32-bit ARM® Cortex™-M3 Microcontroller, up to 64KB Flash and 16KB SRAM with 1 MSPS ADC, USART, UART, SPI, I2C, I2S, MCTM, GPTM, BFTM, PDMA, SCI, CRC, EBI and USB2.0 FS HT32F1653/HT32F1654 Series Datasheet Revision: V1.00 Date: ���������������� January 28, 2015 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Table of Contents 1 General Description................................................................................................. 6 2 Features.................................................................................................................... 7 Core........................................................................................................................................ 7 Flash Memory Controller – FMC............................................................................................. 7 Reset Control Unit – RSTCU.................................................................................................. 8 Clock Control Unit – CKCU..................................................................................................... 8 Power Management – PWRCU.............................................................................................. 8 External Interrupt/Event Controller – EXTI............................................................................. 9 Analog to Digital Converter – ADC......................................................................................... 9 Analog Comparator – CMP..................................................................................................... 9 I/O Ports................................................................................................................................ 10 PWM Generation and Capture Timers – GPTM................................................................... 10 Motor Control Timer – MCTM............................................................................................... 11 Basic Function Timer – BFTM.............................................................................................. 11 Watchdog Timer – WDT........................................................................................................ 12 Real Time Clock – RTC........................................................................................................ 12 Inter-integrated Circuit – I2C................................................................................................. 13 Serial Peripheral Interface – SPI.......................................................................................... 13 Universal Synchronous Asynchronous Receiver Transmitter – USART............................... 14 Universal Asynchronous Receiver Transmitter – UART....................................................... 15 Smart Card Interface – SCI.................................................................................................. 15 Inter-IC Sound – I2S.............................................................................................................. 16 Cyclic Redundancy Check – CRC........................................................................................ 16 Peripheral Direct Memory Access – PDMA.......................................................................... 17 External Bus Interface – EBI................................................................................................. 17 Universal Serial Bus Device Controller – USB..................................................................... 18 Debug Support...................................................................................................................... 18 Package and Operation Temperature................................................................................... 18 3 Overview................................................................................................................. 19 Device Information................................................................................................................ 19 Block Diagram...................................................................................................................... 20 Memory Map......................................................................................................................... 21 Clock Structure..................................................................................................................... 22 Rev. 1.00 2 of 46 January 28, 2015 Table of Contents On-chip Memory..................................................................................................................... 7 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 4 Pin Assignment...................................................................................................... 23 5 Electrical Characteristics...................................................................................... 29 Absolute Maximum Ratings.................................................................................................. 29 Recommended DC Operating Conditions............................................................................ 29 On-Chip LDO Voltage Regulator Characteristics.................................................................. 29 Reset and Supply Monitor Characteristics............................................................................ 31 External Clock Characteristics.............................................................................................. 31 Internal Clock Characteristics............................................................................................... 32 PLL Characteristics............................................................................................................... 33 Memory Characteristics........................................................................................................ 33 I/O Port Characteristics......................................................................................................... 34 ADC Characteristics............................................................................................................. 