00
0x00 5006
PB_IDR
Port B input pin value register
0xxx
PB_DDR
Port B data direction register
0x00
0x00 5008
PB_CR1
Port B control register 1
0x00
0x00 5009
PB_CR2
Port B control register 2
0x00
0x00 500A
PC_ODR
Port C data output latch register
0x00
0x00 500B
PB_IDR
Port C input pin value register
0xxx
PC_DDR
Port C data direction register
0x00
0x00 500D
PC_CR1
Port C control register 1
0x00
0x00 500E
PC_CR2
Port C control register 2
0x00
0x00 500F
PD_ODR
Port D data output latch register
0x00
0x00 5010
PD_IDR
Port D input pin value register
0xxx
PD_DDR
Port D data direction register
0x00
0x00 5012
PD_CR1
Port D control register 1
0x00
0x00 5013
PD_CR2
Port D control register 2
0x00
0x00 5014
PE_ODR
Port E data output latch register
0x00
0x00 5015
PE_IDR
Port E input pin value register
0xxx
PE_DDR
Port E data direction register
0x00
0x00 5017
PE_CR1
Port E control register 1
0x00
0x00 5018
PE_CR2
Port E control register 2
0x00
Address
0x00 5002
0x00 5007
0x00 500C
0x00 5011
0x00 5016
36/122
Block
Port A
Port B
Port C
Port D
Port E
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 7.
Memory and register map
I/O port hardware register map (continued)
Register label
Register name
Reset
status
0x00 5019
PF_ODR
Port F data output latch register
0x00
0x00 501A
PF_IDR
Port F input pin value register
0xxx
PF_DDR
Port F data direction register
0x00
0x00 501C
PF_CR1
Port F control register 1
0x00
0x00 501D
PF_CR2
Port F control register 2
0x00
Address
0x00 501B
Table 8.
Block
Port F
General hardware register map
Address
Block
Register label
0x00 501E
to
0x00 5049
Register name
Reset
status
Reserved area (44 bytes)
0x00 5050
FLASH_CR1
Flash control register 1
0x00
0x00 5051
FLASH_CR2
Flash control register 2
0x00
FLASH _PUKR
Flash program memory unprotection key
register
0x00
0x00 5053
FLASH _DUKR
Data EEPROM unprotection key register
0x00
0x00 5054
FLASH _IAPSR
Flash in-application programming status
register
0x00
0x00 5052
0x00 5055
to
0x00 506F
Flash
Reserved area (27 bytes)
Doc ID 15962 Rev 5
37/122
Memory and register map
Table 8.
STM8L151xx, STM8L152xx
General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5070
DMA1_GCSR
DMA1 global configuration & status
register
0xFC
0x00 5071
DMA1_GIR1
DMA1 global interrupt register 1
0x00
Address
Block
0x00 5072 to
0x00 5074
Reserved area (3 bytes)
0x00 5075
DMA1_C0CR
DMA1 channel 0 configuration register
0x00
0x00 5076
DMA1_C0SPR
DMA1 channel 0 status & priority register
0x00
0x00 5077
DMA1_C0NDTR
DMA1 number of data to transfer register
(channel 0)
0x00
0x00 5078
DMA1_C0PARH
DMA1 peripheral address high register
(channel 0)
0x52
0x00 5079
DMA1_C0PARL
DMA1 peripheral address low register
(channel 0)
0x00
0x00 507A
Reserved area (1 byte)
DMA1
0x00 507B
DMA1_C0M0ARH
DMA1 memory 0 address high register
(channel 0)
0x00
0x00 507C
DMA1_C0M0ARL
DMA1 memory 0 address low register
(channel 0)
0x00
0x00 507D to
0x00 507E
Reserved area (2 bytes)
0x00 507F
DMA1_C1CR
DMA1 channel 1 configuration register
0x00
0x00 5080
DMA1_C1SPR
DMA1 channel 1 status & priority register
0x00
0x00 5081
DMA1_C1NDTR
DMA1 number of data to transfer register
(channel 1)
0x00
0x00 5082
DMA1_C1PARH
DMA1 peripheral address high register
(channel 1)
0x52
0x00 5083
DMA1_C1PARL
DMA1 peripheral address low register
(channel 1)
0x00
38/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 8.
Memory and register map
General hardware register map (continued)
Address
Block
Register label
0x00 5084
Register name
Reset
status
Reserved area (1 byte)
0x00 5085
DMA1_C1M0ARH
DMA1 memory 0 address high register
(channel 1)
0x00
0x00 5086
DMA1_C1M0ARL
DMA1 memory 0 address low register
(channel 1)
0x00
0x00 5087
0x00 5088
Reserved area (2 bytes)
0x00 5089
DMA1_C2CR
DMA1 channel 2 configuration register
0x00
0x00 508A
DMA1_C2SPR
DMA1 channel 2 status & priority register
0x00
0x00 508B
DMA1_C2NDTR
DMA1 number of data to transfer register
(channel 2)
0x00
0x00 508C
DMA1_C2PARH
DMA1 peripheral address high register
(channel 2)
0x52
0x00 508D
DMA1_C2PARL
DMA1 peripheral address low register
(channel 2)
0x00
0x00 508E
Reserved area (1 byte)
0x00 508F
DMA1_C2M0ARH
DMA1 memory 0 address high register
(channel 2)
0x00
DMA1_C2M0ARL
DMA1 memory 0 address low register
(channel 2)
0x00
DMA1
0x00 5090
0x00 5091
0x00 5092
Reserved area (2 bytes)
0x00 5093
DMA1_C3CR
DMA1 channel 3 configuration register
0x00
0x00 5094
DMA1_C3SPR
DMA1 channel 3 status & priority register
0x00
0x00 5095
DMA1_C3NDTR
DMA1 number of data to transfer register
(channel 3)
0x00
0x00 5096
DMA1_C3PARH_
C3M1ARH
DMA1 peripheral address high register
(channel 3)
0x40
0x00 5097
DMA1_C3PARL_
C3M1ARL
DMA1 peripheral address low register
(channel 3)
0x00
0x00 5098
Reserved area (1 byte)
0x00 5099
DMA1_C3M0ARH
DMA1 memory 0 address high register
(channel 3)
0x00
0x00 509A
DMA1_C3M0ARL
DMA1 memory 0 address low register
(channel 3)
0x00
0x00 509B to
0x00 509D
Reserved area (3 bytes)
0x00 509E
SYSCFG_RMPCR1
Remapping register 1
0x00
SYSCFG_RMPCR2
Remapping register 2
0x00
SYSCFG
0x00 509F
Doc ID 15962 Rev 5
39/122
Memory and register map
Table 8.
STM8L151xx, STM8L152xx
General hardware register map (continued)
Register label
Register name
Reset
status
0x00 50A0
EXTI_CR1
External interrupt control register 1
0x00
0x00 50A1
EXTI_CR2
External interrupt control register 2
0x00
EXTI_CR3
External interrupt control register 3
0x00
0x00 50A3
EXTI_SR1
External interrupt status register 1
0x00
0x00 50A4
EXTI_SR2
External interrupt status register 2
0x00
0x00 50A5
EXTI_CONF1
External interrupt port select register 1
0x00
0x00 50A6
WFE_CR1
WFE control register 1
0x00
WFE_CR2
WFE control register 2
0x00
WFE_CR3
WFE control register 3
0x00
Address
Block
0x00 50A2
ITC - EXTI
0x00 50A7
WFE
0x00 50A8
0x00 50A9
to
0x00 50AF
Reserved area (7 bytes)
0x00 50B0
RST_CR
Reset control register
0x00
RST_SR
Reset status register
0x01
PWR_CSR1
Power control and status register 1
0x00
PWR_CSR2
Power control and status register 2
0x00
RST
0x00 50B1
0x00 50B2
PWR
0x00 50B3
0x00 50B4
to
0x00 50BF
Reserved area (12 bytes)
0x00 50C0
CLK_DIVR
Clock master divider register
0x03
0x00 50C1
CLK_CRTCR
Clock RTC register
0x00
0x00 50C2
CLK_ICKR
Internal clock control register
0x11
0x00 50C3
CLK_PCKENR1
Peripheral clock gating register 1
0x00
0x00 50C4
CLK_PCKENR2
Peripheral clock gating register 2
0x80
0x00 50C5
CLK_CCOR
Configurable clock control register
0x00
0x00 50C6
CLK_ECKR
External clock control register
0x00
CLK_SCSR
System clock status register
0x01
0x00 50C8
CLK_SWR
System clock switch register
0x01
0x00 50C9
CLK_SWCR
Clock switch control register
0bxxxx0000
0x00 50CA
CLK_CSSR
Clock security system register
0x00
0x00 50CB
CLK_CBEEPR
Clock BEEP register
0x00
0x00 50CC
CLK_HSICALR
HSI calibration register
0xxx
0x00 50CD
CLK_HSITRIMR
HSI clock calibration trimming register
0x00
0x00 50CE
CLK_HSIUNLCKR
HSI unlock register
0x00
0x00 50CF
CLK_REGCSR
Main regulator control status register
0bxx11100x
0x00 50C7
CLK
40/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 8.
Memory and register map
General hardware register map (continued)
Address
Block
Register label
0x00 50D0
to
0x00 50D2
Register name
Reset
status
Reserved area (3 bytes)
0x00 50D3
WWDG_CR
WWDG control register
0x7F
WWDG_WR
WWDR window register
0x7F
WWDG
0x00 50D4
0x00 50D5
to
00 50DF
Reserved area (11 bytes)
0x00 50E0
0x00 50E1
IWDG
0x00 50E2
IWDG_KR
IWDG key register
0x
IWDG_PR
IWDG prescaler register
0x00
IWDG_RLR
IWDG reload register
0xFF
0x00 50E3
to
0x00 50EF
Reserved area (13 bytes)
0x00 50F0
0x00 50F1
0x00 50F2
0x00 50F3
0x00 50F4
to
0x00 513F
BEEP_CSR1
BEEP
BEEP control/status register 1
0x00
Reserved area (2 bytes)
BEEP_CSR2
BEEP control/status register 2
0x1F
Reserved area (76 bytes)
Doc ID 15962 Rev 5
41/122
Memory and register map
Table 8.
STM8L151xx, STM8L152xx
General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5140
RTC_TR1
Time register 1
0x00
0x00 5141
RTC_TR2
Time register 2
0x00
0x00 5142
RTC_TR3
Time register 3
0x00
Address
Block
0x00 5143
Reserved area (1 byte)
0x00 5144
RTC_DR1
Date register 1
0x00
0x00 5145
RTC_DR2
Date register 2
0x00
0x00 5146
RTC_DR3
Date register 3
0x00
0x00 5147
Reserved area (1 byte)
0x00 5148
RTC_CR1
Control register 1
0x00
0x00 5149
RTC_CR2
Control register 2
0x00
0x00 514A
RTC_CR3
Control register 3
0x00
0x00 514B
Reserved area (1 byte)
0x00 514C
RTC_ISR1
Initialization and status register 1
0x00
0x00 514D
RTC_ISR2
Initialization and Status register 2
0x00
0x00 514E
0x00 514F
Reserved area (2 bytes)
RTC
0x00 5150
RTC_SPRERH
Synchronous prescaler register high
-
0x00 5151
RTC_SPRERL
Synchronous prescaler register low
-
0x00 5152
RTC_APRER
Asynchronous prescaler register
-
0x00 5153
Reserved area (1 byte)
0x00 5154
RTC_WUTRH
Wakeup timer register high
-
0x00 5155
RTC_WUTRL
Wakeup timer register low
-
0x00 5156 to
0x00 5158
0x00 5159
Reserved area (3 bytes)
RTC_WPR
0x00 515A
0x00 515B
Write protection register
0x00
Reserved area (2 bytes)
0x00 515C
RTC_ALRMAR1
Alarm A register 1
0x00
0x00 515D
RTC_ALRMAR2
Alarm A register 2
0x00
0x00 515E
RTC_ALRMAR3
Alarm A register 3
0x00
0x00 515F
RTC_ALRMAR4
Alarm A register 4
0x00
0x00 5160 to
0x00 51FF
42/122
Reserved area (160 bytes)
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 8.
Memory and register map
General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5200
SPI1_CR1
SPI1 control register 1
0x00
0x00 5201
SPI1_CR2
SPI1 control register 2
0x00
0x00 5202
SPI1_ICR
SPI1 interrupt control register
0x00
SPI1_SR
SPI1 status register
0x02
0x00 5204
SPI1_DR
SPI1 data register
0x00
0x00 5205
SPI1_CRCPR
SPI1 CRC polynomial register
0x07
0x00 5206
SPI1_RXCRCR
SPI1 Rx CRC register
0x00
0x00 5207
SPI1_TXCRCR
SPI1 Tx CRC register
0x00
Address
Block
0x00 5203
SPI1
0x00 5208
to
0x00 520F
Reserved area (8 bytes)
0x00 5210
I2C1_CR1
I2C1 control register 1
0x00
0x00 5211
I2C1_CR2
I2C1 control register 2
0x00
0x00 5212
I2C1_FREQR
I2C1 frequency register
0x00
0x00 5213
I2C1_OARL
I2C1 own address register low
0x00
0x00 5214
I2C1_OARH
I2C1 own address register high
0x00
0x00 5215
Reserved (1 byte)
0x00 5216
I2C1_DR
I2C1 data register
0x00
I2C1_SR1
I2C1 status register 1
0x00
0x00 5218
I2C1_SR2
I2C1 status register 2
0x00
0x00 5219
I2C1_SR3
I2C1 status register 3
0x0x
0x00 521A
I2C1_ITR
I2C1 interrupt control register
0x00
0x00 521B
I2C1_CCRL
I2C1 clock control register low
0x00
0x00 521C
I2C1_CCRH
I2C1 clock control register high
0x00
0x00 521D
I2C1_TRISER
I2C1 TRISE register
0x02
0x00 521E
I2C1_PECR
I2C1 packet error checking register
0x00
0x00 5217
0x00 521F
to
0x00 522F
I2C1
Reserved area (17 bytes)
Doc ID 15962 Rev 5
43/122
Memory and register map
Table 8.
STM8L151xx, STM8L152xx
General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5230
USART1_SR
USART1 status register
0xC0
0x00 5231
USART1_DR
USART1 data register
undefined
0x00 5232
USART1_BRR1
USART1 baud rate register 1
0x00
0x00 5233
USART1_BRR2
USART1 baud rate register 2
0x00
0x00 5234
USART1_CR1
USART1 control register 1
0x00
USART1_CR2
USART1 control register 2
0x00
0x00 5236
USART1_CR3
USART1 control register 3
0x00
0x00 5237
USART1_CR4
USART1 control register 4
0x00
0x00 5238
USART1_CR5
USART1 control register 5
0x00
0x00 5239
USART1_GTR
USART1 guard time register
0x00
0x00 523A
USART1_PSCR
USART1 prescaler register
0x00
Address
0x00 5235
0x00 523B
to
0x00 524F
44/122
Block
USART1
Reserved area (21 bytes)
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 8.