35 Comparator Characteristics.................................................................................................. 37 GPTM/MCTM Characteristics............................................................................................... 37 I2C Characteristics................................................................................................................ 38 SPI Characteristics............................................................................................................... 39 I2S Characteristics................................................................................................................ 40 USB Characteristics.............................................................................................................. 42 6 Package Information............................................................................................. 43 48-pin LQFP (7mm×7mm) Outline Dimensions.................................................................... 44 64-pin LQFP (7mm×7mm) Outline Dimensions.................................................................... 45 Rev. 1.00 3 of 46 January 28, 2015 Table of Contents Power Consumption............................................................................................................. 30 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 List of Tables Rev. 1.00 4 of 46 January 28, 2015 List of Tables Table 1 HT32F1654/1653 Series Features and Peripheral List................................................................ 19 Table 2 HT32F1654/1653 Series Pin Assignment for LQFP 64 / 48 Package.......................................... 25 Table 3 HT32F1654/1653 Pin Description................................................................................................ 27 Table 4 Absolute Maximum Ratings.......................................................................................................... 29 Table 5 Recommended DC Operating Conditions.................................................................................... 29 Table 6 LDO Characteristics..................................................................................................................... 29 Table 7 Power Consumption Characteristics............................................................................................ 30 Table 8 LVD/BOD Characteristics............................................................................................................. 31 Table 9 High Speed External Clock (HSE) Characteristics....................................................................... 31 Table 10 Low Speed External Clock (LSE) Characteristics...................................................................... 32 Table 11 High Speed Internal Clock (HSI) Characteristics....................................................................... 32 Table 12 Low Speed Internal Clock (LSI) Characteristics......................................................................... 33 Table 13 PLL Characteristics.................................................................................................................... 33 Table 14 Flash Memory Characteristics.................................................................................................... 33 Table 15 I/O Port Characteristics.............................................................................................................. 34 Table 16 ADC Characteristics................................................................................................................... 35 Table 17 Comparator Characteristics....................................................................................................... 37 Table 18 GPTM/MCTM Characteristics.................................................................................................... 37 Table 19 I2C Characteristics...................................................................................................................... 38 Table 20 SPI Characteristics..................................................................................................................... 39 Table 21 I2S Characteristics...................................................................................................................... 40 Table 22 USB DC Electrical Characteristics............................................................................................. 42 Table 23 USB AC Electrical Characteristics.............................................................................................. 42 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 List of Figures Rev. 1.00 5 of 46 January 28, 2015 List of Figures Figure 1 HT32F1654/1653 Block Diagram............................................................................................... 20 Figure 2 HT32F1654/1653 Memory Map.................................................................................................. 21 Figure 3 HT32F1654/1653 Clock Structure.............................................................................................. 22 Figure 4 HT32F1654/1653 LQFP-48 Pin Assignment.............................................................................. 23 Figure 5 HT32F1654/1653 LQFP-64 Pin Assignment.............................................................................. 24 Figure 6 ADC Sampling Network Model................................................................................................... 36 Figure 7 I2C Timing Diagrams................................................................................................................... 38 Figure 8 SPI Timing Diagrams - SPI Master Mode................................................................................... 39 Figure 9 SPI Timing Diagrams - SPI Slave Mode with CPHA=1.............................................................. 40 Figure 10 Timing of I2S Master Mode....................................................................................................... 41 Figure 11 Timing of I2S Slave Mode.......................................................................................................... 41 Figure 12 USB Signal Rise Time and Fall Time and Cross-Point Voltage (VCRS) Definition.................. 42 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 1 General Description The Holtek HT32F1654/1653 devices are high performance, low power consumption 32-bit microcontrollers based around an ARM® Cortex™-M3 processor core. The Cortex™-M3 is a nextgeneration processor core which is tightly coupled with a Nested Vectored Interrupt Controller (NVIC), SysTick timer and which includes advanced debug support. The above features ensure that the devices are suitable for use in a wide range of applications, especially in areas such as white goods application control, power monitors, alarm systems, consumer products, handheld equipment, data logging applications, motor control, fingerprint recognition and so on. Rev. 1.00 6 of 46 January 28, 2015 General Description The devices operate at a frequency of up to 72MHz with a Flash accelerator to obtain maximum efficiency. They provide up to 64KB of embedded Flash memory for code/data storage and 16KB of embedded SRAM memory for system operation and application program usage. A variety of peripherals, such as ADC, I2C, USART, UART, SPI, I2S, PDMA, GPTM, MCTM, SCI, EBI, CRC16/32, USB2.0 FS, SW-DP (Serial Wire Debug Port), etc., are also implemented in the devices. Several power saving modes provide the flexibility for maximum optimisation between wakeup latency and power consumption, an especially important consideration in low power applications. 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 2 Features Core ■■ 32-bit ARM® Cortex™-M3 processor core ■■ Up to 72 MHz operating frequency Features ■■ 1.25 DMIPS/MHz - Dhrystone 2.1 ■■ Single-cycle multiplication and hardware division ■■ Integrated Nested Vectored Interrupt Controller - NVIC ■■ 24-bit SysTick timer The Cortex™-M3 processor is a general-purpose 32-bit processor core especially suitable for products requiring high performance and low power consumption microcontrollers. It offers many special features such as a Thumb-2 instruction set, hardware divider, low latency interrupt response time, atomic bit-banding access and multiple buses for simultaneous accesses. The Cortex™-M3 processor is based on the ARMv7 architecture and supports both Thumb and Thumb-2 instruction sets. On-chip Memory ■■ Up to 64 KB on-chip Flash memory for instruction/data and option storage ■■ 16 KB on-chip SRAM ■■ Supports multiple boot modes The ARM® Cortex™-M3 processor is structured using Harvard architecture which implements a separate bus structure to fetch instructions and load/store data. The instruction code and data are both located in the same memory address space but in different address ranges. The maximum address range of the Cortex™-M3 is 4 GB due to its 32-bit bus address width. Additionally, a predefined memory map is provided by the Cortex™-M3 processor to reduce the software complexity of repeated implementation for different device vendors. However, some regions are used by the ARM® Cortex™-M3 system peripherals. Refer to the ARM® Cortex™-M3 Technical Reference Manual for more information. Figure 2 shows the memory map of the HT32F1654/53 series of devices, including Code, SRAM, peripheral, and other pre-defined regions. Flash Memory Controller – FMC ■■ Flash accelerator for maximum efficiency ■■ 32-bit word programming with In System Programming Interface (ISP) and In Application Programming (IAP) ■■ Flash protection capability to prevent illegal access The Flash Memory Controller, FMC, provides all the necessary functions and pre-fetch buffer for the embedded on-chip Flash Memory. Since the access speed of the Flash Memory is slower than the CPU, a wide access interface with a pre-fetch buffer and cache are provided for the Flash Memory in order to reduce the CPU waiting time which will cause CPU instruction execution delays. Flash Memory word program/page erase functions are also provided. Rev. 1.00 7 of 46 January 28, 2015 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Reset Control Unit – RSTCU ■■ Supply supervisor: ●● Power-on Reset - POR ●● Brown-out Detector - BOD ●● Programmable Low Voltage Detector - LVD Clock Control Unit – CKCU ■■ External 4 to 16 MHz crystal oscillator ■■ External 32,768 Hz crystal oscillator ■■ Internal 8MHz RC oscillator trimmed to ±2 % accuracy at 3.3V operating voltage and 25°C operating temperature ■■ Internal 32 kHz RC oscillator ■■ Integrated system clock PLL ■■ Independent clock divider and gating bits for peripheral clock sources The Clock Control unit, CKCU, provides a range of oscillator and clock functions. These include a High Speed Internal RC oscillator (HSI), a High Speed External crystal oscillator (HSE), a Low Speed Internal RC oscillator (LSI), a Low Speed External crystal oscillator (LSE), a Phase Lock Loop (PLL), a HSE clock monitor, clock prescalers, clock multiplexers, APB clock divider and gating circuitry. The clocks of the AHB, APB and CortexTM-M3 are derived from the system clock (CK_SYS) which can come from the HSI, HSE or PLL. The Watchdog Timer and Real Time Clock (RTC) use either the LSI or LSE as their clock source. The maximum operating frequency of the system core clock (CK_AHB) can be up to 72 MHz. Power Management – PWRCU ■■ Single 3.3 V power supply: 2.7 V to 3.6 V ■■ Integrated 1.8 V LDO regulator for core and peripheral power supply ■■ VBAT battery power supply for RTC and backup registers ■■ Three power domains: 3.3 V, 1.8 V and Backup ■■ Four power saving modes: Sleep, Deep-Sleep1, Deep-Sleep2, Power-Down Power consumption can be regarded as one of the most important issues for many embedded system applications. Accordingly the Power Control Unit, PWRCU, in these devices provides many types of power saving modes such as Sleep, Deep-Sleep1, Deep-Sleep2 and Power-Down mode. These operating modes reduce the power consumption and allow the application to achieve the best trade-off between the conflicting demands of CPU operating time, speed and power consumption. Rev. 1.00 8 of 46 January 28, 2015 Features The Reset Control Unit, RSTCU, has three kinds of reset, a power on reset, a system reset and an APB unit reset. The power on reset, known as a cold reset, resets the full system during power up. A system reset resets the processor core and peripheral IP components with the exception of the SW-DP controller. The resets can be triggered by an external signal, internal events and the reset generators. 