Memory and register map
General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5250
TIM2_CR1
TIM2 control register 1
0x00
0x00 5251
TIM2_CR2
TIM2 control register 2
0x00
0x00 5252
TIM2_SMCR
TIM2 Slave mode control register
0x00
0x00 5253
TIM2_ETR
TIM2 external trigger register
0x00
0x00 5254
TIM2_DER
TIM2 DMA1 request enable register
0x00
0x00 5255
TIM2_IER
TIM2 interrupt enable register
0x00
0x00 5256
TIM2_SR1
TIM2 status register 1
0x00
0x00 5257
TIM2_SR2
TIM2 status register 2
0x00
0x00 5258
TIM2_EGR
TIM2 event generation register
0x00
0x00 5259
TIM2_CCMR1
TIM2 capture/compare mode register 1
0x00
0x00 525A
TIM2_CCMR2
TIM2 capture/compare mode register 2
0x00
TIM2_CCER1
TIM2 capture/compare enable register 1
0x00
0x00 525C
TIM2_CNTRH
TIM2 counter high
0x00
0x00 525D
TIM2_CNTRL
TIM2 counter low
0x00
0x00 525E
TIM2_PSCR
TIM2 prescaler register
0x00
0x00 525F
TIM2_ARRH
TIM2 auto-reload register high
0xFF
0x00 5260
TIM2_ARRL
TIM2 auto-reload register low
0xFF
0x00 5261
TIM2_CCR1H
TIM2 capture/compare register 1 high
0x00
0x00 5262
TIM2_CCR1L
TIM2 capture/compare register 1 low
0x00
0x00 5263
TIM2_CCR2H
TIM2 capture/compare register 2 high
0x00
0x00 5264
TIM2_CCR2L
TIM2 capture/compare register 2 low
0x00
0x00 5265
TIM2_BKR
TIM2 break register
0x00
0x00 5266
TIM2_OISR
TIM2 output idle state register
0x00
Address
0x00 525B
0x00 5267 to
0x00 527F
Block
TIM2
Reserved area (25 bytes)
Doc ID 15962 Rev 5
45/122
Memory and register map
Table 8.
STM8L151xx, STM8L152xx
General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5280
TIM3_CR1
TIM3 control register 1
0x00
0x00 5281
TIM3_CR2
TIM3 control register 2
0x00
0x00 5282
TIM3_SMCR
TIM3 Slave mode control register
0x00
0x00 5283
TIM3_ETR
TIM3 external trigger register
0x00
0x00 5284
TIM3_DER
TIM3 DMA1 request enable register
0x00
0x00 5285
TIM3_IER
TIM3 interrupt enable register
0x00
0x00 5286
TIM3_SR1
TIM3 status register 1
0x00
0x00 5287
TIM3_SR2
TIM3 status register 2
0x00
0x00 5288
TIM3_EGR
TIM3 event generation register
0x00
0x00 5289
TIM3_CCMR1
TIM3 Capture/Compare mode register 1
0x00
0x00 528A
TIM3_CCMR2
TIM3 Capture/Compare mode register 2
0x00
TIM3_CCER1
TIM3 Capture/Compare enable register 1
0x00
0x00 528C
TIM3_CNTRH
TIM3 counter high
0x00
0x00 528D
TIM3_CNTRL
TIM3 counter low
0x00
0x00 528E
TIM3_PSCR
TIM3 prescaler register
0x00
0x00 528F
TIM3_ARRH
TIM3 Auto-reload register high
0xFF
0x00 5290
TIM3_ARRL
TIM3 Auto-reload register low
0xFF
0x00 5291
TIM3_CCR1H
TIM3 Capture/Compare register 1 high
0x00
0x00 5292
TIM3_CCR1L
TIM3 Capture/Compare register 1 low
0x00
0x00 5293
TIM3_CCR2H
TIM3 Capture/Compare register 2 high
0x00
0x00 5294
TIM3_CCR2L
TIM3 Capture/Compare register 2 low
0x00
0x00 5295
TIM3_BKR
TIM3 break register
0x00
0x00 5296
TIM3_OISR
TIM3 output idle state register
0x00
Address
0x00 528B
0x00 5297 to
0x00 52AF
46/122
Block
TIM3
Reserved area (25 bytes)
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 8.
Memory and register map
General hardware register map (continued)
Register label
Register name
Reset
status
0x00 52B0
TIM1_CR1
TIM1 control register 1
0x00
0x00 52B1
TIM1_CR2
TIM1 control register 2
0x00
0x00 52B2
TIM1_SMCR
TIM1 Slave mode control register
0x00
0x00 52B3
TIM1_ETR
TIM1 external trigger register
0x00
0x00 52B4
TIM1_DER
TIM1 DMA1 request enable register
0x00
0x00 52B5
TIM1_IER
TIM1 Interrupt enable register
0x00
0x00 52B6
TIM1_SR1
TIM1 status register 1
0x00
0x00 52B7
TIM1_SR2
TIM1 status register 2
0x00
0x00 52B8
TIM1_EGR
TIM1 event generation register
0x00
0x00 52B9
TIM1_CCMR1
TIM1 Capture/Compare mode register 1
0x00
0x00 52BA
TIM1_CCMR2
TIM1 Capture/Compare mode register 2
0x00
0x00 52BB
TIM1_CCMR3
TIM1 Capture/Compare mode register 3
0x00
0x00 52BC
TIM1_CCMR4
TIM1 Capture/Compare mode register 4
0x00
0x00 52BD
TIM1_CCER1
TIM1 Capture/Compare enable register 1
0x00
0x00 52BE
TIM1_CCER2
TIM1 Capture/Compare enable register 2
0x00
0x00 52BF
TIM1_CNTRH
TIM1 counter high
0x00
TIM1_CNTRL
TIM1 counter low
0x00
0x00 52C1
TIM1_PSCRH
TIM1 prescaler register high
0x00
0x00 52C2
TIM1_PSCRL
TIM1 prescaler register low
0x00
0x00 52C3
TIM1_ARRH
TIM1 Auto-reload register high
0xFF
0x00 52C4
TIM1_ARRL
TIM1 Auto-reload register low
0xFF
0x00 52C5
TIM1_RCR
TIM1 Repetition counter register
0x00
0x00 52C6
TIM1_CCR1H
TIM1 Capture/Compare register 1 high
0x00
0x00 52C7
TIM1_CCR1L
TIM1 Capture/Compare register 1 low
0x00
0x00 52C8
TIM1_CCR2H
TIM1 Capture/Compare register 2 high
0x00
0x00 52C9
TIM1_CCR2L
TIM1 Capture/Compare register 2 low
0x00
0x00 52CA
TIM1_CCR3H
TIM1 Capture/Compare register 3 high
0x00
0x00 52CB
TIM1_CCR3L
TIM1 Capture/Compare register 3 low
0x00
0x00 52CC
TIM1_CCR4H
TIM1 Capture/Compare register 4 high
0x00
0x00 52CD
TIM1_CCR4L
TIM1 Capture/Compare register 4 low
0x00
0x00 52CE
TIM1_BKR
TIM1 break register
0x00
0x00 52CF
TIM1_DTR
TIM1 dead-time register
0x00
0x00 52D0
TIM1_OISR
TIM1 output idle state register
0x00
0x00 52D1
TIM1_DCR1
DMA1 control register 1
Address
Block
0x00 52C0
TIM1
Doc ID 15962 Rev 5
47/122
Memory and register map
Table 8.
STM8L151xx, STM8L152xx
General hardware register map (continued)
Register label
Register name
Reset
status
0x00 52D2
TIM1_DCR2
TIM1 DMA1 control register 2
0x00
0x00 52D3
TIM1_DMA1R
TIM1 DMA1 address for burst mode
0x00
Address
Block
0x00 52D4
to
0x00 52DF
Reserved area (12 bytes)
0x00 52E0
TIM4_CR1
TIM4 control register 1
0x00
0x00 52E1
TIM4_CR2
TIM4 control register 2
0x00
0x00 52E2
TIM4_SMCR
TIM4 Slave mode control register
0x00
0x00 52E3
TIM4_DER
TIM4 DMA1 request enable register
0x00
TIM4_IER
TIM4 Interrupt enable register
0x00
0x00 52E5
TIM4_SR1
TIM4 status register 1
0x00
0x00 52E6
TIM4_EGR
TIM4 Event generation register
0x00
0x00 52E7
TIM4_CNTR
TIM4 counter
0x00
0x00 52E8
TIM4_PSCR
TIM4 prescaler register
0x00
0x00 52E9
TIM4_ARR
TIM4 Auto-reload register
0x00
0x00 52E4
TIM4
0x00 52EA
to
0x00 52FE
0x00 52FF
Reserved area (21 bytes)
IRTIM
IR_CR
0x00 5300
to
0x00 533F
Infrared control register
0x00
Reserved area (64 bytes)
0x00 5340
ADC1_CR1
ADC1 configuration register 1
0x00
0x00 5341
ADC1_CR2
ADC1 configuration register 2
0x00
0x00 5342
ADC1_CR3
ADC1 configuration register 3
0x1F
0x00 5343
ADC1_SR
ADC1 status register
0x00
0x00 5344
ADC1_DRH
ADC1 data register high
0x00
0x00 5345
ADC1_DRL
ADC1 data register low
0x00
ADC1_HTRH
ADC1 high threshold register high
0x0F
0x00 5347
ADC1_HTRL
ADC1 high threshold register low
0xFF
0x00 5348
ADC1_LTRH
ADC1 low threshold register high
0x00
0x00 5349
ADC1_LTRL
ADC1 low threshold register low
0x00
0x00 534A
ADC1_SQR1
ADC1 channel sequence 1 register
0x00
0x00 534B
ADC1_SQR2
ADC1 channel sequence 2 register
0x00
0x00 534C
ADC1_SQR3
ADC1 channel sequence 3 register
0x00
0x00 534D
ADC1_SQR4
ADC1 channel sequence 4 register
0x00
0x00 5346
ADC1
48/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 8.
Memory and register map
General hardware register map (continued)
Register label
Register name
Reset
status
ADC1_TRIGR1
ADC1 trigger disable 1
0x00
ADC1_TRIGR2
ADC1 trigger disable 2
0x00
0x00 5350
ADC1_TRIGR3
ADC1 trigger disable 3
0x00
0x00 5351
ADC1_TRIGR4
ADC1 trigger disable 4
0x00
Address
Block
0x00 534E
0x00 534F
ADC1
0x00 5352 to
0x00 537F
Reserved area (46 bytes)
0x00 5380
DAC_CR1
DAC control register 1
0x00
0x00 5381
DAC_CR2
DAC control register 2
0x00
0x00 5382
to 0x00 5383
Reserved area (2 bytes)
0x00 5384
DAC_SWTRIGR
DAC software trigger register
0x00
0x00 5385
DAC_SR
DAC status register
0x00
0x00 5386 to
0x00 5387
Reserved area (2 bytes)
0x00 5388
0x00 5389
DAC_RDHRH
DAC right aligned data holding register
high
0x00
DAC_RDHRL
DAC right aligned data holding register low
0x00
DAC
0x00 538A to
0x00 538B
Reserved area (2 bytes)
0x00 538C
DAC_LDHRH
DAC left aligned data holding register high
0x00
0x00 538D
DAC_LDHRL
DAC left aligned data holding register low
0x00
0x00 538E
to 0x00 538F
0x00 5390
Reserved area (2 bytes)
DAC_DHR8
0x00 5391 to
0x00 53AB
DAC 8-bit data holding register
0x00
Reserved area (27 bytes)
0x00 53AC
DAC_DORH
DAC data output register high
0x00
0x00 53AD
DAC_DORL
DAC data output register low
0x00
0x00 53AE to
0x00 53FF
Reserved area (82 bytes)
Doc ID 15962 Rev 5
49/122
Memory and register map
Table 8.
STM8L151xx, STM8L152xx
General hardware register map (continued)
Register label
Register name
Reset
status
0x00 5400
LCD_CR1
LCD control register 1
0x00
0x00 5401
LCD_CR2
LCD control register 2
0x00
0x00 5402
LCD_CR3
LCD control register 3
0x00
LCD_FRQ
LCD frequency selection register
0x00
0x00 5404
LCD_PM0
LCD Port mask register 0
0x00
0x00 5405
LCD_PM1
LCD Port mask register 1
0x00
0x00 5406
LCD_PM2
LCD Port mask register 2
0x00
0x00 5407
LCD_PM3
LCD Port mask register 3
0x00
Address
Block
0x00 5403
LCD
0x00 5408 to
0x00 540B
Reserved area (4 bytes)
0x00 540C
LCD_RAM0
LCD display memory 0
0x00
0x00 540D
LCD_RAM1
LCD display memory 1
0x00
0x00 540E
LCD_RAM2
LCD display memory 2
0x00
0x00 540F
LCD_RAM3
LCD display memory 3
0x00
0x00 5410
LCD_RAM4
LCD display memory 4
0x00
LCD_RAM5
LCD display memory 5
0x00
LCD_RAM6
LCD display memory 6
0x00
0x00 5413
LCD_RAM7
LCD display memory 7
0x00
0x00 5414
LCD_RAM8
LCD display memory 8
0x00
0x00 5415
LCD_RAM9
LCD display memory 9
0x00
0x00 5416
LCD_RAM10
LCD display memory 10
0x00
0x00 5417
LCD_RAM11
LCD display memory 11
0x00
0x00 5418
LCD_RAM12
LCD display memory 12
0x00
0x00 5419
LCD_RAM13
LCD display memory 13
0x00
0x00 5411
0x00 5412
0x00 541A to
0x00 542F
50/122
LCD
Reserved area (22 bytes)
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 8.
Memory and register map
General hardware register map (continued)
Address
Block
Register label
0x00 5430
Register name
Reserved area (1 byte)
Reset
status
0x00
0x00 5431
RI_ICR1
Timer input capture routing register 1
0x00
0x00 5432
RI_ICR2
Timer input capture routing register 2
0x00
0x00 5433
RI_IOIR1
I/O input register 1
undefined
0x00 5434
RI_IOIR2
I/O input register 2
undefined
0x00 5435
RI_IOIR3
I/O input register 3
undefined
0x00 5436
RI_IOCMR1
I/O control mode register 1
0x00
RI_IOCMR2
I/O control mode register 2
0x00
0x00 5438
RI_IOCMR3
I/O control mode register 3
0x00
0x00 5439
RI_IOSR1
I/O switch register 1
0x00
0x00 543A
RI_IOSR2
I/O switch register 2
0x00
0x00 543B
RI_IOSR3
I/O switch register 3
0x00
0x00 543C
RI_IOGCR
I/O group control register
0x3F
0x00 543D
RI_ASCR1
Analog switch register 1
0x00
0x00 543E
RI_ASCR2
Analog switch register 2
0x00
0x00 543F
RI_RCR
Resistor control register 1
0x00
0x00 5440
COMP_CSR1
Comparator control and status register 1
0x00
0x00 5441
COMP_CSR2
Comparator control and status register 2
0x00
COMP_CSR3
Comparator control and status register 3
0x00
0x00 5443
COMP_CSR4
Comparator control and status register 4
0x00
0x00 5444
COMP_CSR5
Comparator control and status register 5
0x00
0x00 5437
RI
0x00 5442
COMP
Doc ID 15962 Rev 5
51/122
Memory and register map
Table 9.
STM8L151xx, STM8L152xx
CPU/SWIM/debug module/interrupt controller registers
Register Label
Register Name
Reset
Status
0x00 7F00
A
Accumulator
0x00
0x00 7F01
PCE
Program counter extended
0x00
0x00 7F02
PCH
Program counter high
0x00
0x00 7F03
PCL
Program counter low
0x00
XH
X index register high
0x00
XL
X index register low
0x00
0x00 7F06
YH
Y index register high
0x00
0x00 7F07
YL
Y index register low
0x00
0x00 7F08
SPH
Stack pointer high
0x03
0x00 7F09
SPL
Stack pointer low
0xFF
0x00 7F0A
CCR
Condition code register
0x28
Address
Block
0x00 7F04
0x00 7F05
0x00 7F0B to
0x00 7F5F
CPU(1)
Reserved area (85 bytes)
CPU
0x00 7F60
CFG_GCR
Global configuration register
0x00
0x00 7F70
ITC_SPR1
Interrupt Software priority register 1
0xFF
0x00 7F71
ITC_SPR2
Interrupt Software priority register 2
0xFF
0x00 7F72
ITC_SPR3
Interrupt Software priority register 3
0xFF
ITC_SPR4
Interrupt Software priority register 4
0xFF
0x00 7F74
ITC_SPR5
Interrupt Software priority register 5
0xFF
0x00 7F75
ITC_SPR6
Interrupt Software priority register 6
0xFF
0x00 7F76
ITC_SPR7
Interrupt Software priority register 7
0xFF
0x00 7F77
ITC_SPR8
Interrupt Software priority register 8
0xFF
0x00 7F73
ITC-SPR
0x00 7F78
to
0x00 7F79
0x00 7F80
0x00 7F81
to
0x00 7F8F
52/122
Reserved area (2 bytes)
SWIM
SWIM_CSR
SWIM control status register
Reserved area (15 bytes)
Doc ID 15962 Rev 5
0x00
STM8L151xx, STM8L152xx
Table 9.