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 External Interrupt/Event Controller – EXTI ■■ Up to 16 EXTI lines with configurable trigger source and type ■■ All GPIO pins can be selected as EXTI trigger source ■■ Source trigger type includes high level, low level, negative edge, positive edge, or both edge ■■ Individual interrupt enable, wakeup enable and status bits for each EXTI line ■■ Integrated deglitch filter for short pulse blocking The External Interrupt/Event Controller, EXTI, comprises 16 edge detectors which can generate a wake-up event or interrupt requests independently. Each EXTI line can also be masked independently. Analog to Digital Converter – ADC ■■ 12-bit SAR ADC engine ■■ Up to 1 Msps conversion rate - 1 μs at 56 MHz, 1.17 μs at 72 MHz ■■ Up to 12 external analog input channels ■■ Supply voltage range: 2.7 V ~ 3.6 V ■■ Conversion range: VREF+ ~ VREFA 12-bit multi-channel ADC is integrated in the device. There are up to 12 multiplexed channels, which include external channels on which the external analog signals can be measured, and 2 internal channels. If the input voltage is required to remain within a specific threshold window, an Analog Watchdog function will monitor and detect these signals. An interrupt will then be generated to inform the device that the input voltage is not within the preset threshold levels. There are three conversion modes to convert an analog signal to digital data. The ADC can be operated in one shot, continuous and discontinuous conversion modes. Analog Comparator – CMP ■■ Dual rail-to-rail comparators ■■ Each comparator has configurable negative inputs used for flexible voltage selection ■■ Dedicated I/O pin or internal voltage reference provided by an internal 6-bit scaler ■■ Programmable hysteresis ■■ Programming speed and consumption ■■ Comparator outputs can be routed to I/O pins, to timers or to ADC trigger inputs ■■ 6-bit scaler can be configured to dedicated I/O pins for a voltage reference ■■ Comparators have interrupt generation capability with wakeup function from within the Sleep or Deep Sleep modes through the EXTI controller ■■ Supply voltage range: 2.7 V ~ 3.6 V Two general purpose comparators – CMP - are implemented within the devices. These can be configured either as standalone comparators or combined with the different kinds of peripheral functions. Each comparator is capable of generating an interrupt to the NVIC and waking up the MCU from the Deep Sleep mode through EXTI wakeup event management unit. Rev. 1.00 9 of 46 January 28, 2015 Features ■■ Software interrupt trigger mode for each EXTI line 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 I/O Ports ■■ Up to 51 GPIOs ■■ Port A, B, C, D are mapped as 16 external interrupts - EXTI ■■ Almost all I/O pins are 5 V-tolerant except for pins shared with analog inputs The GPIO ports are pin-shared with other alternative functions to obtain maximum functional flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the input or output pins. The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit, EXTI. PWM Generation and Capture Timers – GPTM ■■ Two 16-bit up, down, up/down auto-reload counters ■■ 16-bit programmable prescaler allowing counter clock frequency division ratio between 1 and 65536 ■■ Input Capture function ■■ Compare Match Output ■■ PWM waveform generation with Edge-aligned and Center-aligned Counting Modes ■■ Single Pulse Mode Output ■■ Encoder interface controller with two inputs using a quadrature decoder The General Purpose Timers consists of one 16-bit up/down-counter, four 16-bit Capture/Compare Registers (CCRs), one 16-bit Counter Reload Register (CRR) and several control/status registers. They can be used for a variety of purposes including general time measurement, input signal pulse width measurement and output waveform generation such as that for single pulse generation or for PWM output generation. The GPTM includes an Encoder Interface using a decoder with two inputs. Rev. 1.00 10 of 46 January 28, 2015 Features There are up to 51 General Purpose I/O pins, GPIO, named from PA0~PA15 to PD0~PD2 for the implementation of logic input/output functions. Each of the GPIO ports has a series of related control and configuration registers to maximize flexibility and to meet the requirements of a wide range of applications. 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Motor Control Timer – MCTM ■■ Two 16-bit up, down, up/down auto-reload counters ■■ 16-bit programmable prescaler allowing counter clock frequency division ratio between 1 and 65536 ■■ Input Capture function ■■ PWM waveform generation with edge aligned and centre-aligned Counting Modes ■■ Single Pulse Mode Output ■■ Complementary Outputs with programmable dead-time insertion ■■ Encoder interface controller with two inputs using a quadrature decoder ■■ Includes a 3-phase motor control and hall sensor interface ■■ Brake input to force the timer’s output signals into a reset or fixed condition The Motor Control Timer consists of a single 16-bit up/down counter; four 16-bit CCRs (Capture/ Compare Registers), single one 16-bit counter-reload register (CRR), single 8-bit repetition counter and several control/status registers. It can be used for a variety of purposes including measuring the pulse widths of input signals or generating output waveforms such as compare match outputs, PWM outputs or complementary PWM outputs with dead-time insertion. The MCTM supports an Encoder interface controller to an incremental encoder with two inputs. The MCTM is capable of offering full functional support for motor control, hall sensor interfacing and brake input. Basic Function Timer – BFTM ■■ Two 32-bit compare/match count-up counters - no I/O control features ■■ One shot mode - counting stops after a match condition ■■ Repetitive mode - restart counter after a match condition The Basic Function Timer is a simple count-up 32-bit counter designed to measure time intervals and generate a one shot