Memory and register map
CPU/SWIM/debug module/interrupt controller registers (continued)
Register Label
Register Name
Reset
Status
0x00 7F90
DM_BK1RE
DM breakpoint 1 register extended byte
0xFF
0x00 7F91
DM_BK1RH
DM breakpoint 1 register high byte
0xFF
0x00 7F92
DM_BK1RL
DM breakpoint 1 register low byte
0xFF
0x00 7F93
DM_BK2RE
DM breakpoint 2 register extended byte
0xFF
0x00 7F94
DM_BK2RH
DM breakpoint 2 register high byte
0xFF
DM_BK2RL
DM breakpoint 2 register low byte
0xFF
0x00 7F96
DM_CR1
DM Debug module control register 1
0x00
0x00 7F97
DM_CR2
DM Debug module control register 2
0x00
0x00 7F98
DM_CSR1
DM Debug module control/status register 1
0x10
0x00 7F99
DM_CSR2
DM Debug module control/status register 2
0x00
0x00 7F9A
DM_ENFCTR
DM enable function register
0xFF
Address
0x00 7F95
Block
DM
0x00 7F9B
to
0x00 7F9F
Reserved area (5 bytes)
1. Accessible by debug module only
Doc ID 15962 Rev 5
53/122
Interrupt vector mapping
STM8L151xx, STM8L152xx
6
Interrupt vector mapping
Table 10.
Interrupt mapping
IRQ
No.
Source
block
RESET
TRAP
Description
Reset
Software interrupt
0
1
2
Wakeup
from Halt
mode
Wakeup
from
Active-halt
mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from Wait
(WFE
mode)(1)
Yes
Yes
Yes
Yes
0x00 8000
-
-
-
-
0x00 8004
Reserved
FLASH
DMA1 0/1
EOP/WR_PG_DIS
DMA1 channels 0/1
Vector
address
0x00 8008
-
-
-
-
Yes
Yes
(2)
0x00 800C
Yes
Yes(2)
0x00 8010
(2)
0x00 8014
3
DMA1 2/3
DMA1 channels 2/3
-
-
Yes
4
RTC
RTC alarm interrupt
Yes
Yes
Yes
Yes
0x00 8018
Yes
Yes
Yes
Yes(2)
0x00 801C
Yes
Yes
Yes
Yes(2)
0x00 8020
Yes
Yes
(2)
0x00 8024
(2)
0x00 8028
5
6
7
EXTI
PortE/F interrupt/PVD
E/F/PVD(3) interrupt
EXTIB
EXTID
External interrupt port B
External interrupt port D
Yes
Yes
Yes
8
EXTI0
External interrupt 0
Yes
Yes
Yes
Yes
9
EXTI1
External interrupt 1
Yes
Yes
Yes
Yes(2)
0x00 802C
Yes
Yes
(2)
0x00 8030
Yes
Yes
(2)
0x00 8034
0x00 8038
10
11
EXTI2
EXTI3
External interrupt 2
External interrupt 3
Yes
Yes
Yes
Yes
12
EXTI4
External interrupt 4
Yes
Yes
Yes
Yes(2)
13
EXTI5
External interrupt 5
Yes
Yes
Yes
Yes(2)
0x00 803C
Yes
Yes
(2)
0x00 8040
0x00 8044
14
EXTI6
External interrupt 6
Yes
Yes
Yes
Yes
Yes
Yes(2)
-
-
Yes
Yes
0x00 8048
-
-
Yes
Yes
0x00 804C
Yes
Yes
Yes
Yes(2)
0x00 8050
Update
/Overflow/Trigger/Break
-
-
Yes
Yes(2)
0x00 8054
TIM2
Capture/Compare
-
-
Yes
Yes(2)
0x00 8058
21
TIM3
Update
/Overflow/Trigger/Break
-
-
Yes
Yes(2)
0x00 805C
22
TIM3
Capture/Compare
-
-
Yes
Yes(2)
0x00 8060
23
TIM1
Update /Overflow/Trigger/
COM
-
-
-
Yes(2)
0x00 8064
15
EXTI7
16
LCD
17
CLK/
TIM1/
DAC
System clock switch/CSS
interrupt/TIM1 Break/DAC
18
COMP
/ADC1
Comparator
interrupt/ADC1
19
TIM2
20
54/122
External interrupt 7
LCD interrupt
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 10.
Interrupt mapping (continued)
IRQ
No.
Source
block
24
TIM1
25
Interrupt vector mapping
TIM4
26
SPI1
27
USART 1
28
USART 1
29
I2C1
Description
Capture/Compare
Update/overflow/trigger
End of Transfer
Wakeup
from Halt
mode
Wakeup
from
Active-halt
mode
Wakeup
from Wait
(WFI
mode)
Wakeup
from Wait
(WFE
mode)(1)
-
-
-
Yes(2)
0x00 8068
Yes
Yes(2)
0x00 806C
(2)
0x00 8070
-
-
Vector
address
Yes
Yes
Yes
Yes
Transmission
complete/transmit data
register empty
-
-
Yes
Yes(2)
0x00 8074
Receive Register Data
full/overrun/idle line
detected/parity error
-
-
Yes
Yes(2)
0x00 8078
Yes
Yes
Yes
Yes(2)
0x00 807C
I2C1 interrupt(4)
1. The Low power wait mode is entered when executing a WFE instruction in Low power run mode.
2. In WFE mode, this interrupt is served if it has been previously enabled. After processing the interrupt, the processor goes
back to WFE mode. When this interrupt is configured as a wakeup event, the CPU wakes up and resumes processing.
3. The interrupt from PVD is logically OR-ed with Port E and F interrupts. Register EXTI_CONF allows to select between Port
E and Port F interrupt (see External interrupt port select register (EXTI_CONF) in the RM0031).
4. The device is woken up from Halt or Active-halt mode only when the address received matches the interface address.
Doc ID 15962 Rev 5
55/122
Option bytes
7
STM8L151xx, STM8L152xx
Option bytes
Option bytes contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated memory block.
All option bytes can be modified in ICP mode (with SWIM) by accessing the EEPROM
address. See Table 11 for details on option byte addresses.
The option bytes can also be modified ‘on the fly’ by the application in IAP mode, except for
the ROP and UBC values which can only be taken into account when they are modified in
ICP mode (with the SWIM).
Refer to the STM8L15x Flash programming manual (PM0051) and STM8 SWIM and Debug
Manual (UM0320) for information on SWIM programming procedures.
Table 11.
Addr.
Option byte addresses
Option name
Option
byte
No.
Option bits
7
6
5
4
3
2
1
0
Factory
default
setting
00 4800
Read-out
protection
(ROP)
OPT0
ROP[7:0]
0x00
00 4802
UBC (User
Boot code size)
OPT1
UBC[7:0]
0x00
00 4807
Reserved
00 4808
Independent
watchdog
option
OPT3
[3:0]
Reserved
00 4809
Number of
stabilization
clock cycles for
HSE and LSE
oscillators
OPT4
Reserved
00 480A
Brownout reset
(BOR)
OPT5
[3:0]
Reserved
Bootloader
option bytes
(OPTBL)
OPTBL
[15:0]
00 480B
00 480C
56/122
0x00
WWDG WWDG IWDG
_HALT
_HW
_HALT
LSECNT[1:0]
BOR_TH
IWDG
_HW
HSECNT[1:0]
BOR_
ON
0x00
0x00
0x01
0x00
OPTBL[15:0]
0x00
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 12.
Option bytes
Option byte description
Option
byte
Option description
No.
OPT0
ROP[7:0] Memory readout protection (ROP)
0xAA: Disable readout protection (write access via SWIM protocol)
Refer to Readout protection section in the STM8L15x reference manual (RM0031).
OPT1
UBC[7:0] Size of the user boot code area
0x00: no UBC
0x01: the UBC contains only the interrupt vectors.
0x02: Page 0 and 1 reserved for the UBC and read/write protected. Page 0 contains only the interrupt
vectors.
0x03 - Page 0 to 2 reserved for UBC, memory write-protected
≥ 0xFE - Page 0 to 254 reserved for UBC, memory write-protected
Refer to User boot code section in the STM8L15x reference manual (RM0031).
OPT2
Reserved
IWDG_HW: Independent watchdog
0: Independent watchdog activated by software
1: Independent watchdog activated by hardware
IWDG_HALT: Independent window watchdog reset on Halt/Active-halt
0: Independent watchdog continues running in Halt/Active-halt mode
1: Independent watchdog stopped in Halt/Active-halt mode
OPT3
WWDG_HW: Window watchdog
0: Window watchdog activated by software
1: Window watchdog activated by hardware
WWDG_HALT: Window window watchdog reset on Halt/Active-halt
0: Window watchdog stopped in Halt mode
1: Window watchdog generates a reset when MCU enters Halt mode
HSECNT: Number of HSE oscillator stabilization clock cycles
0x00 - 1 clock cycle
0x01 - 16 clock cycles
0x10 - 512 clock cycles
0x11 - 4096 clock cycles
OPT4
LSECNT: Number of LSE oscillator stabilization clock cycles
0x00 - 1 clock cycle
0x01 - 16 clock cycles
0x10 - 512 clock cycles
0x11 - 4096 clock cycles
Doc ID 15962 Rev 5
57/122
Option bytes
Table 12.
STM8L151xx, STM8L152xx
Option byte description (continued)
Option
byte
Option description
No.
OPT5
BOR_ON:
0: Brownout reset off
1: Brownout reset on
BOR_TH[3:1]: Brownout reset thresholds. Refer to Table 18 for details on the thresholds according to
the value of BOR_TH bits.
OPTBL
58/122
OPTBL[15:0]:
This option is checked by the boot ROM code after reset. Depending on
content of addresses 00 480B, 00 480C and 0x8000 (reset vector) the
CPU jumps to the bootloader or to the reset vector.
Refer to the UM0560 bootloader user manual for more details.
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
8
Unique ID
Unique ID
devices feature a 96-bit unique device identifier which provides a reference number that is
unique for any device and in any context. The 96 bits of the identifier can never be altered by
the user.
The unique device identifier can be read in single bytes and may then be concatenated
using a custom algorithm.
The unique device identifier is ideally suited:
●
For use as serial numbers
●
For use as security keys to increase the code security in the program memory while
using and combining this unique ID with software crytograhic primitives and protocols
before programming the internal memory.
●
To activate secure boot processes
Table 13.
Address
0x4926
0x4927
0x4928
Unique ID registers (96 bits)
Content
description
Unique ID bits
7
6
5
4
3
1
0
U_ID[7:0]
X co-ordinate on
the wafer
U_ID[15:8]
U_ID[23:16]
0x4929
Y co-ordinate on
the wafer
0x492A
Wafer number
U_ID[39:32]
U_ID[31:24]
0x492B
U_ID[47:40]
0x492C
U_ID[55:48]
0x492D
U_ID[63:56]
0x492E
2
Lot number
U_ID[71:64]
0x492F
U_ID[79:72]
0x4930
U_ID[87:80]
0x4931
U_ID[95:88]
Doc ID 15962 Rev 5
59/59
Electrical parameters
STM8L151xx, STM8L152xx
9
Electrical parameters
9.1
Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
9.1.1
Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA= 25 °C and TA = TA max (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3Σ).
9.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3 V. They are given
only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2Σ).
9.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
9.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 10.
Figure 10. Pin loading conditions
STM8L PIN
50 pF
60/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
9.1.5
Electrical parameters
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 11.
Figure 11. Pin input voltage
STM8L PIN
VIN
9.2
Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 14.
Voltage characteristics
Symbol
Ratings
Min
Max
VDD- VSS
External supply voltage (including VDDA
and VDD2)(1)
- 0.3
4.0
Input voltage on true open-drain pins
(PC0 and PC1)(2)
VSS - 0.3
VDD + 4.0
Input voltage on FT pins (PA7 and
PE0)(2)
VSS - 0.3
VDD + 4.0
Input voltage on any other pin (3)
VSS - 0.3
4.0
VIN
VESD
Electrostatic discharge voltage
Unit
V
see Absolute maximum
ratings (electrical sensitivity)
on page 108
1. All power (VDD1, VDD2, VDDA) and ground (VSS1, VSS2, VSSA) pins must always be connected to the
external power supply.
2. Positive injection is not possible on these I/Os. VIN maximum must always be respected. IINJ(PIN) must
never be exceeded. A negative injection is induced by VIN<VSS.
3. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS.
Doc ID 15962 Rev 5
61/122
Electrical parameters
Table 15.
STM8L151xx, STM8L152xx
Current characteristics
Symbol
Ratings
Max.
IVDD
Total current into VDD power line (source)
80
IVSS
Total current out of VSS ground line (sink)
80
Output current sunk by IR_TIM pin (with high sink LED
driver capability)
80
Output current sunk by any other I/O and control pin
25
IIO
IINJ(PIN)
ΣIINJ(PIN)
Output current sourced by any I/Os and control pin
- 25
Injected current on true open-drain pins (PC0 and PC1)(1)
-5
Injected current on FT pins (PA7 and PE0)(1)
-5
Injected current on any other pin (2)
±5
Total injected current (sum of all I/O and control pins) (3)
± 25
Unit
mA
1. Positive injection is not possible on these I/Os. VIN maximum must always be respected. IINJ(PIN) must
never be exceeded. A negative injection is induced by VIN<VSS.
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS.
3. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values). These results are based on
characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.
Table 16.
Symbol
TSTG
TJ
62/122
Thermal characteristics
Ratings
Storage temperature range
Min
Unit
-65 to +150
°C
Maximum junction temperature
Doc ID 15962 Rev 5
150
STM8L151xx, STM8L152xx
9.3
Electrical parameters
Operating conditions
Subject to general operating conditions for VDD and TA.
9.3.1
General operating conditions
Table 17.
General operating conditions
Symbol
fSYSCLK(1)
Parameter
System clock
frequency
VDD
Standard operating
voltage
VDDA
Analog operating
voltage
Power dissipation at
TA= 85 °C for suffix 6
devices
PD(3)
TJ
Min
Max
Unit
1.65 V ≤VDD < 3.6 V
0
16
MHz
1.65(2)
3.6
V
1.65(2)
3.6
V
1.8
3.6
V
ADC not used
Must be at the same
potential as VDD
ADC used
UFQFPN48
288
LQFP48
288
UFQFPN32
288
LQFP32
288
UFQFPN28
282
WLCSP28
286
UFQFPN48
288
LQFP48
77
UFQFPN32
227
LQFP32
85
UFQFPN28
70
WLCSP28
71
mW
Power dissipation at
TA= 125 °C for suffix 3
devices
TA
Conditions
Temperature range
Junction temperature
range
1.65 V ≤VDD < 3.6 V (6 suffix version)
-40
85
1.65 V ≤VDD < 3.6 V (3 suffix version)
-40
125
-40 °C ≤TA < 85 °C
(6 suffix version)
-40
105
-40 °C≤ TA < 125 °C
(3 suffix version)
°C
°C
-40
130
1. fSYSCLK = fCPU
2. 1.8 V at power-up, 1.65 V at power-down if BOR is disabled
3. To calculate PDmax(TA), use the formula PDmax=(TJmax -TA)/ΘJA with TJmax in this table and ΘJA in “Thermal characteristics”
table.
Doc ID 15962 Rev 5
63/122
Electrical parameters
STM8L151xx, STM8L152xx
9.3.2
Power-up / power-down operating conditions
Table 18.
Operating conditions at power-up / power-down
Symbol(1)
tVDD
Parameter(1)
Conditions(1)
Min
Typ
Max
VDD rise time rate
0(2)
∞
VDD fall time rate
0(2)
∞
tTEMP
Reset release delay
VDD rising
VPDR
Power-down reset threshold
Falling edge
1.46
1.5
1.54
Brown-out reset threshold 0
(BOR_TH[2:0]=000)
Falling edge
1.67
1.7
1.74
VBOR0
Rising edge
1.69
1.75
1.80
Brown-out reset threshold 1
(BOR_TH[2:0]=001)
Falling edge
1.87
1.93
1.97
VBOR1
Rising edge
1.96
2.04
2.07
Brown-out reset threshold 2
(BOR_TH[2:0]=010)
Falling edge
2.22
2.3
2.35
VBOR2
Rising edge
2.31
2.41
2.44
Brown-out reset threshold 3
(BOR_TH[2:0]=011)
Falling edge
2.45
2.55
2.60
VBOR3
Rising edge
2.54
2.66
2.7
Brown-out reset threshold 4
(BOR_TH[2:0]=100)
Falling edge
2.68
2.80
2.85
VBOR4
Rising edge
2.78
2.90
2.95
Falling edge
1.80
1.84
1.88
VPVD0
PVD threshold 0
Rising edge
1.88
1.94
1.99
Falling edge
1.98
2.04
2.09
VPVD1
PVD threshold 1
Rising edge
2.08
2.14
2.18
Falling edge
2.2
2.24
2.28
VPVD2
PVD threshold 2
Rising edge
2.28
2.34
2.38
Falling edge
2.39
2.44
2.48
VPVD3
PVD threshold 3
Rising edge
2.47
2.54
2.58
Falling edge
2.57
2.64
2.69
VPVD4
PVD threshold 4
Rising edge
2.68
2.74
2.79
Falling edge
2.77
2.83
2.88
VPVD5
PVD threshold 5
Rising edge
2.87
2.94
2.99
Falling edge
2.97
3.05
3.09
VPVD6
PVD threshold 6
Rising edge
3.08
3.15
3.20
3
1. Based on characterization results, unless otherwise specified.
2. Guaranteed by design, not tested in production.
64/122
Doc ID 15962 Rev 5
Unit
µs/V
ms
V
STM8L151xx, STM8L152xx
Electrical parameters
Figure 12. POR/BOR thresholds
Vdd
6DD
6
Operating power supply
Vdd
"/2THRESHOLD
"/24HRESHOLD?
6"/2
WITHOUT"/2"ATTERYLIFEEXTENSION
60$2
2ESET
3AFE2ESET
3AFE2ESETRELEASE
6
0$24HRESHOLD
Internal NRST
WITH WITHOUT
"/2 "/2
WITH
"/2
"/2ACTIVATEDBYUSERFOR
POWERDOWNDETECTION
"/2ALWAYSACTIVE
ATPOWERUP
Doc ID 15962 Rev 5
4IME
65/122
Electrical parameters
9.3.3
STM8L151xx, STM8L152xx
Supply current characteristics
Total current consumption
The MCU is placed under the following conditions:
●
All I/O pins in input mode with a static value at VDD or VSS (no load)
●
All peripherals are disabled except if explicitly mentioned.
Subject to general operating conditions for VDD and TA.
Table 19.
Symbol
Total current consumption in Run mode
Para
meter
Max
Conditions(1)(2)
Typ
(1)
55°C
fCPU = 125 kHz
HSE
external
clock
(fCPU=fHSE)
(7)
125 °C
(3)
(4)
(4)
0.47
0.49
0.52
0.55
0.48
0.56
0.58
0.61
0.65
0.75
0.84
0.86
0.91
0.99
1.10
1.20
1.25
1.31
1.40
fCPU = 16 MHz
1.85
1.93
2.12
2.29
2.36
fCPU = 125 kHz
0.05
0.06
0.09
0.11
0.12
fCPU = 1 MHz
0.18
0.19
0.20
0.22
0.23
fCPU = 4 MHz
0.55
0.62
0.64
0.71
0.77
fCPU = 8 MHz
0.99
1.20
1.21
1.22
1.24
2.22
2.23(8)
2.24
2.28(8)
0.040 0.045
0.046
0.048
0.050
0.050
0.062(8)
fCPU = 16 MHz
LSI RC osc.
=f
f
(typ. 38 kHz) CPU LSI
LSE external
clock
fCPU = fLSE
1.90
0.035 0.040 0.048(8)
(32.768 kHz)
66/122
105 °C
0.39
fCPU = 1 MHz
HSI RC osc.
fCPU = 4 MHz
(16 MHz)(6)
fCPU = 8 MHz
All
peripherals
Supply OFF,
current code
IDD(RUN) in run
executed
mode
from RAM,
(5)
VDD from
1.65 V to
3.6 V
85 °C
Doc ID 15962 Rev 5
Unit
mA
STM8L151xx, STM8L152xx
Table 19.
Symbol
Electrical parameters
Total current consumption in Run mode (continued)
Para
meter
Max
(1)(2)
Conditions
Typ
(1)
55°C
HSI RC
osc.(9)
All
peripherals
Supply OFF, code
current executed
IDD(RUN)
in Run from Flash,
VDD from
mode
1.65 V to
3.6 V
HSE
external
clock
(fCPU=fHSE)
(7)
LSI RC osc.
85 °C
105 °C
125 °C
(3)
(4)
(4)
fCPU = 125 kHz
0.43
0.55
0.56
0.58
0.62
fCPU = 1 MHz
0.60
0.77
0.80
0.82
0.87
fCPU = 4 MHz
1.11
1.34
1.37
1.39
1.43
fCPU = 8 MHz
1.90
2.20
2.23
2.31
2.40
fCPU = 16 MHz
3.8
4.60
4.75
4.87
4.88
fCPU = 125 kHz
0.30
0.36
0.39
0.44
0.47
fCPU = 1 MHz
0.40
0.50
0.52
0.55
0.56
fCPU = 4 MHz
1.15
1.31
1.40
1.45
1.48
fCPU = 8 MHz
2.17
2.33
2.44
2.56
2.77
fCPU = 16 MHz
4.0
4.46
4.52
4.59
4.77
0.110 0.123
0.130
0.140
0.150
0.100 0.101
0.104
0.119
0.122
fCPU = fLSI
LSE external
clock
fCPU = fLSE
(32.768
(10)
kHz)
Unit
mA
1. Based on characterization results, unless otherwise specified
2. All peripherals OFF, VDD from 1.65 V to 3.6 V, HSI internal RC osc. , fCPU=fSYSCLK
3. For devices with suffix 6
4. For devices with suffix 3
5. CPU executing typical data processing
6. The run from RAM consumption can be approximated with the linear formula:
IDD(run_from_RAM) = Freq * 90 µA/MHz + 380 µA
7. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption
(IDD HSE) must be added. Refer to Table 30.
8. Data guaranteed, each individual device tested in production.
9. The run from Flash consumption can be approximated with the linear formula:
IDD(run_from_Flash) = Freq * 195 µA/MHz + 440 µA
10. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption
(IDD LSE) must be added. Refer to Table 31
Doc ID 15962 Rev 5
67/122
Electrical parameters
STM8L151xx, STM8L152xx
Figure 13. Typ. IDD(RUN) vs. VDD, fCPU = 16 MHz
#
#
#
#
)$$25.(3);M!=
6$$;6=
BJ
1. Typical current consumption measured with code executed from RAM
68/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 20.
Electrical parameters
Total current consumption in Wait mode(1)
Max
Conditions(2)
Symbol Parameter
Typ
55°C
HSI
Supply
IDD(Wait) current in
Wait mode
CPU not
clocked,
all peripherals
OFF,
code executed
from RAM
with Flash in IDDQ
mode,(5)
VDD from
1.65 V to 3.6 V
Supply
IDD(Wait) current in
Wait mode
(3)
105
°C
125
°C
(4)
(4)
fCPU = 125 kHz
0.33
0.39
0.41
0.43
0.45
fCPU = 1 MHz
0.35
0.41
0.44
0.45
0.48
fCPU = 4 MHz
0.42
0.51
0.52
0.54
0.58
fCPU = 8 MHz
0.52
0.57
0.58
0.59
0.62
fCPU = 16 MHz
0.68
0.76
0.79
0.82
0.85
Unit
fCPU = 125 kHz 0.032 0.056 0.068 0.072 0.093
HSE
fCPU = 1 MHz
external
clock
fCPU = 4 MHz
(fCPU=fHSE)
fCPU = 8 MHz
(6)
0.078 0.121 0.144 0.163 0.197
0.218
0.26
0.30
0.36
0.40
0.40
0.52
0.57
0.62
0.66
fCPU = 16 MHz 0.760
1.01
1.05
1.09
1.16
LSI
fCPU = fLSI
0.035 0.044 0.046 0.049 0.054
LSE(7)
external
clock
(32.768
kHz)
fCPU = fLSE
0.032 0.036 0.038 0.044 0.051
fCPU = 125 kHz
0.38
0.48
0.49
0.50
0.56
fCPU = 1 MHz
0.41
0.49
0.51
0.53
0.59
fCPU = 4 MHz
0.50
0.57
0.58
0.62
0.66
fCPU = 8 MHz
0.60
0.66
0.68
0.72
0.74
fCPU = 16 MHz
0.79
0.84
0.86
0.87
0.90
fCPU = 125 kHz
0.06
0.08
0.09
0.10
0.12
0.10
0.17
0.18
0.19
0.22
0.24
0.36
0.39
0.41
0.44
0.50
0.58
0.61
0.62
0.64
fCPU = 16 MHz
1.00
1.08
1.14
1.16
1.18
LSI
fCPU = fLSI
0.055 0.058 0.065 0.073 0.080
LSE(7)
external
clock
(32.768
kHz)
fCPU = fLSE
0.051 0.056 0.060 0.065 0.073
HSI
CPU not
clocked,
all peripherals
OFF,
code executed
from Flash,
VDD from
1.65 V to 3.6 V
85 °C
HSE(6)
fCPU = 1 MHz
external
clock
fCPU = 4 MHz
(fCPU=HSE)
fCPU = 8 MHz
Doc ID 15962 Rev 5
mA
mA
69/122
Electrical parameters
STM8L151xx, STM8L152xx
1. Based on characterization results, unless specified
2. All peripherals OFF, VDD from 1.65 V to 3.6 V, HSI internal RC osc. , fCPU = fSYSCLK
3. For temperature range 6.
4. For temperature range 3.
5. Flash is configured in IDDQ mode in Wait mode by setting the EPM or WAITM bit in the Flash_CR1 register.
6. Oscillator bypassed (HSEBYP = 1 in CLK_ECKCR). When configured for external crystal, the HSE consumption
(IDD HSE) must be added. Refer to Table 30.
7. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption
(IDD HSE) must be added. Refer to Table 31
Figure 14. Typ. IDD(Wait) vs. VDD, fCPU = 16 MHz 1)
)$$7!)4(3);—!=
#
#
#
#
6$$;6=
AI
1. Typical current consumption measured with code executed from Flash
70/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 21.
Electrical parameters
Total current consumption and timing in Low power run mode at VDD = 1.65 V to
3.6 V
Parameter(1)
Symbol
Conditions(2)
all peripherals OFF
LSI RC osc.
(at 38 kHz)
with TIM2 active(3)
IDD(LPR)
Supply current in Low
power run mode
all peripherals OFF
(4) external
LSE
clock
(32.768 kHz)
with TIM2 active (3)
Typ(1)
Max(1)
TA = -40 °C
to 25 °C
5.1
5.4
TA = 55 °C
5.7
6
TA = 85 °C
6.8
7.5
TA = 105 °C
9.2
10.4
TA = 125 °C
13.4
16.6
TA = -40 °C
to 25 °C
5.4
5.7
TA = 55 °C
6.0
6.3
TA = 85 °C
7.2
7.8
TA = 105 °C
9.4
10.7
TA = 125 °C
13.8
17
TA = -40 °C
to 25 °C
5.25
5.6
TA = 55 °C
5.67
6.1
TA = 85 °C
5.85
6.3
TA = 105 °C
7.11
7.6
TA = 125 °C
9.84
12
TA = -40 °C
to 25 °C
5.59
6
TA = 55 °C
6.10
6.4
TA = 85 °C
6.30
7
TA = 105 °C
7.55
8.4
TA = 125 °C
10.1
15
Unit
μA
1. Based on characterization results, unless otherwise specified
2. No floating I/Os
3. Timer 2 clock enabled and counter running
4. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption
(IDD LSE) must be added. Refer to Table 31
Doc ID 15962 Rev 5
71/122
Electrical parameters
STM8L151xx, STM8L152xx
Figure 15. Typ. IDD(LPR) vs. VDD (LSI clock source)
18
16
-40°C
25°C
90°C
130°C
I DD(LPR)L SI [µA]
14
12
10
8
6
4
2
0
1.6
2.1
2.6
VDD [V]
72/122
Doc ID 15962 Rev 5
3.1
3.6
ai18216
STM8L151xx, STM8L152xx
Table 22.
Symbol
Electrical parameters
Total current consumption in Low power wait mode at VDD = 1.65 V to 3.6 V
Parameter(1)(2)
Typ Max
Conditions
(1)(2)
(1)(2)
3
3.3
TA = 55 °C
3.3
3.6
TA = 85 °C
4.4
5
TA = 105 °C
6.7
8
TA = 125 °C
11
14
TA = -40 °C to 25 °C
3.4
3.7
TA = 55 °C
3.7
4
TA = 85 °C
4.8
5.4
TA = 105 °C
7
8.3
TA = -40 °C to 25 °C
all peripherals OFF
LSI RC osc.
(at 38 kHz)
(3)
with TIM2 active
IDD(LPW)
Supply current in
Low power wait mode
all peripherals OFF
LSE external
clock(4)
(32.768 kHz)
with TIM2 active (3)
TA = 125 °C
11.3 14.5
TA = -40 °C to 25 °C
2.35
TA = 55 °C
2.42 2.82
TA = 85 °C
3.10 3.71
TA = 105 °C
4.36
5.7
TA = 125 °C
7.20
11
TA = -40 °C to 25 °C
2.46 2.75
TA = 55 °C
2.50 2.81
TA = 85 °C
3.16 3.82
TA = 105 °C
4.51
5.9
TA = 125 °C
7.28
11
2.7
Unit
μA
1. No floating I/Os.
2. Based on characterization results, unless otherwise specified.
3. Timer 2 clock enabled and counter is running.
4. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption
(IDD LSE) must be added. Refer to Table 31.
Doc ID 15962 Rev 5
73/122
Electrical parameters
STM8L151xx, STM8L152xx
Figure 16. Typ. IDD(LPW) vs. VDD (LSI clock source)
16.00
14.00
IDD(LPW) LSI [µA]
-40°C
12.00
25°C
10.00
90°C
130°C
8.00
6.00
4.00
2.00
0.00
1.6
2.1
2.6
VDD [V]
3.1
3.6
ai18217
74/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 23.
Symbol
Electrical parameters
Total current consumption and timing in Active-halt mode
at VDD = 1.65 V to 3.6 V
Parameter(1)(2)
Conditions
TA = -40 °C to 25 °C
LCD OFF(3)
LCD ON
(static duty/
external
VLCD) (5)
IDD(AH)
Supply current in
Active-halt mode
LSI RC
(at 38 kHz)
LCD ON
(1/4 duty/
external
VLCD) (6)
LCD ON
(1/4 duty/
internal
VLCD) (7)
Doc ID 15962 Rev 5
Typ
(1)(2)
0.9
Max
(4)
2.1
TA = 55 °C
1.2
3
TA = 85 °C
1.5
3.4
TA = 105 °C
2.6
6.6
TA = 125 °C
5.1
12
TA = -40 °C to 25 °C
1.4
3.1
TA = 55 °C
1.5
3.3
TA = 85 °C
1.9
4.3
TA = 105 °C
2.9
6.8
TA = 125 °C
5.5
13
TA = -40 °C to 25 °C
1.9
4.3
TA = 55 °C
1.95
4.4
TA = 85 °C
2.4
5.4
TA = 105 °C
3.4
7.6
TA = 125 °C
6.0
15
TA = -40 °C to 25 °C
3.9
8.75
TA = 55 °C
4.15
9.3
TA = 85 °C
4.5
10.2
TA = 105 °C
5.6
13.5
TA = 125 °C
6.8
16.3
Unit
μA
75/122
Electrical parameters
Table 23.