or repetitive interrupts. The BFTM operates in two functional modes, repetitive or one shot mode. In the repetitive mode the BFTM restarts the counter when a compare match event occurs. The BFTM also supports a one shot mode which forces the counter to stop counting when a compare match event occurs. Rev. 1.00 11 of 46 January 28, 2015 Features ■■ Compare Match Output 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Watchdog Timer – WDT ■■ 12-bit down counter with 3-bit prescaler ■■ Interrupt or reset event for the system ■■ Programmable watchdog timer window function ■■ Register write protection function Real Time Clock – RTC ■■ 32-bit up-counter with a programmable prescaler ■■ Alarm function ■■ Interrupt and Wake-up event The Real Time Clock, RTC for short, includes an APB interface, a 32-bit count-up counter, a control register, a prescaler, a compare register and a status register. Most of the RTC circuits are located in the Backup Domain except for the APB interface. The APB interface is located in the VDD18 power domain. Therefore, it is necessary to be isolated from the ISO signal that comes from the power control unit when the V DD18 power domain is powered off, that is when the device enters the Power-Down mode. The RTC counter is used as a wakeup timer to generate a system resume signal from the Power-Down mode. Rev. 1.00 12 of 46 January 28, 2015 Features The Watchdog Timer is a hardware timing circuit that can be used to detect system failures due to software malfunctions. It includes a 12-bit count-down counter, a prescaler, a WDT counter value register, a WDT delta value register, interrupt related circuits, WDT operation control circuitry and a WDT protection mechanism. The Watchdog Timer can be operated in an interrupt mode or a reset mode. The Watchdog Timer will generate an interrupt or a reset when the counter counts down and reaches a zero value. If the software does not reload the counter value before a Watchdog Timer underflow occurs, an interrupt or a reset will be generated when the counter underflows. In addition, an interrupt or reset is also generated if the software reloads the counter when the counter value is greater than or equal to the WDT delta value. This means the counter must be reloaded within a limited timing window using a specific method. The Watchdog Timer counter can be stopped while the processor is in the debug mode. There is a register write protect function which can be enabled to prevent it from changing the Watchdog Timer configuration unexpectedly. 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Inter-integrated Circuit – I2C ■■ Supports both master and slave modes with a frequency of up to 1 MHz ■■ Provide an arbitration function and clock synchronization ■■ Supports 7-bit and 10-bit addressing modes and general call addressing ■■ Supports slave multi-addressing mode with maskable address The SDA line which is connected directly to the I2C bus is a bi-directional data line between the master and slave devices and is used for data transmission and reception. The I2C module also has an arbitration detect function and clock synchronization to prevent situations where more than one master attempts to transmit data to the I2C bus at the same time. Serial Peripheral Interface – SPI ■■ Supports both master and slave mode ■■ Frequency of up to fPCLK/2 MHz for master mode and fPCLK/3 MHz for slave mode ■■ FIFO Depth: 8 levels ■■ Multi-master and multi-slave operation The Serial Peripheral Interface, SPI, provides an SPI protocol data transmit and receive function in both master and slave mode. The SPI interface uses 4 pins, which are the serial data input and output lines MISO and MOSI, the clock line, SCK, and the slave select line, SEL. One SPI device acts as a master device which controls the data flow using the SEL and SCK signals to indicate the start of data communication and the data sampling rate. To receive a data byte, the streamed data bits are latched on a specific clock edge and stored in the data register or in the RX FIFO. Data transmission is carried out in a similar way but in a reverse sequence. The mode fault detection provides a capability for multi-master applications. Rev. 1.00 13 of 46 January 28, 2015 Features The I2C Module is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line, SDA, and a serial clock line, SCL. The I2C module provides three data transfer rates: 1. 100 kHz in the Standard mode, 2. 400 kHz in the Fast mode and 3. 1 MHz in the Fast mode plus mode. The SCL period generation register is used to setup different kinds of duty cycle implementations for the SCL pulse. 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Universal Synchronous Asynchronous Receiver Transmitter – USART ■■ Supports both asynchronous and clocked synchronous serial communication modes ■■ Asynchronous operating baud rate up to fPCLK/16 MHz and synchronous operating rate up to fPCLK/8 MHz ■■ Full duplex communication Features ■■ Fully programmable serial communication characteristics including: ●● Word length: 7, 8, or 9-bit character ●● Parity: Even, odd, or no-parity bit generation and detection ●● Stop bit: 1 or 2 stop bit generation ●● Bit order: LSB-first or MSB-first transfer ■■ Error detection: Parity, overrun, and frame error ■■ Auto hardware flow control mode - RTS, CTS ■■ IrDA SIR encoder and decoder ■■ RS485 mode with output enable control ■■ FIFO Depth: 16 x 9 bits for both receiver and transmitter The Universal Synchronous Asynchronous Receiver Transceiver, USART, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. The USART is used to translate data between parallel and serial interfaces, and is commonly used for RS232 standard communication. The USART peripheral function supports four types of interrupt including Line Status Interrupt, Transmitter FIFO Empty Interrupt, Receiver Threshold Level Reaching Interrupt and Time Out Interrupt. The USART module includes a 16-byte transmitter FIFO, (TX_FIFO) and a 16-byte receiver FIFO (RX_FIFO). The software can detect a USART error status by reading the Line Status Register, LSR. The status includes the type and the condition of transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events. Rev. 1.00 