STM8L151xx, STM8L152xx
Total current consumption and timing in Active-halt mode
at VDD = 1.65 V to 3.6 V (continued)
Symbol
Parameter(1)(2)
Conditions
LCD OFF(9)
LCD ON
(static duty)
(5)
IDD(AH)
Supply current in
Active-halt mode
LSE external
clock
(32.768 kHz)
(8)
Max
TA = -40 °C to 25 °C
0.5
1.2
TA = 55 °C
0.62
1.4
TA = 85 °C
0.88
2.1
TA = 105 °C
2.1
4.85
TA = 125 °C
4.8
11
TA = -40 °C to 25 °C
0.85
1.9
TA = 55 °C
0.95
2.2
TA = 85 °C
1.3
3.2
TA = 105 °C
2.3
5.3
TA = 125 °C
5.0
12
TA = -40 °C to 25 °C
1.5
2.5
1.6
3.8
TA = 55 °C
LCD ON
T = 85 °C
(1/4 duty) (6) A
TA = 105 °C
1.8
4.2
2.9
7.0
TA = 125 °C
5.7
14
TA = -40 °C to 25 °C
3.4
7.6
TA = 55 °C
3.7
8.3
TA = 85 °C
3.9
9.2
TA = 105 °C
5.0
14.5
TA = 125 °C
6.3
15.2
LCD ON
(1/4 duty/
internal
VLCD) (7)
IDD(WUFAH)
Typ
(1)(2)
Supply current during
wakeup time from
Active-halt mode
(using HSI)
2.4
tWU_HSI(AH)(10) Wakeup time from
Active-halt mode to
(11)
Run mode (using HSI)
4.7
Wakeup time from
Active-halt mode to
Run mode (using LSI)
150
tWU_LSI(AH)(10)
(11)
Unit
μA
mA
6.2
μs
μs
1. No floating I/O, unless otherwise specified.
2. Based on characterization results, unless otherwise specified.
3. RTC enabled. Clock source = LSI
4. Based on Design estimation.
5. RTC enabled, LCD enabled with external VLCD = 3 V, static duty, division ratio = 256, all pixels active, no LCD connected.
6. RTC enabled, LCD enabled with external VLCD, 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.
76/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Electrical parameters
7. LCD enabled with internal LCD booster VLCD = 3 V , 1/4 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD
connected.
8. Oscillator bypassed (LSEBYP = 1 in CLK_ECKCR). When configured for extenal crystal, the LSE consumption
(IDD LSE) must be added. Refer to Table 31
9. RTC enabled. Clock source = LSE
10. Wakeup time until start of interrupt vector fetch.
The first word of interrupt routine is fetched 4 CPU cycles after tWU.
11. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register.
Table 24.
Typical current consumption in Active-halt mode, RTC clocked by LSE external crystal
Symbol
Parameter
Condition
Typ
LSE
VDD = 1.8 V
IDD(AH) (1)
Supply current in Active-halt
mode
VDD = 3 V
VDD = 3.6 V
Unit
1.15
(2)
LSE/32
1.05
LSE
1.30
LSE/32(2)
1.20
LSE
1.45
(2)
LSE/32
µA
1.35
1. Based on measurements on bench with 32.768 kHz external crystal oscillator.
2. RTC clock is LSE divided by 32.
Table 25.
Total current consumption and timing in Halt mode at VDD = 2 V
Symbol
IDD(Halt)
Typ
Max
(1)(2)
(1)(2)
TA = -40 °C to 25 °C
350
1400
TA = 55 °C
580
2000
TA = 85 °C
1160
2800
TA = 105 °C
2560
6700
Parameter (1)(2)
Supply current in Halt mode
(Ultra low power ULP bit =1 in
the PWR_CSR2 register)
Condition
Unit
nA
IDD(WUHalt)
Supply current during wakeup
time from Halt mode (using
HSI)
2.4
tWU_HSI(Halt)(3)(4)
Wakeup time from Halt to Run
mode (using HSI)
4.7
tWU_LSI(Halt) (3)(4)
Wakeup time from Halt mode
to Run mode (using LSI)
150
mA
6.2
µs
µs
1. TA = -40 to 125 °C, no floating I/O, unless otherwise specified
2. Based on characterization results, unless otherwise specified
3. ULP=0 or ULP=1 and FWU=1 in the PWR_CSR2 register
4. Wakeup time until start of interrupt vector fetch.
The first word of interrupt routine is fetched 4 CPU cycles after tWU
Doc ID 15962 Rev 5
77/122
Electrical parameters
STM8L151xx, STM8L152xx
Current consumption of on-chip peripherals
Table 26.
Peripheral current consumption
Symbol
Typ.
Parameter
VDD = 3.0 V
IDD(TIM1)
TIM1 supply current(1)
13
IDD(TIM2)
TIM2 supply current (1)
8
IDD(TIM3)
TIM3 supply current (1)
8
IDD(TIM4)
TIM4 timer supply current (1)
3
USART1 supply current (2)
6
IDD(SPI1)
SPI1 supply current (2)
3
IDD(I2C1)
I2C1 supply current (2)
5
IDD(DMA1)
DMA1 supply current
3
IDD(WWDG)
WWDG supply current
2
Peripherals ON(3)
44
IDD(USART1)
IDD(ALL)
IDD(ADC1)
ADC1 supply current(4)
1500
IDD(DAC)
DAC supply current(5)
370
IDD(COMP1)
Comparator 1 supply current(6)
IDD(COMP2)
Comparator 2 supply current(6)
IDD(PVD/BOR)
IDD(BOR)
IDD(IDWDG)
Unit
µA/MHz
µA/MHz
0.160
Slow mode
2
Fast mode
5
Power voltage detector and brownout Reset unit supply current
µA
(7)
2.6
Brownout Reset unit supply current (7)
2.4
including LSI supply
current
0.45
excluding LSI
supply current
0.05
Independent watchdog supply current
1. Data based on a differential IDD measurement between all peripherals OFF and a timer counter running at 16 MHz. The
CPU is in Wait mode in both cases. No IC/OC programmed, no I/O pins toggling. Not tested in production.
2. Data based on a differential IDD measurement between the on-chip peripheral in reset configuration and not clocked and
the on-chip peripheral when clocked and not kept under reset. The CPU is in Wait mode in both cases. No I/O pins
toggling. Not tested in production.
3. Peripherals listed above the IDD(ALL) parameter ON: TIM1, TIM2, TIM3, TIM4, USART1, SPI1, I2C1, DMA1, WWDG.
4. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion.
5. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of
VDD /2. Floating DAC output.
6. Data based on a differential IDD measurement between COMP1 or COMP2 in reset configuration and COMP1 or COMP2
enabled with static inputs. Supply current of internal reference voltage excluded.
7. Including supply current of internal reference voltage.
78/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 27.
Current consumption under external reset
Symbol
IDD(RST)
Electrical parameters
Parameter
Conditions
Supply current under
external reset (1)
Typ
VDD = 1.8 V
48
VDD = 3 V
76
VDD = 3.6 V
91
All pins are externally
tied to VDD
Unit
µA
1. All pins except PA0, PB0 and PB4 are floating under reset. PA0, PB0 and PB4 are configured with pull-up under reset.
9.3.4
Clock and timing characteristics
HSE external clock (HSEBYP = 1 in CLK_ECKCR)
Subject to general operating conditions for VDD and TA.
Table 28.
Symbol
HSE external clock characteristics
Parameter
Conditions
fHSE_ext
External clock source
frequency(1)
VHSEH(2)
OSC_IN input pin high level
voltage
(2)
OSC_IN input pin low level
voltage
Min
Typ
Max
Unit
1
16
MHz
0.7 x VDD
VDD
V
VHSEL
Cin(HSE)
ILEAK_HSE
VSS
0.3 x VDD
OSC_IN input
capacitance(1)
2.6
OSC_IN input leakage
current
pF
VSS < VIN < VDD
±1
µA
1. Guaranteed by design, not tested in production.
2. Data based on characterization results, not tested in production.
LSE external clock (LSEBYP=1 in CLK_ECKCR)
Subject to general operating conditions for VDD and TA.
Table 29.
Symbol
LSE external clock characteristics
Parameter
Min
Typ
Max
fLSE_ext
External clock source frequency(1)
VLSEH(2)
OSC32_IN input pin high level voltage
0.7 x VDD
VDD
VLSEL(2)
OSC32_IN input pin low level voltage
VSS
0.3 x VDD
Cin(LSE)
OSC32_IN input capacitance(1)
ILEAK_LSE
OSC32_IN input leakage current
32.768
Unit
kHz
V
0.6
pF
±1
µA
1. Guaranteed by design, not tested in production.
2. Data based on characterization results, not tested in production.
Doc ID 15962 Rev 5
79/122
Electrical parameters
STM8L151xx, STM8L152xx
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterization results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Table 30.
HSE oscillator characteristics
Symbol
fHSE
Parameter
Conditions
Min
High speed external oscillator
frequency
Typ
1
Max
Unit
16
MHz
RF
Feedback resistor
200
kΩ
C(1)
Recommended load capacitance (2)
20
pF
IDD(HSE)
gm
HSE oscillator power consumption
C = 20 pF,
fOSC = 16 MHz
2.5 (startup)
0.7 (stabilized)(3)
C = 10 pF,
fOSC =16 MHz
2.5 (startup)
0.46 (stabilized)(3)
Oscillator transconductance
mA
3.5
tSU(HSE)(4) Startup time
VDD is stabilized
mA/V
1
ms
1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small Rm value.
Refer to crystal manufacturer for more details
3. Guaranteed by design. Not tested in production.
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This
value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Figure 17. HSE oscillator circuit diagram
fHSE to core
Rm
RF
CO
Lm
CL1
OSC_IN
Cm
gm
Resonator
Consumption
control
Resonator
STM8
OSC_OUT
CL2
HSE oscillator critical gm formula
g mcrit = ( 2 × Π × f HSE ) 2 × R m ( 2Co + C )
2
Rm: Motional resistance (see crystal specification), Lm: Motional inductance (see crystal specification),
Cm: Motional capacitance (see crystal specification), Co: Shunt capacitance (see crystal specification),
CL1=CL2=C: Grounded external capacitance
gm >> gmcrit
80/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Electrical parameters
LSE crystal/ceramic resonator oscillator
The LSE clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All
the information given in this paragraph is based on characterization results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Table 31.
LSE oscillator characteristics
Symbol
Parameter
Conditions
fLSE
Low speed external oscillator
frequency
RF
Feedback resistor
C(1)
Recommended load capacitance (2)
Min
ΔV = 200 mV
Typ
Max
Unit
32.768
kHz
1.2
MΩ
8
pF
1.4(3)
IDD(LSE)
gm
LSE oscillator power consumption
VDD = 1.8 V
450
VDD = 3 V
600
VDD = 3.6 V
750
Oscillator transconductance
nA
3
tSU(LSE)(4) Startup time
VDD is stabilized
µA
µA/V
1
s
1. C=CL1=CL2 is approximately equivalent to 2 x crystal CLOAD.
2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small Rm value.
Refer to crystal manufacturer for more details.
3. Guaranteed by design. Not tested in production.
4.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation.
This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
Figure 18. LSE oscillator circuit diagram
fLSE
Rm
Lm
RF
CO
CL1
OSC_IN
Cm
gm
Resonator
Consumption
control
Resonator
STM8
OSC_OUT
CL2
Doc ID 15962 Rev 5
81/122
Electrical parameters
STM8L151xx, STM8L152xx
Internal clock sources
Subject to general operating conditions for VDD, and TA.
High speed internal RC oscillator (HSI)
Table 32.
Symbol
fHSI
HSI oscillator characteristics
Parameter (1)
Conditions(1)
Frequency
Min
VDD = 3.0 V
-1
VDD = 3.0 V, 0 °C ≤TA ≤ 55 °C
(2)
-1.5
VDD = 3.0 V, -10 °C ≤TA ≤ 85 °C
VDD = 3.0 V, -10 °C ≤TA ≤ 125 °C
1.65 V ≤VDD ≤ 3.6 V,
-40 °C ≤TA ≤ 125 °C
(2)
1.5
(2)
%
%
2 (2)
%
-2.5
(2)
2(2)
%
-4.5
(2)
(2)
%
3
%
±0.4 (2)
±0.5(2)
%
2
-4.5
1.65 V ≤VDD ≤ 3.6 V,
-40 °C ≤TA ≤ 125 °C
Unit
MHz
1
(2)
-2 (2)
VDD = 3.0 V, -10 °C ≤TA ≤ 70 °C
Accuracy of HSI
oscillator (factory
calibrated)
Max
16
VDD = 3.0 V, TA = 25 °C
ACCHSI
Typ
TRIM
HSI user trim
resolution
tsu(HSI)
HSI oscillator setup
time (wakeup time)
3.7
7.4 (2)
µs
IDD(HSI)
HSI oscillator power
consumption
100
140 (2)
µA
1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified.
2. Data based on characterization results, not tested in production.
Figure 19. Typical HSI frequency vs VDD
(3)FREQUENCY;-(Z=
#
#
#
#
6$$;6=
AI
82/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Electrical parameters
Low speed internal RC oscillator (LSI)
Table 33.
Symbol
fLSI
LSI oscillator characteristics
Parameter (1)
Conditions(1)
Frequency
tsu(LSI)
LSI oscillator wakeup time
IDD(LSI)
LSI oscillator frequency
drift(3)
0 °C ≤TA ≤ 85 °C
Min
Typ
Max
Unit
26
38
56
kHz
200(2)
µs
4
%
-10
1. VDD = 1.8 V to 3.0 V, TA = -40 to 125 °C unless otherwise specified.
2. Data based on characterization results, not tested in production.
3. This is a deviation for an individual part, once the initial frequency has been measured.
Figure 20. Typical LSI frequency vs. VDD
,3)FREQUENCY;K(Z=
#
#
#
#
6$$;6=
AI
Doc ID 15962 Rev 5
83/122
Electrical parameters
9.3.5
STM8L151xx, STM8L152xx
Memory characteristics
TA = -40 to 125 °C unless otherwise specified.
Table 34.
RAM and hardware registers
Symbol
Parameter
Conditions
Min
VRM
Data retention mode (1)
Halt mode (or Reset)
1.4
Typ
Max
Unit
V
1. Minimum supply voltage without losing data stored in RAM (in Halt mode or under Reset) or in hardware
registers (only in Halt mode). Guaranteed by characterization, not tested in production.
Flash memory
Table 35.
Symbol
VDD
tprog
Iprog
tRET
NRW
Flash program and data EEPROM memory
Parameter
Operating voltage
(all modes, read/write/erase)
Conditions
Min
fSYSCLK = 16 MHz
1.65
Max
(1)
Unit
3.6
V
Programming time for 1 or 128 bytes (block)
erase/write cycles (on programmed byte)
6
ms
Programming time for 1 to 128 bytes (block)
write cycles (on erased byte)
3
ms
0.7
mA
TA=+25 °C, VDD = 3.0 V
Programming/ erasing consumption
TA=+25 °C, VDD = 1.8 V
Data retention (program memory) after 10000
erase/write cycles at TA=+85 °C
TRET=+55 °C
20(1)
Data retention (data memory) after 10000
erase/write cycles at TA=+85 °C
TRET=+55 °C
20(1)
Data retention (data memory) after 10000
erase/write cycles at TA=+85 °C
TRET=+85 °C
1(1)
Erase/write cycles (program memory)
See notes (1)(2)
10(1)
Erase/write cycles (data memory)
See notes (1)(3)
1. Data based on characterization results, not tested in production.
2. Retention guaranteed after cycling is 10 years @ 55 °C.
3. Retention guaranteed after cycling is 1 year @ 55 °C.
4. Data based on characterization performed on the whole data memory.
84/122
Typ
Doc ID 15962 Rev 5
300(1)
(4)
years
kcycles
STM8L151xx, STM8L152xx
9.3.6
Electrical parameters
I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or
an external pull-up or pull-down resistor.
Table 36.
Symbol
VIL
I/O static characteristics
Parameter(1)
Input low level voltage(2)
Conditions(1)
0.3 x VDD
Input voltage on FT
pins (PA7 and PE0)
VSS -0.3
0.3 x VDD
Input voltage on any
other pin
VSS -0.3
0.3 x VDD
Input voltage on FT
pins (PA7 and PE0)
with VDD < 2 V
Input voltage on FT
pins (PA7 and PE0)
with VDD ≥ 2 V
Input voltage on any
other pin
Vhys
Ilkg
RPU
CIO(7)
Schmitt trigger voltage hysteresis (3)
Input leakage current (4)
Weak pull-up equivalent resistor(6)
Max
VSS -0.3
Input voltage on true
open-drain pins (PC0
and PC1)
with VDD ≥ 2 V
Input high level voltage (2)
Typ
Input voltage on true
open-drain pins (PC0
and PC1)
Input voltage on true
open-drain pins (PC0
and PC1)
with VDD < 2 V
VIH
Min
Unit
V
5.2
0.70 x VDD
5.5
V
5.2
0.70 x VDD
5.5
VDD+0.3
0.70 x VDD
Standard I/Os
200
True open drain I/Os
200
mV
VSS≤VIN≤VDD
Standard I/Os
-
-
50 (5)
VSS≤VIN≤VDD
True open drain I/Os
-
-
200(5)
VSS≤VIN≤VDD
PA0 with high sink LED
driver capability
-
-
200(5)
30
45
60
VIN=VSS
I/O pin capacitance
5
nA
kΩ
pF
1. VDD = 3.0 V, TA = -40 to 125 °C unless otherwise specified.
Doc ID 15962 Rev 5
85/122
Electrical parameters
STM8L151xx, STM8L152xx
2. Data based on characterization results, not tested in production.
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.
4. The max. value may be exceeded if negative current is injected on adjacent pins.
5. Not tested in production.
6. RPU pull-up equivalent resistor based on a resistive transistor(corresponding IPU current characteristics described in
Figure 24).
7. Data guaranteed by Design, not tested in production.
Figure 21. Typical VIL and VIH vs VDD (standard I/Os)
#
#
#
#
6),AND6)(;6=
6$$;6=
AI
Figure 22. Typical VIL and VIH vs VDD (true open drain I/Os)
#
#
#
#
6),AND6)(;6=
6$$;6=
AI
86/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Electrical parameters
Figure 23. Typical pull-up resistance RPU vs VDD with VIN=VSS
#
#
#
#
0ULL5PRESISTANCE;K7=
6$$;6=
AI
Figure 24. Typical pull-up current Ipu vs VDD with VIN=VSS
0ULL5PCURRENT;—!=
#
#
#
#
6$$;6=
AI
Doc ID 15962 Rev 5
87/122
Electrical parameters
STM8L151xx, STM8L152xx
Output driving current
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 37.
Output driving current (standard ports)
I/O
Symbol
Type
Output low level voltage for an I/O pin
Standard
VOL (1)
Parameter
VOH (2) Output high level voltage for an I/O pin
Conditions
Min
Max
Unit
IIO = +2 mA,
VDD = 3.0 V
0.45
V
IIO = +2 mA,
VDD = 1.8 V
0.45
V
IIO = +10 mA,
VDD = 3.0 V
0.7
V
IIO = -2 mA,
VDD = 3.0 V
VDD-0.45
V
IIO = -1 mA,
VDD = 1.8 V
VDD-0.45
V
IIO = -10 mA,
VDD = 3.0 V
VDD-0.7
V
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 15 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
2. The IIO current sourced must always respect the absolute maximum rating specified in Table 15 and the
sum of IIO (I/O ports and control pins) must not exceed IVDD.
Table 38.
Output driving current (true open drain ports)
Open drain
I/O
Symbol
Type
VOL
(1)
Parameter
Output low level voltage for an I/O pin
Conditions
Min
Max
IIO = +3 mA,
VDD = 3.0 V
0.45
IIO = +1 mA,
VDD = 1.8 V
0.45
Unit
V
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 15 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
Table 39.
Output driving current (PA0 with high sink LED driver capability)
IR
I/O
Symbol
Type
VOL (1)
Parameter
Output low level voltage for an I/O pin
Conditions
IIO = +20 mA,
VDD = 2.0 V
Min
Max
Unit
0.45
V
1. The IIO current sunk must always respect the absolute maximum rating specified in Table 15 and the sum
of IIO (I/O ports and control pins) must not exceed IVSS.
88/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Electrical parameters
Figure 25. Typ. VOL @ VDD = 3.0 V (standard
ports)
Figure 26. Typ. VOL @ VDD = 1.8 V (standard
ports)
#
#
#
#
#
#
#
#
6/, ;6=
6/, ;6=
)/, ;M!=
)/,;M!=
AI
Figure 27. Typ. VOL @ VDD = 3.0 V (true open
drain ports)
AI
Figure 28. Typ. VOL @ VDD = 1.8 V (true open
drain ports)
#
#
#
#
6/, ;6=
6/, ;6=
#
#
#
#
)/, ;M!=
)/, ;M!=
BJ
AI
Figure 29. Typ. VDD - VOH @ VDD = 3.0 V
(standard ports)
Figure 30. Typ. VDD - VOH @ VDD = 1.8 V
(standard ports)
#
#
#
#
#
#
#
#
6$$6/( ;6=
6$$6/( ;6=
)/( ;M!=
) /( ;M!=
AI
Doc ID 15962 Rev 5
BJ
89/122
Electrical parameters
STM8L151xx, STM8L152xx
NRST pin
Subject to general operating conditions for VDD and TA unless otherwise specified.
Table 40.
NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ (1)
Max
VIL(NRST)
NRST input low level voltage (1)
VSS
0.8
VIH(NRST)
NRST input high level voltage (1)
1.4
VDD
VOL(NRST)
IOL = 2 mA
for 2.7 V ≤VDD ≤ 3.6 V
NRST output low level voltage
Unit
V
0.4
IOL = 1.5 mA
for VDD < 2.7 V
10%VDD
NRST input hysteresis(3)
VHYST
RPU(NRST)
mV
(2)
NRST pull-up equivalent resistor
VF(NRST)
NRST input filtered pulse (3)
VNF(NRST)
NRST input not filtered pulse (3)
30
45
60
kΩ
50
ns
300
1. Data based on characterization results, not tested in production.
2. 200 mV min.
3. Data guaranteed by design, not tested in production.
Figure 31. Typical NRST pull-up resistance RPU vs VDD
#
#
#
#
0ULLUPRESISTANCE;K7=
6$$;6=
AI
90/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Electrical parameters
Figure 32. Typical NRST pull-up current Ipu vs VDD
0ULL5PCURRENT;—!=
#
#
#
#
6$$ ;6=
AI
The reset network shown in Figure 33 protects the device against parasitic resets. The user
must ensure that the level on the NRST pin can go below the VIL max. level specified in
Table 40. Otherwise the reset is not taken into account internally.
Figure 33. Recommended NRST pin configuration
VDD
RPU
RSTIN
EXTERNAL
RESET
CIRCUIT
0.01 μF
Filter
INTERNAL RESET
STM8L
Doc ID 15962 Rev 5
91/122
Electrical parameters
9.3.7
STM8L151xx, STM8L152xx
Communication interfaces
SPI1 - Serial peripheral interface
Unless otherwise specified, the parameters given in Table 41 are derived from tests
performed under ambient temperature, fSYSCLK frequency and VDD supply voltage
conditions summarized in Section 9.3.1. Refer to I/O port characteristics for more details on
the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).
Table 41.
Symbol
fSCK
1/tc(SCK)
tr(SCK)
tf(SCK)
tsu(NSS)(2)
th(NSS)
(2)
SPI1 characteristics
Parameter
Min
Max
Master mode
0
8
Slave mode
0
8
SPI1 clock rise and fall
time
Capacitive load: C = 30 pF
-
30
NSS setup time
Slave mode
4 x 1/fSYSCLK
-
NSS hold time
Slave mode
80
-
SCK high and low time
Master mode,
fMASTER = 8 MHz, fSCK= 4 MHz
105
145
Master mode
30
-
Slave mode
3
-
Master mode
15
-
Slave mode
0
-
SPI1 clock frequency
(2)
tw(SCKH)
tw(SCKL)(2)
Conditions(1)
tsu(MI) (2)
tsu(SI)(2)
Data input setup time
th(MI) (2)
th(SI)(2)
Data input hold time
ta(SO)(2)(3)
Data output access time
Slave mode
-
3x 1/fSYSCLK
tdis(SO)(2)(4)
30
-
Data output disable time
Slave mode
(2)
Data output valid time
Slave mode (after enable edge)
-
60
tv(MO)(2)
Data output valid time
Master mode (after enable
edge)
-
20
Slave mode (after enable edge)
15
-
Master mode (after enable
edge)
1
-
tv(SO)
th(SO)(2)
th(MO)(2)
Data output hold time
1. Parameters are given by selecting 10 MHz I/O output frequency.
2. Values based on design simulation and/or characterization results, and not tested in production.
3. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.
4. Min time is for the minimum time to invalidate the output and max time is for the maximum time to put the data in Hi-Z.
92/122
Doc ID 15962 Rev 5
Unit
MHz
ns
STM8L151xx, STM8L152xx
Electrical parameters
Figure 34. SPI1 timing diagram - slave mode and CPHA=0
NSS input
SCK Input
tSU(NSS)
CPHA= 0
CPOL=0
tc(SCK)
th(NSS)
tw(SCKH)
tw(SCKL)
CPHA= 0
CPOL=1
tv(SO)
ta(SO)
MISO
OUT P UT
tr(SCK)
tf(SCK)
th(SO)
MS B O UT
BI T6 OUT
tdis(SO)
LSB OUT
tsu(SI)
MOSI
I NPUT
B I T1 IN
M SB IN
LSB IN
th(SI)
ai14134
Figure 35. SPI1 timing diagram - slave mode and CPHA=1(1)
NSS input
SCK Input
tSU(NSS)
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tc(SCK)
tw(SCKH)
tw(SCKL)
tv(SO)
ta(SO)
MISO
OUT P UT
MS B O UT
tsu(SI)
MOSI
I NPUT
th(NSS)
th(SO)
BI T6 OUT
tr(SCK)
tf(SCK)
tdis(SO)
LSB OUT
th(SI)
B I T1 IN
M SB IN
LSB IN
ai14135
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
Doc ID 15962 Rev 5
93/122
Electrical parameters
STM8L151xx, STM8L152xx
Figure 36. SPI1 timing diagram - master mode(1)
High
NSS input
SCK Input
CPHA= 0
CPOL=0
SCK Input
tc(SCK)
CPHA=1
CPOL=0
CPHA= 0
CPOL=1
CPHA=1
CPOL=1
tsu(MI)
MISO
INP UT
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
MS BIN
BI T6 IN
LSB IN
th(MI)
MOSI
OUTUT
M SB OUT
B I T1 OUT
tv(MO)
LSB OUT
th(MO)
ai14136
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
94/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Electrical parameters
I2C - Inter IC control interface
Subject to general operating conditions for VDD, fSYSCLK, and TA unless otherwise specified.
The STM8L I2C interface (I2C1) meets the requirements of the Standard I2C communication
protocol described in the following table with the restriction mentioned below:
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (SDA and SCL).
Table 42.
Symbol
I2C characteristics
Parameter
Standard mode
I2C
Fast mode I2C(1)
Min(2)
Min (2)
Max (2)
Unit
Max (2)
tw(SCLL)
SCL clock low time
4.7
1.3
tw(SCLH)
SCL clock high time
4.0
0.6
tsu(SDA)
SDA setup time
250
100
th(SDA)
SDA data hold time
0
0
tr(SDA)
tr(SCL)
SDA and SCL rise time
1000
300
tf(SDA)
tf(SCL)
SDA and SCL fall time
300
300
th(STA)
START condition hold time
4.0
0.6
tsu(STA)
Repeated START condition setup
time
4.7
0.6
tsu(STO)
STOP condition setup time
4.0
0.6
μs
STOP to START condition time (bus
free)
4.7
1.3
μs
tw(STO:STA)
Cb
Capacitive load for each bus line
400
μs
900
ns
μs
400
pF
1. fSYSCLK must be at least equal to 8 MHz to achieve max fast I2C speed (400 kHz).
2. Data based on standard I2C protocol requirement, not tested in production.
Note:
For speeds around 200 kHz, the achieved speed can have a± 5% tolerance
For other speed ranges, the achieved speed can have a± 2% tolerance
The above variations depend on the accuracy of the external components used.
Doc ID 15962 Rev 5
95/122
Electrical parameters
STM8L151xx, STM8L152xx
Figure 37. Typical application with I2C bus and timing diagram 1)
VDD
4.7kΩ
I2C
VDD
4.7kΩ
BUS
100Ω
SDA
100Ω
SCL
STM8L
REPEATED START
START
tsu(STA)
tw(STO:STA)
SDA
tr(SDA)
tf(SDA)
tsu(SDA)
th(SDA)
tr(SCL)
tf(SCL)
STOP
SCL
th(STA)
tw(SCLH)
tw(SCLL)
1. Measurement points are done at CMOS levels: 0.3 x VDD and 0.7 x VDD
96/122
Doc ID 15962 Rev 5
tsu(STO)
START
STM8L151xx, STM8L152xx
9.3.8
Electrical parameters
LCD controller (STM8L152xx only)
Table 43.
LCD characteristics(1)
Symbol
Parameter
VLCD
LCD external voltage
VLCD0
LCD internal reference voltage 0
2.6
V
VLCD1
LCD internal reference voltage 1
2.7
V
VLCD2
LCD internal reference voltage 2
2.8
V
VLCD3
LCD internal reference voltage 3
2.9
V
VLCD4
LCD internal reference voltage 4
3.0
V
VLCD5
LCD internal reference voltage 5
3.1
V
VLCD6
LCD internal reference voltage 6
3.2
V
VLCD7
LCD internal reference voltage 7
3.3
V
CEXT
VLCD external capacitance
Supply
current(2)
Min
Typ
0.1
Unit
3.6
V
2
µF
3
µA
Supply current(2) at VDD = 3 V
3
µA
Low drive resistive network
6.6
MΩ
RLN (4)
(= 3 X RL)
High drive resistive network
360
kΩ
V33
Segment/Common higher level voltage
V23
Segment/Common 2/3 level voltage
2/3VLCDx
V
V12
Segment/Common 1/2 level voltage
1/2VLCDx
V
V13
Segment/Common 1/3 level voltage
1/3VLCDx
V
V0
Segment/Common lowest level voltage
IDD
at VDD = 1.8 V
Max.
(3)
RHN
(= 3 X RH)
VLCDx
0
V
V
1. Data guaranteed by Design, not tested in production.
2. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels
active, no LCD connected.
3. RHN is the total resistive network value. The bridge is made of 3 RH serial resistors.
4. RLN is the total resistive network value. The bridge is made of 3 RL serial resistors.
VLCD external capacitor (STM8L152xx only)
The application can achieve a stabilized LCD reference voltage by connecting an external
capacitor CEXT to the VLCD pin. CEXT is specified in Table 43.
Doc ID 15962 Rev 5
97/122
Electrical parameters
9.3.9
STM8L151xx, STM8L152xx
Embedded reference voltage
Based on characterization results, unless otherwise specified.
Table 44.
Reference voltage characteristics
Symbol
Parameter
Conditions
Min
Typ
Max.