14 of 46 January 28, 2015 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Universal Asynchronous Receiver Transmitter – UART ■■ Asynchronous serial communication operating baud-rate up to fPCLK/16 MHz ■■ Full duplex communication Features ■■ Fully programmable serial communication characteristics including: ●● Word length: 7, 8, or 9-bit character ●● Parity: Even, odd, or no-parity bit generation and detection ●● Stop bit: 1 or 2 stop bit generation ●● Bit order: LSB-first or MSB-first transfer ■■ Error detection: Parity, overrun, and frame error ■■ FIFO Depth: 16 x 9 bits for both receiver and transmitter The Universal Asynchronous Receiver Transceiver, UART, provides a flexible full duplex data exchange using asynchronous transfer. The UART is used to translate data between parallel and serial interfaces, and is commonly used for RS232 standard communication. The UART peripheral function supports four types of interrupt including Line Status Interrupt, Transmitter FIFO Empty Interrupt, Receiver Threshold Level Reaching Interrupt and Time Out Interrupt. The UART module includes a 16-byte transmitter FIFO, (TX_FIFO) and a 16-byte receiver FIFO (RX_ FIFO). The software can detect a UART error status by reading the Line Status Register, LSR. The status includes the type and the condition of transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events. Smart Card Interface – SCI ■■ Supports ISO 7816-3 standard ■■ Character mode ■■ Single transmit buffer and single receive buffer ■■ 11-bit ETU (elementary time unit) counter ■■ 9-bit guard time counter ■■ 24-bit general purpose waiting time counter ■■ Parity generation and checking ■■ Automatic character retry on parity error detection in transmission and reception modes The Smart Card Interface is compatible with the ISO 7816-3 standard. This interface includes Card Insertion/Removal detection, SCI data transfer control logic and data buffers, internal Timer Counters and corresponding control logic circuits to perform all the necessary Smart Card operations. The Smart Card interface acts as a Smart Card Reader to facilitate communication with the external Smart Card. The overall functions of the Smart Card interface are controlled by a series of registers including control and status registers together with several corresponding interrupts which are generated to get the attention of the microcontroller for SCI transfer status. Rev. 1.00 15 of 46 January 28, 2015 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Inter-IC Sound – I2S ■■ Master or slave mode ■■ Mono and stereo ■■ I2S-justified, Left-justified, and Right-justified mode ■■ 8/16/24/32-bit sample size with 32-bit channel extended ■■ 8-bit Fractional Clock Divider with rate control The I 2S is a synchronous communication interface that can be used as a master or slave to exchange data with other audio peripherals, such as ADCs or DACs. The I2S supports a variety of data formats. In addition to the stereo I2S-justified, Left-justified and Right-justified modes, there are mono PCM modes with 8/16/24/32-bit sample size. When the I2S operates in the master mode, then when using the fractional divider, it can provide an accurate sampling frequency output and support the rate control function and fine-tuning of the output frequency to avoid system problems caused by the cumulative frequency error between different devices. Cyclic Redundancy Check – CRC ■■ Support CRC16 polynomial: 0x8005, X16+X15+X2+1 ■■ Support CCITT CRC16 polynomial: 0x1021, X16+X12+X5+1 ■■ Support IEEE-802.3 CRC32 polynomial: 0x04C11DB7, X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1 ■■ Supports 1’s complement, byte reverse & bit reverse operation on data and checksum ■■ Supports byte, half-word & word data size ■■ Programmable CRC initial seed value ■■ CRC computation executed in 1 AHB clock cycle for 8-bit data and 4 AHB clock cycles for 32bit data ■■ Supports PDMA to complete a CRC computation of a block of memory The CRC calculation unit is an error detection technique test algorithm which is used to verify data transmission or storage data correctness. A CRC calculation takes a data stream or a block of data as input and generates a 16- or 32-bit output remainder. Ordinarily, a data stream is suffixed by a CRC code and used as a checksum when being sent or stored. Therefore, the received or restored data stream is calculated by the same generator polynomial as described above. If the new CRC code result does not match the one calculated earlier, that means data stream contains a data error. Rev. 1.00 16 of 46 January 28, 2015 Features ■■ 8 x 32-bit Tx & Rx FIFO with PDMA supported 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Peripheral Direct Memory Access – PDMA ■■ 8 channels with trigger source grouping ■■ 8-/16-/32-bit width data transfer ■■ Supports Address increment, decrement or fixed mode ■■ 4-level programmable channel priority ■■ Supports trigger source: ADC, SPI, USART, UART, I2C, I2S, EBI, GPTM, MCTM, SCI and software request The Peripheral Direct Memory Access controller, PDMA, moves data between the peripherals and the system memory on the AHB bus. Each PDMA channel has a source address, destination address, block length and transfer count. The PDMA can exclude the CPU intervention and avoid interrupt service routine execution. It improves system performance as the software does not need to join each data movement operation. External Bus Interface – EBI ■■ Programmable interface for various memory types ■■ Translate the AHB transactions into the appropriate external device protocol ■■ Memory bank regions and independent chip select control for each memory bank ■■ Programmable timings to support a wide range of devices ■■ Includes page read mode ■■ Automatic translation when the AHB transaction width and external memory interface width is different ■■ Write buffer to decrease the stalling of the AHB write burst transaction ■■ Multiplexed address and data line configurations ■■ Up to 21 address lines ■■ Up to 16-bit data bus width The external bus interface is able to access external parallel interface devices such as SRAM, Flash and LCD modules. The interface is memory mapped into the internal address map of the