Unit
IREFINT
Internal reference voltage
consumption
1.4
TS_VREFINT
ADC sampling time when reading
the internal reference voltage(1)
5
10
µs
IBUF
Internal reference voltage buffer
consumption (used for ADC)
13.5
25
µA
VREFINT out
Reference voltage output
1.202 1.224 1.242
VREFINT_DIV1
1/4 reference voltage
25
VREFNT_DIV2
1/2 reference voltage
50
VREFNT_DIV3
3/4 reference voltage
75
ILPBUF
Internal reference voltage low power
buffer consumption (used for
comparators or output)
730
IREFOUT
µA
V
%VREFINT_COMP
1200
nA
Buffer output current(2)
1
µA
CREFOUT
Reference voltage output load
50
pF
tVREFINT
Internal reference voltage startup
time
3
ms
tBUFEN
Internal reference voltage buffer
startup time once enabled (1)
10
µs
ACCVREFINT
Accuracy of VREFINT stored in the
VREFINT_Factory_CONV byte(3)
±5
mV
50
ppm/°C
20
ppm/°C
TBD
ppm
STABVREFINT
STABVREFINT
2
Stability of VREFINT over temperature -40 °C ≤TA ≤ 125 °C
Stability of VREFINT over temperature
0 °C ≤TA ≤ 50 °C
Stability of VREFINT after 1000 hours
20
1. Defined when ADC output reaches its final value ±1/2LSB
2. To guaranty less than 1% VREFOUT deviation
3. Measured at VDD = 3 V ±10 mV. This value takes into account VDD accuracy and ADC conversion accuracy.
98/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
9.3.10
Electrical parameters
Temperature sensor
Based on characterization results, unless otherwise specified.
Table 45.
TS characteristics
Symbol
Parameter
Sensor reference voltage at 90°C ±5 °C,
V90
(1)
TL
Typ
Max.
Unit
0.580
0.597
0.614
V
±1
±2
°C
1.62
1.65
mV/°C
3.4
6
µA
10
µs
10
µs
VSENSOR linearity with temperature
(2)
Avg_slope
Average slope
IDD(TEMP)
Consumption
TSTART
Min
(2)
TS_TEMP(2)
Temperature sensor startup time
1.59
(3)
ADC sampling time when reading the
temperature sensor
5
1. Measured at VDD = 3 V ±10 mV. The 8 LSB of the V90 ADC conversion result are stored in the
TS_Factory_CONV_V90 byte.
2. Guaranteed by Design, not tested in production.
3. Defined for ADC output reaching its final value ±1/2LSB.
9.3.11
Comparator characteristics
Data guaranteed by design, not tested in production.
Table 46.
Comparator 1 characteristics
Symbol
VDDA
Parameter
Min
Typ
Max
Unit
Analog supply voltage
1.65
3.6
V
Temperature range
-40
125
°C
R400
R400 value
300
400
500
kΩ
R10
R10 value
7.5
10
12.5
kΩ
VIN
Comparator input voltage range
0.6
VDDA
V
1.225
1.242
V
Startup time after enable
7
10
µs
Propagation delay(2)
3
10
µs
±10
mV
260
nA
TA
VREFINT
tSTART
td
Internal reference voltage (1)
Voffset
Comparator offset error
ICMP1
Consumption(3)
1.202
160
1. Based on characterization results.
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
3. Comparator consumption only. Internal reference voltage not included.
Doc ID 15962 Rev 5
99/122
Electrical parameters
STM8L151xx, STM8L152xx
Data guaranteed by design, not tested in production.
Table 47.
Comparator 2 characteristics
Symbol
VDDA
Parameter
Min
Typ
Max
Unit
Analog supply voltage
1.65
3.6
V
TA
Temperature range
-40
125
°C
VIN
Comparator input voltage range
0
VDDA
V
Startup time after enable in fast mode
20
µs
Startup time after enable in slow mode
30
µs
tdf
Propagation delay in fast mode(1)
2.5
µs
tds
Propagation delay in slow mode(1)
6
µs
±10
mV
IDD(CMP2F) Consumption in fast mode
5
µA
IDD(CMP2S) Consumption in slow mode
2
µA
tSTART
Voffset
Comparator offset error
1. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the noninverting input set to the reference.
9.3.12
12-bit DAC characteristics
Data guaranteed by design, not tested in production.
Table 48.
DAC characteristics
Symbol
Parameter
VDDA
Conditions
Min
Typ
Max
Unit
Analog supply voltage
1.8
3.6
V
TA
Temperature range
-40
125
°C
IDD(DAC)(1)
DAC supply current
IVREF+
Middle code
370
550
Worst code
500
700
140
360
µA
Current on VREF+ supply
RL
Resistive load(2) (3)
DACOUT buffer ON
RO
Output impedance
DACOUT buffer OFF
CL
Capacitive
8
Settling time (full scale: for a 12bit input code transition between
the lowest and the highest input
codes when DAC_OUT reaches
the final value ±1LSB)
10
kΩ
50
pF
DACOUT buffer ON
0.2
VREF+-0.2
V
DACOUT buffer OFF
0
VREF+ -1 LSB
V
12
µs
1
Msps
RL ≥5 kΩ, CL≤ 50 pF
Max frequency for a correct
DAC_OUT (@95%) change when
RL ≥ 5 kΩ, CL ≤50 pF
Update rate
small variation of the input code
(from code i to i+1LSB).
100/122
kΩ
load(4)
DAC_OUT DAC_OUT voltage(5)
tsettling
5
µA
Doc ID 15962 Rev 5
7
STM8L151xx, STM8L152xx
Table 48.
Electrical parameters
DAC characteristics (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
tWAKEUP
Wakeup time from OFF state.
Input code between lowest and
highest possible codes.
RL ≥5 kΩ, CL≤50 pF
9
15
µs
PSRR+
Power supply rejection ratio (to
VDDA) (static DC measurement)
RL≥ 5 kΩ, CL≤50 pF
-60
-35
dB
Typ
Max
Unit
1.5
3
1.5
3
2
4
1. Includes supply current on VDDA and VREF+
2. Resistive load between DACOUT and GNDA
3. Output on PF0 (48-pin package only)
4. Capacitive load at DACOUT pin
5. It gives the output excursion of the DAC
Data based on characterization results, not tested in production.
Table 49.
DAC accuracy
Symbol
Parameter
Conditions
RL ≥5 kΩ, CL≤50 pF
DNL
DACOUT buffer ON(2)
(1)
Differential non linearity
No load
DACOUT buffer OFF
RL ≥5 kΩ, CL≤ 50 pF
INL
Integral non
DACOUT buffer ON(2)
linearity(3)
No load
DACOUT buffer OFF
2
4
±10
±25
No load
DACOUT buffer OFF
±5
±8
DACOUT buffer OFF
±1.5
±5
±0.2
±0.5
RL ≥5 kΩ, CL≤ 50 pF
Offset
Offset1
Offset error
DACOUT buffer ON(2)
(4)
Offset error at Code 1 (5)
RL ≥5 kΩ, CL≤ 50 pF
Gain error
DACOUT buffer ON(2)
Gain error
No load
DACOUT buffer OFF
RL ≥5 kΩ, CL≤ 50 pF
TUE
DACOUT buffer ON(2)
Total unadjusted error
12-bit
LSB
No load
DACOUT buffer OFF
%
±0.3
±0.5
12
30
12-bit
LSB
8
12
1. Difference between two consecutive codes - 1 LSB.
2. For 48-pin packages only. For 28-pin and 32-pin packages, DAC output buffer must be kept off and no load must be
applied.
3. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023.
4. Difference between measured value and ideal value = VREF/2.
Doc ID 15962 Rev 5
101/122
Electrical parameters
STM8L151xx, STM8L152xx
5. Difference between measured value and ideal value Code 1.
Table 50.
DAC output on PB4-PB5-PB6(1)
Symbol
Rint
Parameter
Internal resistance
between DAC output and
PB4-PB5-PB6 output
Conditions
Max
2.7 V < VDD < 3.6 V
1.4
2.4 V < VDD < 3.6 V
1.6
2.0 V < VDD < 3.6 V
3.2
1.8 V < VDD < 3.6 V
8.2
Unit
kΩ
1. 32 or 28-pin packages only. The DAC channel can be routed either on PB4, PB5 or PB6 using the routing
interface I/O switch registers.
12-bit ADC1 characteristics
Table 51.
Symbol
ADC1 characteristics
Parameter (1)
VDDA
Analog supply voltage
VREF+
Reference supply
voltage
VREF-
Lower reference voltage
IVDDA
Current on the VDDA
input pin
IVREF+
Conditions
2.4 V ≤VDDA≤ 3.6 V
Min (1)
Max(1)
Unit
1.8
3.6
V
2.4
VDDA
V
1.8 V≤VDDA≤ 2.4 V
Typ(1)
VDDA
V
VSSA
V
1000
Current on the VREF+
input pin
1450
µA
700
(peak)(2)
µA
450
(average)(2)
µA
400
VAIN
Conversion voltage
range
0(3)
VREF+
TA
Temperature range
-40
125
°C
50(4)
kΩ
RAIN
External resistance on
VAIN
CADC
Internal sample and
hold capacitor
fADC
102/122
ADC sampling clock
frequency
on PF0 fast channel
on all other channels
on PF0 fast channel
16
pF
on all other channels
2.4 V≤VDDA≤3.6 V
without zooming
0.320
16
MHz
1.8 V≤VDDA≤2.4 V
with zooming
0.320
8
MHz
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 51.
Symbol
fCONV
Electrical parameters
ADC1 characteristics (continued)
Parameter (1)
Max(1)
Unit
VAIN on PF0 fast
channel
1(4)(5)
MHz
VAIN on all other
channels
760(4)(5)
kHz
Conditions
Min (1)
Typ(1)
12-bit conversion rate
fTRIG
External trigger
frequency
tconv
1/fADC
tLAT
External trigger latency
3.5
1/fSYSCLK
tS
Sampling time
tconv
12-bit conversion time
tWKUP
Wakeup time from OFF
state
tIDLE(6)
Time before a new
conversion
tVREFINT
VAIN on PF0 fast
channel
VDDA < 2.4 V
0.43(4)(5)
µs
VAIN on PF0 fast
channel
2.4 V ≤VDDA≤ 3.6 V
0.22(4)(5)
µs
VAIN on slow channels
VDDA < 2.4 V
0.86(4)(5)
µs
VAIN on slow channels
2.4 V ≤VDDA≤ 3.6 V
0.41(4)(5)
µs
16 MHz
12 + tS
1/fADC
1(4)
µs
3
µs
TA = +25 °C
1
s
TA = +70 °C
20
ms
TA = +125 °C
2
ms
refer to
Table 44
ms
Internal reference
voltage startup time
1. Data guaranteed by design, not tested in production.
2. The current consumption through VREF is composed of two parameters:
- one constant (max 300 µA)
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses.
So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x 400 = 450 µA at
1Msps
3. VREF- or VDDA must be tied to ground.
4. Minimum sampling and conversion time is reached for maximum Rext = 0.5 kΩ..
5. Value obtained for continuous conversion on fast channel.
6. The time between 2 conversions, or between ADC ON and the first conversion must be lower than tIDLE.
Doc ID 15962 Rev 5
103/122
Electrical parameters
Table 52.
STM8L151xx, STM8L152xx
ADC1 accuracy with VDDA = 3.3 V to 2.5 V
Typ
Max(1)
1
1.6
Differential non linearity fADC = 8 MHz
1
1.6
fADC = 4 MHz
1
1.5
fADC = 16 MHz
1.2
2
fADC = 8 MHz
1.2
1.8
fADC = 4 MHz
1.2
1.7
fADC = 16 MHz
2.2
3.0
fADC = 8 MHz
1.8
2.5
fADC = 4 MHz
1.8
2.3
fADC = 16 MHz
1.5
2
fADC = 8 MHz
1
1.5
fADC = 4 MHz
0.7
1.2
Symbol
Parameter
Conditions
fADC = 16 MHz
DNL
INL
TUE
Offset
Integral non linearity
Total unadjusted error
Offset error
Unit
LSB
LSB
fADC = 16 MHz
Gain
Gain error
fADC = 8 MHz
1
1.5
fADC = 4 MHz
1. Data based on characterization, not tested in production.
Table 53.
ADC1 accuracy with VDDA = 2.4 V to 3.6 V
Symbol
Parameter
Typ
Max(1)
Unit
1
2
LSB
1.7
3
LSB
DNL
Differential non linearity
INL
Integral non linearity
TUE
Total unadjusted error
2
4
LSB
Offset
Offset error
1
2
LSB
Gain
Gain error
1.5
3
LSB
Typ
Max(1)
Unit
1. Data based on characterization, not tested in production.
Table 54.
ADC1 accuracy with VDDA = VREF+ = 1.8 V to 2.4 V
Symbol
Parameter
DNL
Differential non linearity
1
2
LSB
INL
Integral non linearity
2
3
LSB
TUE
Total unadjusted error
3
5
LSB
Offset
Offset error
2
3
LSB
Gain
Gain error
2
3
LSB
1. Data based on characterization, not tested in production.
104/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Electrical parameters
Figure 38. ADC1 accuracy characteristics
V
V
[1LSBIDEAL = REF+ (or DDA depending on package)]
4096
4096
EG
4095
4094
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
4093
(2)
ET
7
(1)
6
5
4
ET=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
EO=Offset Error: deviation between the first actual
transition and the first ideal one.
EG=Gain Error: deviation between the last ideal
transition and the last actual one.
ED=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
EL=Integral Linearity Error: maximum deviation
between any actual transition and the end point
correlation line.
(3)
EO
EL
3
ED
2
1 LSBIDEAL
1
0
1
VSSA
2
3
4
5
6
7
4093 4094 4095 4096
VDDA
ai14395b
Figure 39. Typical connection diagram using the ADC
34-,XXX
6$$
2!).
6!).
3AMPLEANDHOLD!$#
CONVERTER
64
6
2!$#
!).X
#PARASITIC
64
6
),›N!
BIT
CONVERTER
#!$#
AIC
1. Refer to Table 51 for the values of RAIN and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 40 or Figure 41,
depending on whether VREF+ is connected to VDDA or not. Good quality ceramic 10 nF
capacitors should be used. They should be placed as close as possible to the chip.
Doc ID 15962 Rev 5
105/122
Electrical parameters
STM8L151xx, STM8L152xx
Figure 40. Power supply and reference decoupling (VREF+ not connected to VDDA)
STM8L
V REF+
1 µF // 10 nF
V DDA
1 µF // 10 nF
V SSA/V REF-
ai17031
Figure 41. Power supply and reference decoupling (VREF+ connected to VDDA)
STM8L
VREF+/VDDA
1 µF // 10 nF
VREF–/VSSA
ai17032
9.3.13
EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
106/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Electrical parameters
Functional EMS (electromagnetic susceptibility)
Based on a simple running application on the product (toggling 2 LEDs through I/O ports),
the product is stressed by two electromagnetic events until a failure occurs (indicated by the
LEDs).
●
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 61000 standard.
●
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 61000 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Prequalification trials:
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 55.
EMS data
Symbol
Parameter
Conditions
VFESD
Voltage limits to be applied on
any I/O pin to induce a functional
disturbance
VDD = 3.3 V, TA = +25 °C,
fCPU= 16 MHz,
conforms to IEC 61000
VEFTB
Fast transient voltage burst limits
to be applied through 100 pF on
VDD and VSS pins to induce a
functional disturbance
VDD = 3.3 V, TA = +25 °C,
Using HSI
fCPU = 16 MHz,
conforms to IEC 61000
Using HSE
Level/
Class
3B
4A
2B
Electromagnetic interference (EMI)
Based on a simple application running on the product (toggling 2 LEDs through the I/O
ports), the product is monitored in terms of emission. This emission test is in line with the
norm IEC61967-2 which specifies the board and the loading of each pin.
Doc ID 15962 Rev 5
107/122
Electrical parameters
STM8L151xx, STM8L152xx
Table 56.
EMI data (1)
Symbol
Parameter
SEMI
VDD = 3.6 V,
TA = +25 °C,
LQFP32
conforming to
IEC61967-2
Peak level
Monitored
frequency band
Conditions
Max vs.
Unit
16 MHz
0.1 MHz to 30 MHz
-3
30 MHz to 130 MHz
-9
130 MHz to 1 GHz
4
SAE EMI Level
2
dBμV
-
1. Not tested in production.
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed in order to determine its performance in terms of electrical sensitivity.
For more details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). Two models
can be simulated: human body model and charge device model. This test conforms to the
JESD22-A114A/A115A standard.
Table 57.
ESD absolute maximum ratings
Symbol
VESD(HBM)
VESD(CDM)
Ratings
Conditions
Electrostatic discharge voltage
(human body model)
Electrostatic discharge voltage
(charge device model)
Maximum
value (1)
Unit
2000
TA = +25 °C
V
500
1. Data based on characterization results, not tested in production.
Static latch-up
●
LU: 3 complementary static tests are required on 10 parts to assess the latch-up
performance. A supply overvoltage (applied to each power supply pin) and a current
injection (applied to each input, output and configurable I/O pin) are performed on each
sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details,
refer to the application note AN1181.
Table 58.
Electrical sensitivities
Symbol
LU
108/122
Parameter
Static latch-up class
Doc ID 15962 Rev 5
Class
II
STM8L151xx, STM8L152xx
9.4
Electrical parameters
Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 17: General operating conditions on page 63.
The maximum chip-junction temperature, TJmax, in degree Celsius, may be calculated using
the following equation:
TJmax = TAmax + (PDmax x ΘJA)
Where:
●
TAmax is the maximum ambient temperature in ° C
●
ΘJA is the package junction-to-ambient thermal resistance in ° C/W
●
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)
●
PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
●
PI/Omax represents the maximum power dissipation on output pins
Where:
PI/Omax = Σ (VOL*IOL) + Σ((VDD-VOH)*I OH),
taking into account the actual VOL/IOL and VOH/IOH of the I/Os at low and high level in
the application.
Table 59.
Symbol
Thermal characteristics(1)
Parameter
Value
Unit
ΘJA
Thermal resistance junction-ambient
UFQFPN28 - 4 x 4 mm
118
°C/W
ΘJA
Thermal resistance junction-ambient
WLCSP28
70
°C/W
ΘJA
Thermal resistance junction-ambient
LQFP 32 - 7 x 7 mm
59
°C/W
ΘJA
Thermal resistance junction-ambient
UFQFPN 32 - 5 x 5 mm
38
°C/W
ΘJA
Thermal resistance junction-ambient
LQFP 48- 7 x 7 mm
65
°C/W
ΘJA
Thermal resistance junction-ambient
UFQFPN 48- 7 x 7mm
32
°C/W
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection
environment.
Doc ID 15962 Rev 5
109/122
Package characteristics
STM8L151xx, STM8L152xx
10
Package characteristics
10.1
ECOPACK
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
110/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
10.2
Package characteristics
Package mechanical data
Figure 42. UFQFPN28 – 28-lead very very thin fine
pitch quad flat no-lead package outline
(4 x 4)(1)
"
5
Figure 43. Recommended footprint
(dimensions in mm)(1)
-
C
F
!"?-"
1. Drawing is not to scale.
Doc ID 15962 Rev 5
111/122
Package characteristics
Table 60.
STM8L151xx, STM8L152xx
UFQFPN28 – 28-lead ultra thin fine pitch quad flat no-lead package (4 x 4),
package mechanical data
inches(1)
mm
Dim.
Min
Typ
Max
Min
Typ
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0
0
0.050
0
0
0.002
D
3.900
4.000
4.100
0.1535
0.1575
0.1614
E
3.900
4.000
4.100
0.1535
0.1575
0.1614
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
L1
0.250
0.350
0.450
0.0098
0.0138
0.0177
T
b
e
0.152
0.200
0.250
0.0060
0.300
0.0079
0.500
0.0197
Number of pins
N
28
1. Values in inches are converted from mm and rounded to 4 decimal digits.
112/122
0.0098
Doc ID 15962 Rev 5
0.0118
STM8L151xx, STM8L152xx
Package characteristics
Figure 44. WLCSP28 – 28-pin wafer level chip scale package,
package outline
:
$
E
8
9
E
E
!BALL
LOCATION
$ETAIL!
E
%
.OTCH
'
AAA
8
7AFERBACKSIDE
!
!
&
3IDEVIEW
$IE)$
"UMPSIDE
"UMP
!
EEE:
:
3EATINGPLANE
BX
$ETAIL!
ROTATEDBY #
-%?!!-
Table 61.
WLCSP28 – 28-pin wafer level chip scale package,
package mechanical data
inches(1)
mm
Dim.
Min
Typ
Max
Min
Typ
Max
A
0.440
0.590
0.640
0.0173
0.0232
0.0252
A1
0.165
0.190
0.215
0.0065
0.0075
0.0085
A2
0.375
0.400
0.425
0.0148
0.0157
0.0167
b
0.265
0.270
0.275
0.0104
0.0106
0.0108
D
1.677
1.697
1.717
0.0660
0.0668
0.0676
E
2.815
2.835
2.855
0.1108
0.1116
0.1124
e1
1.190
1.200
1.210
0.0469
0.0472
0.0476
e2
0.390
0.400
0.410
0.0154
0.0157
0.0161
e3
0.390
0.400
0.410
0.0154
0.0157
0.0161
Doc ID 15962 Rev 5
113/122
Package characteristics
Table 61.
STM8L151xx, STM8L152xx
WLCSP28 – 28-pin wafer level chip scale package,
package mechanical data (continued)
inches(1)
mm
Dim.
Min
Typ
Max
Min
Typ
Max
e4
2.390
2.400
2.410
0.0941
0.0945
0.0949
F
0.239
0.249
0.259
0.0094
0.0098
0.0102
G
0.208
0.218
0.228
0.0082
0.0086
0.0090
eee
0.050
0.0020
Number of pins
N
28
1. Values in inches are converted from mm and rounded to 4 decimal digits.
114/122
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Package characteristics
Figure 45. UFQFPN32 - 32-lead ultra thin fine pitch
quad flat no-lead package outline
(5 x 5)(1)(2)(3)
Figure 46. UFQFPN32 recommended
footprint(1)(4)
Seating plane
C
ddd
C
A
A1
A3
D
e
16
9
17
8
E
b
E2
24
1
L
32
Pin # 1 ID
R = 0.30
D2
L
Bottom view
A0B8_ME
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this backside pad to PCB ground.
4. Dimensions are in millimeters.
Table 62.
UFQFPN32 - 32-lead ultra thin fine pitch quad flat no-lead package (5 x 5),
package mechanical data
inches(1)
mm
Dim.
Min
Typ
Max
Min
Typ
Max
A
0.5
0.55
0.6
0.0197
0.0217
0.0236
A1
0.00
0.02
0.05
0
0.0008
0.0020
A3
0.152
0.006
b
0.18
0.23
0.28
0.0071
0.0091
0.0110
D
4.90
5.00
5.10
0.1929
0.1969
0.2008
D2
3.50
0.1378
E
4.90
5.00
5.10
0.1929
0.1969
0.2008
E2
3.40
3.50
3.60
0.1339
0.1378
0.1417
e
L
ddd
0.500
0.30
0.40
0.0197
0.50
0.0118
0.08
0.0157
0.0197
0.0031
Number of pins
N
32
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 15962 Rev 5
115/122
Package characteristics
STM8L151xx, STM8L152xx
Figure 47. LQFP32 – 32-pin low profile quad flat package outline
ccc C
D
D1
D3
24
A
A2
17
16
25
L1
b
E3
32
Pin 1
identification
E1 E
9
L
A1
1
K
c
8
5V_ME
Table 63.
LQFP32 – 32-pin low profile quad flat package, package mechanical data
inches(1)
mm
Dim.
Min
Typ
A
Max
Min
Typ
1.6
A1
0.05
A2
1.35
b
0.3
c
0.09
D
8.8
D1
6.8
D3
Max
0.063
0.15
0.0020
1.4
1.45
0.0531
0.0551
0.0571
0.37
0.45
0.0118
0.0146
0.0177
0.2
0.0035
9
9.2
0.3465
0.3543
0.3622
7
7.2
0.2677
0.2756
0.2835
5.6
0.0059
0.0079
0.2205
E
8.8
9
9.2
0.3465
0.3543
0.3622
E1
6.8
7
7.2
0.2677
0.2756
0.2835
E3
5.6
0.2205
e
0.8
0.0315
L
0.45
L1
k
ccc
0.6
0.75
0.0177
1
0.0 °
3.5 °
7.0 °
0.0 °
0.1
3.5 °
0.0039
32
1. Values in inches are converted from mm and rounded to 4 decimal digits.
116/122
0.0295
0.0394
Number of pins
N
0.0236
Doc ID 15962 Rev 5
7.0 °
STM8L151xx, STM8L152xx
Package characteristics
Figure 48. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package Figure 49. Recommended footprint
outline(1)(2)(3)
(dimensions in mm)(1)
7.30
48
37
1
!
36
4
6.20
0.20
7.30
B
E
6.20
5.60
5.80
5.60
0.30
12
25
13
0.55
24
5.80
0.50
0.75
ai15697
!"?-)
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this
back-side pad to PCB ground.
Table 64.
UFQFPN48 – ultra thin fine pitch quad flat pack no-lead 7 × 7 mm, 0.5 mm
pitch package mechanical data
inches(1)
millimeters
Symbol
Typ
Min
Max
Typ
Min
Max
A
0.500
0.550
0.600
0.0197
0.0217
0.0236
A1
0.000
0.020
0.050
0.0000
0.0008
0.0020
D
6.900
7.000
7.100
0.2717
0.2756
0.2795
E
6.900
7.000
7.100
0.2717
0.2756
0.2795
L
0.300
0.400
0.500
0.0118
0.0157
0.0197
T
b
e
0.152
0.200
0.250
0.0060
0.300
0.0079
0.500
0.0098
0.0118
0.0197
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Doc ID 15962 Rev 5
117/122
Package characteristics
STM8L151xx, STM8L152xx
Figure 50. LQFP48 – 48-pin low profile quad flat package outline (7x7)
D
ccc C
D1
D3
A
A2
25
36
24
37
L1
b
E3 E1 E
48
Pin 1
identification
13
1
L
A1
K
c
12
5B_ME
Table 65.
LQFP48 – 48-pin low profile quad flat package (7x7), package mechanical data
inches(1)
mm
Dim.
Min
Typ
A
Max
Min
Typ
1.6
A1
0.05
A2
1.35
b
0.17
c
0.09
D
8.8
D1
6.8
D3
Max
0.063
0.15
0.002
1.4
1.45
0.0531
0.0551
0.0571
0.22
0.27
0.0067
0.0087
0.0106
0.2
0.0035
9
9.2
0.3465
0.3543
0.3622
7
7.2
0.2677
0.2756
0.2835
5.5
0.0059
0.0079
0.2165
E
8.8
9
9.2
0.3465
0.3543
0.3622
E1
6.8
7
7.2
0.2677
0.2756
0.2835
E3
5.5
0.2165
e
0.5
0.0197
L
0.45
L1
k
ccc
0.6
0.75
0.0177
1
0.0°
3.5°
7.0°
0.0°
0.08
3.5°
7.0°
0.0031
48
1. Values in inches are converted from mm and rounded to 4 decimal digits.
118/122
0.0295
0.0394
Number of pins
N
0.0236
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
11
Device ordering information
Device ordering information
Figure 51. STM8L15xxx ordering information scheme
Example:
STM8
L
151
C
4
U
6
Product class
STM8 microcontroller
Family type
L = Low power
Sub-family type
151 = Ultralow power
152 = Ultralow power with LCD
Pin count
C = 48 pins
K = 32 pins
G = 28 pins
Program memory size
4 = 16 Kbytes
6 = 32 Kbytes
Package
U = UFQFPN
T = LQFP
Y = WLCSP
Temperature range
3 = - 40 °C to 125 °C
6 = - 40 °C to 85 °C
For a list of available options (e.g. memory size, package) and orderable part numbers or for
further information on any aspect of this device, please contact the ST sales office nearest to you.
Doc ID 15962 Rev 5
119/122
Revision history
12
STM8L151xx, STM8L152xx
Revision history
Table 66.
Document revision history
Date
Revision
06-Aug-2009
1
Initial release
2
Updated peripheral naming throughout document.
Added Figure 7: STM8L151Cx 48-pin pinout (without LCD) on page 25
Added capacitive sensing channels in Features on page 1
Updated PA7, PC0 and PC1 in Table 5: STM8L15x pin description
Changed CLK and REMAP register names in Table 8
Changed description of WDGHALT in Table 12
Added typical power consumption values in Table 18 to Table 26
Correct VIH max in Table 36
3
Added WLCSP28 package
Modified Figure 9: Memory map on page 35 and added 2 notes.
Modified Low power run mode in Section 3.1: Low power modes on
page 14
Added Section 8: Unique ID on page 59
Modified Table 10: Interrupt mapping on page 54 (added reserved area
at address 0x00 8008)
Modified OPT4 option bits in Table 11: Option byte addresses on
page 56
Table 12: Option byte description on page 57: modified OPT0
description (“disable” instead of “enable”) and OPT1 description
Added OPTBL option bytes
Modified Section 9: Electrical parameters on page 60
4
Changed title of the document (STM8L151x4, STM8L151x6,
STM8L152x4, STM8L152x6)
Changed pinout (VSS1, VDD1, VSS2, VDD 2 instead of VSS, VDD, VSSIO,
VDDIO
Changed packages
Changed first page
Modified note 1 in Table 5: STM8L15x pin description on page 27
Added note to PA7, PC0, PC1 and PE0 in Table 5: STM8L15x pin
description on page 27
Modified Figure 9: Memory map on page 35
Modified Table 61: WLCSP28 – 28-pin wafer level chip scale package,
package mechanical data on page 113 (min and max columns
swapped)
Modified Figure 44: WLCSP28 – 28-pin wafer level chip scale package,
package outline on page 113 (A1 ball location)
Section : on page 79: renamed Rm, Lm and Cm
EXTI_CONF replaced with EXTI_CONF1 in Table 8: General hardware
register map on page 37
Updated Section 9: Electrical parameters on page 60
10-Sep-2009
11-Dec-2009
02-Apr-2010
120/122
Changes
Doc ID 15962 Rev 5
STM8L151xx, STM8L152xx
Table 66.
Revision history
Document revision history
Date
23-Jul-2010
Revision
Changes
5
Modified Introduction and Description
Modified Table 4: Legend/abbreviation for table 5 on page 27 and
Table 5: STM8L15x pin description on page 27 (for PA0, PA1, PB0 and
PB4 and for reset states in the floating input column)
Modified Figure 1: STM8L15xxx device block diagram on page 13 and
Figure 2: STM8L15x clock tree diagram on page 18
Modified Figure 3.1: Low power modes on page 14 and Figure 3.5: Low
power real-time clock on page 18
Modified CLK_PCKENR2 and CLK_HSICALR reset values in Table 8:
General hardware register map on page 37
Modified notes below Figure 9: Memory map on page 35
Modified PA_CR1 reset value in Table 7 on page 36
Modified reset values for Px_IDR registers in Table 7 on page 36
Modified Table 14: Voltage characteristics on page 61, Table 15:
Current characteristics on page 62
Modified VIH in Table 36: I/O static characteristics on page 85
Modified Table 20: Total current consumption in Wait mode on page 69
Modified Figure 37: Typical application with I2C bus and timing diagram
1) on page 96
Modified IL value in Figure 39: Typical connection diagram using the
ADC on page 105
Modified RH and RL in Table 43: LCD characteristics on page 97
Added graphs in Section 9: Electrical parameters on page 60
Modified note 3 below Table 44: Reference voltage characteristics on
page 98
Added notes to
Modified note 1 below Table 45: TS characteristics on page 99
Changed VESD(CDM) value in Table 57 on page 108
Modified notes or added notes below UFQFPN32 and UFQFPN48
packages
Doc ID 15962 Rev 5
121/122
STM8L151xx, STM8L152xx
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
122/122
Doc ID 15962 Rev 5