CPU. The data and address lines are multiplexed in order to reduce the number of pins required to connect to the external devices. The read/write timing of the bus can be adjusted to meet the timing specification of the external devices. Note the interface only supports asynchronous 8 or 16-bit bus interface. Rev. 1.00 17 of 46 January 28, 2015 Features ■■ Auto reload mode 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Universal Serial Bus Device Controller – USB ■■ Complies with USB 2.0 full-speed (12Mbps) specification ■■ On-chip USB full-speed transceiver ■■ 1 control endpoint (EP0) for control transfer ■■ 3 single-buffered endpoints for bulk and interrupt transfer ■■ 1,024 bytes EP-SRAM used as the endpoint data buffers The USB device controller is compliant with the USB 2.0 full-speed specification. There is one control endpoint known as Endpoint 0 and seven configurable endpoints. A 1024-byte SRAM is used as the endpoint buffer. Each endpoint buffer size is programmable using corresponding registers, which provides maximum flexibility for various applications. The integrated USB fullspeed transceiver helps to minimize the overall system complexity and cost. The USB functional block also contains the resume and suspend feature to meet the requirements of low-power consumption. Debug Support ■■ Serial Wire Debug Port - SW-DP ■■ 6 instruction comparators and 2 literal comparators for hardware breakpoint or code / literal patches ■■ 4 comparators for hardware watchpoints ■■ 1-bit asynchronous trace (TRACESWO) Package and Operation Temperature ■■ 48/64-pin LQFP package ■■ Operation temperature range: -40°C to +85°C Rev. 1.00 18 of 46 January 28, 2015 Features ■■ 4 double-buffered endpoints for bulk, interrupt and isochronous transfer 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 3 Overview Device Information Table 1 HT32F1654/1653 Series Features and Peripheral List 63 32 Option Bytes Flash 1 1 SRAM (KB) 16 8 Timers Communication Rev. 1.00 HT32F1654 MCTM 2 GPTM 2 BFTM 2 RTC 1 WDT 1 USB 1 SPI 2 USART 2 UART 2 IC 2 I2S 1 SCI 1 2 EBI 1 CRC-16/32 1 EXTI 16 12-bit ADC Number of channels 1 Comparator 2 GPIO Up to 51 CPU frequency Up to 72 MHz Operating voltage 2.7 V ~ 3.6 V Operating temperature -40℃ ~ +85℃ Packages 48/64-pin LQFP HT32F1653 Overview Peripherals Main Flash (KB) 12 Channels 19 of 46 January 28, 2015 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Block Diagram TRACESWO BOOT0 BOOT1 SWCLK SWDIO AF Powered by VDD18 SW-DP DCode CortexTM-M3 Processor Flash Memory Interface fMax: 72 MHz CKCU/RSTCU Control Registers CRC -16/32 USB Control/Data Registers PDMA CAP. BOD LVD USB Device Powered by VDD33 AF AF I2S SPI1 AFIO I2C 0 ~ 1 BFTM 0 ~ 1 ... AF Analog CMP RTCOUT VBAT VBAK PWRCU VDD33 VSS33 OPA/CMP PORB LSI 32 kHz LSE WAKEUP 32,768 Hz nRST Backup Domain Powered by VDD18 AF VBAK 3.3 V BREG Powered by VDDA CLK, DIO, DET PWRSW ADC VDDA VSSA CH3 ~ CH0 ETI AF AF RTC 12-bit SAR ADC SDA SCL AF SCI TX, RX MOSI, MISO SCK, SEL Power control APB1 AF MCTM1 GPTM 0 ~ 1 APB0 MCTM0 TX, RX RTS/TXE CTS/SCK AF UART1 DP DM AF AF SPI0 AD0~AD15 A0~A24 CS0~CS3 OE, WR ALE, RDY BL0~BL1 AF USART1 ADC_IN11 CN0, CP0 COUT0 CN1, CP1 COUT1 CLDO 1.8 V UART0 AF ADC_IN0 LDO WDT EXTI CH0 ~CH2 CH0N ~ CH2N CH3, ETI, BRK VSS33 AF DMA request AHB to APB Bridge XTALIN XTALOUT VDD33 HSI 8 MHz USART0 MCLK, BCLK WS, SDO, SDI CH0 ~CH2 CH0N ~ CH2N CH3, ETI, BRK SRAM External Bus Interafce 8 Channels 4 ~ 16 MHz Clock and reset control Bus Matrix System Interrupt request SRAM Controller HSE AF GPIO A~D Control Registers AF MOSI, MISO SCK, SEL FMC AHB Peripherals PDMA AF TX, RX PLL AF TX, RX RTS/TXE CTS/SCK 1.8 V fMax: 144 MHz Control Registers NVIC POR Flash Memory AF XTAL32KIN XTAL32KOUT Power supply: Bus: Control signal: Alternate function: AF Figure 1 HT32F1654/1653 Block Diagram Rev. 1.00 20 of 46 January 28, 2015 Overview ICode TPIU PA ~ PD15:0] AF AF 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Memory Map 0xFFFF_FFFF Reserved 0x400F_FFFF 0xE010_0000 0x7000_0000 Private peripheral bus Reserved EBI Selection Bank 0x6000_0000 0x4400_0000 Peripheral 0x4200_0000 0x4010_0000 0x4008_0000 0x4000_0000 0x2220_0000 64 MBytes x4 Reserved APB/AHB bit band alias 32 Mbytes Reserved AHB peripherals 512 Kbytes APB peripherals 512 Kbytes Reserved SRAM bit band alias SRAM 2 Mbytes 0x2200_0000 Reserved 0x2000_4000 0x2000_0000 0x1FF0_0400 0x1FF0_0000 0x1F00_2000 0x1F00_0000 Up to 16 KB on-chip SRAM Up to 16 Kbytes Reserved Option byte alias 1 Kbytes Reserved Boot loader 8 Kbytes Code Reserved 0x0001_0000 Up to 64 KB on-chip Flash Up to 64 Kbytes 0x0000_0000 0x4007_8000 0x4007_7000 0x4007_6000 0x4007_0000 0x4006_F000 0x4006_E000 0x4006_B000 0x4006_A000 0x4006_9000 0x4006_8000 0x4004_F000 0x4004_E000 0x4004_A000 0x4004_9000 0x4004_8000 0x4004_5000 0x4004_4000 0x4004_3000 0x4004_1000 0x4004_0000 0x4002_D000 0x4002_C000 0x4002_6000 0x4002_4000 0x4002_3000 0x4002_2000 0x4001_F000 0x4001_E000 0x4001_D000 0x4001_C000 0x4001_B000 0x4001_A000 0x4001_9000 0x4001_8000 0x4001_1000 0x4001_0000 0x4000_5000 0x4000_4000 0x4000_1000 0x4000_0000 Reserved GPIOA~D USB EBI PDMA CRC-16/32 CKCU/RSTCU Reserved FMC Reserved BFTM1 BFTM0 Reserved GPTM1 GPTM0 Reserved RTC/PWRCU Reserved WDT Reserved USB Reserved I2C1 I2C0 Reserved SPI1 SCI UART1 USART1 MCTM1 MCTM0 I2S EXTI Reserved AFIO AHB APB1 APB0 Reserved OPA/CMP Reserved ADC Reserved SPI0 UART0 USART0 Figure 2 HT32F1654/1653 Memory Map Rev. 1.00 21 of 46 January 28, 2015 Overview 0xE000_0000 0x400B_0000 0x400A_8000 0x4009_8000 0x4009_0000 0x4008_A000 0x4008_8000 0x4008_2000 0x4008_0000 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Clock Structure Prescaler ÷1 ~ 32 CK_LSE HSI Auto Trimming Controller Divider ÷2 CK_REF CKREFPRE CKREFEN USB Frame Pulse fCK_USB,max = 48MHz Prescaler ÷1, 2, 3 1 HSIEN PLLEN f CK_PLL,max = 144MHz SW[1:0] 0x CK_HSI 11 CK_HSE CK_SYS CK_LSE LSEEN(Note1) 32 kHz LSI RC GPIOEEN AHB Prescaler ÷ 1,2,4,8 FCLK ( free running clock) 10 HCLKC ( to CortexTM-M3) CM3EN (control by HW) CK_AHB Clock Monitor 32.768 kHz LSE OSC CK_GPIO ( to GPIO port) GPIOAEN fCK_SYS,max = 144MHz 4-16 MHz HSE XTAL HSEEN STCLK (to SysTick) ÷8 CK_PLL PLL 0 Overview PLLSRC 8 MHz HSI RC CK_USB USBEN DMAEN HCLKD ( to PDMA) EBIEN CK_EBI ( to EBI) CRCEN CK_CRC ( to CRC) WDTSRC 1 0 CK_LSI CK_WDT WDTEN RTCSRC(Note1) LSIEN(Note1) HCLKF ( to Flash) CM3EN 1 0 CK_RTC FMCEN HCLKS ( to SRAM) (Note1) RTCEN CM3EN SRAMEN CKOUTSRC[2:0] CKOUT HCLKBM ( to Bus Matrix) 000 CK_REF 001 010 CK_AHB/16 CK_SYS/16 011 CK_HSE/16 100 CK_HSI/16 101 CK_LSE 110 CK_LSI CM3EN BMEN HCLKAPB0 ( to APB0 Bridge) CM3EN APB0EN HCLKAPB1 ( to APB1 Bridge) Legend: HSE = High Speed External clock HSI = High Speed Internal clock LSE = Low Speed External clock LSI = Low Speed Internal clock Note 1: Those control bits are located at RTC Control Register (RTC_CTRL) CM3EN APB1EN PCLK Peripherals Clock Prescaler ÷ 1,2,4,8 00 PCLK/2 01 PCLK/4 10 PCLK/8 11 PCLK ( OPAx, AFIO, ADC, SPIx, USARTx, UARTx, I2Cx, I2S, GPTMx, MCTMx, BFTMx, EXTI, RTC, SCI, WDT) SPIEN SCIEN ADC Prescaler ÷ 2,4,6,8,16... CK_ADC IP ADCEN Figure 3 HT32F1654/1653 Clock Structure Rev. 1.00 22 of 46 January 28, 2015 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 4 Pin Assignment Holtek HT32F1654/1653 48 LQFP-A � 33V PA� 6 33V PA6 7 33V PA7 � 33V 1� USB 39 3� 37 AP AP 33V 33V 33V 33V 33V 33V �VT �VT �VT �VT P33 3.3 V Digital Powe� Pad AP 3.3 V Analog Powe� Pad P1� 1.� V Powe� Pad 33V 3.3 V I/O Pad �VT � V Tole�ance I/O Pad �VT High C���ent O�tp�t � V Tole�ance I/O Pad USB USB PHY Pad �VT �VT 1� 19 �0 �1 �� �3 �4 P33 13 14 1� 16 17 AF1 P33 36 VSS33_3 P33 3� VDD33_3 �VT 34 PB1 �VT 33 PB0 �VT 3� PA1� �VT 31 PA14 �VT 30 SWDIO PA13 �VT �9 SWCLK PA1� �VT �� TRACESWO �VT �7 �VT �6 �VT �� PA11 PA10 PA9_ BOOT1 PA�_ BOOT0 PC14 PC13 AF1 33V P33 AF0 (Defa�lt) AF0 (Defa�lt) 33V P1� XTAL3�K OUT XTAL3�KI N BAK �VT VBAT BAK 33V nRST BAK 33V VSS33_� BAK P33 BAK �VT VDD33_� Back�p Domain Pad CLDO BAK PD� USB 40 PD1 11 41 PB1� P33 4� XTALOUT 10 USBDM /PB1� USBDP /PB13 43 PB14 VSS33_1 44 XTALIN P33 4� PC1� 9 46 RTCOUT VDD33_1 47 Figure 4 HT32F1654/1653 LQFP-48 Pin Assignment Rev. 1.00 23 of 46 January 28, 2015 Pin Assignment PA4 4� AF0 (Defa�lt) 33V PB� 4 PB3 PA3 PB4 33V PB� 3 PB6 PA� PB7 33V PB� � PB9 PA1 PB10 33V PB11 1 VDDA PA0 VSSA AF0 (Defa�lt) 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Holtek HT32F1653/1654 64 LQFP-A PB11 PB10 PB9 PB� PB7 PB6 VSS33_4 VDD33_4 PC� PC7 PB� PB4 PB3 PB� 63 6� 61 60 �9 �� �7 �6 �� �4 �3 �� �1 �0 49 AP AP AF0 (Defa�lt) AF1 33V 33V 33V 33V 33V 33V P33 P33 �VT �VT �VT �VT �VT �VT PA0 1 33V �VT 4� PC6 PA1 � 33V �VT 47 PC� PA� 3 33V �VT 46 PC4 PA3 4 33V �VT 4� PB1 PA4 � 33V �VT 44 PB0 PA� 6 33V P33 43 VSS33_3 PA6 7 33V P33 4� VDD33_3 PA7 � 33V �VT 41 PA1� VDD33_1 9 P33 �VT 40 PA14 VSS33_1 10 P33 �VT 39 SWDIO PA13 PC9 11 33V �VT 3� SWCLK PA1� PC10 1� 33V �VT 37 TRACESWO PA11 PC11 13 33V �VT 36 PA10 PC1� 14 33V �VT 3� 1� USB �VT 34 16 USB �VT 33 USBDM /PB1� USBDP /PB13 P33 3.3 V Digital Powe� Pad AP 3.3 V Analog Powe� Pad P1� 1.� V Powe� Pad 33V 3.3 V I/O Pad �VT � V Tole�ance I/O Pad �VT High C���ent O�tp�t � V Tole�ance I/O Pad USB USB PHY Pad BAK Back�p Domain Pad PA9_ BOOT1 PA�_ BOOT0 PC3 BAK BAK BAK BAK BAK P1� P33 P33 �VT P33 33V 33V �VT �VT 33V 33V �VT �VT �VT �VT �VT VBAT XTAL3�KIN XTAL3�KOUT RTCOUT PC13 PC14 PC1� �9 30 31 3� AF1 nRST �� AF0 (Defa�lt) VSS33_� �7 PC� VDD33_� �6 PC1 CLDO �� PC0 �4 PD� �3 PD1 �� PB1� �1 XTALOUT �0 PB14 19 XTALIN 1� PD0 17 Figure 5 HT32F1654/1653 LQFP-64 Pin Assignment Rev. 1.00 24 of 46 January 28, 2015 Pin Assignment VDDA 64 AF0 (Defa�lt) VSSA AF0 (Defa�lt) 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Table 2 HT32F1654/1653 Series Pin Assignment for LQFP 64 / 48 Package Alternate function number Package LQFP LQFP -64 -48 AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 System Default GPIO ADC CMP MCTM /GPTM SPI USART /UART I2C SCI EBI I2S 1 PA0 ADC_ IN0 GT1_ CH0 USR0_ RTS I2C1_ SCL SCI_ CLK I2S _WS 2 2 PA1 ADC_ IN1 GT1_ CH1 USR0_ CTS I2C1_ SDA SCI_ DIO I2S _BCLK 3 3 PA2 ADC_ IN2 GT1_ CH2 USR0_ TX I2S _SDO 4 4 PA3 ADC_ IN3 GT1_ CH3 USR0_ RX I2S _SDI 5 5 PA4 ADC_ IN4 GT0_ CH0 SPI0_ SCK USR1_ TX I2C0_ SCL 6 6 PA5 ADC_ IN5 GT0_ CH1 SPI0_ MOSI USR1_ RX I2C0_ SDA 7 7 PA6 ADC_ IN6 GT0_ CH2 SPI0_ MISO USR1_ RTS 8 8 PA7 ADC_ IN7 GT0_ CH3 SPI0_ SEL USR1_ CTS 9 9 VDD33_1 10 10 VSS33_1 PC9 ADC_ IN8 GT0_ CH0 SPI1_ SEL UR0_ TX I2C1_ SCL EBI _A19 12 PC10 ADC_ IN9 GT0_ CH1 SPI1_ SCK UR0_ RX I2C1_ SDA EBI _A20 13 PC11 ADC_ IN10 GT0_ CH2 SPI1_ MOSI EBI _A0 14 PC12 ADC_ IN11 GT0_ CH3 SPI1_ MISO EBI _A1 11 PB12 15 11 USBDM 16 12 USBDP 16 12 PB13 17 13 CLDO 18 14 VDD33_2 19 15 VSS33_2 20 16 nRST 21 17 VBAT 22 18 XTAL32KIN PC13 23 19 XTAL32KOUT PC14 24 20 RTCOUT PC15 _WAKEUP 25 PD0 MT1_ CH2 I2C0_ SCL MT1_ CH2N I2C0_ SDA MT1_ ETI I2C0_ SDA EBI_ A18 I2S_ SDI I2S_ MCLK 26 21 XTALIN PB14 27 22 XTALOUT PB15 28 23 PD1 MT1_ CH0 SPI0_ SEL I2C1_ SCL EBI_ A16 29 24 PD2 MT1_ CH0N SPI0_ SCK I2C1_ SDA EBI_ A17 30 PC0 GT1_ CH0 SPI1_ SEL EBI_ AD13 I2S_ WS 31 PC1 GT1_ CH1 SPI1_ SCK EBI_ AD14 I2S_ BCLK 32 PC2 GT1_ CH2 SPI1_ MOSI UR1_ TX I2C0_ SCL EBI_ AD15 I2S_ SDO 33 PC3 GT1_ CH3 SPI1_ MISO UR1_ RX I2C0_ SDA EBI_ CS3 I2S_ SDI Rev. 1.00 25 of 46 N/A N/A N/A AF15 System Other I2S _MCLK 11 15 N/A Pin Assignment 1 AF11 AF12 AF13 AF14 January 28, 2015 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Alternate function number Package AF0 AF1 AF2 AF3 AF4 AF5 GT0_ ETI 25 PA8_BOOT0 35 26 PA9_BOOT1 36 27 PA10 37 28 TRACESWO PA11 38 29 SWCLK PA12 39 30 SWDIO PA13 40 31 41 32 AF6 AF7 AF8 AF9 USR0_ TX I2S_ MCLK SPI0_ MOSI MT1_ CH1 USR0_ RX EBI_ A1 I2S_ WS EBI_ A0 I2S_ MCLK SPI0_ MISO PA14 MT0_ CH0 SPI1_ SEL USR1_ TX SCI_ CLK EBI_ AD0 PA15 MT0_ CH0N SPI1_ SCK USR1_ RX SCI_ DIO EBI_ AD1 42 VDD33_3 VSS33_3 44 33 PB0 MT0_ CH1 SPI1_ MOSI USR0_ TX I2C0_ SCL EBI_ AD2 45 34 PB1 MT0_ CH1N SPI1_ MISO USR0_ RX I2C0_ SDA EBI_ AD3 46 PC4 MT1_ CH2 USR1_ RTS SCI_ CLK EBI_ AD10 47 PC5 MT1_ CH2N USR1_ CTS SCI_ DIO EBI_ AD11 48 PC6 MT1_ CH3 SCI_ DET EBI_ AD12 35 VDD33_3 36 VSS33_3 49 37 PB2 MT0_ CH2 SPI0_ SEL UR0_ TX EBI_ AD4 50 38 PB3 MT0_ CH2N SPI0_ SCK UR0_ RX EBI_ AD5 51 39 PB4 MT0_ BRK SPI0_ MOSI UR1_ TX EBI_ AD6 52 40 PB5 MT1_ BRK SPI0_ MISO UR1_ RX EBI_ AD7 53 PC7 MT0_ CH3 I2C0_ SCL EBI_ AD8 54 PC8 MT0_ ETI I2C0_ SDA EBI_ AD9 55 VDD33_4 56 VSS33_4 57 41 PB6 CN0 MT1_ CH0 SPI1_ SEL 58 42 PB7 CP0 MT1_ CH0N SPI1_ SCK 59 43 PB8 COUT0 GT1_ ETI SPI1_ MOSI UR1_ RX EBI_ WE 60 44 PB9 CN1 MT1_ CH2 SPI1_ MISO UR0_ TX EBI_ ALE I2S_ BCLK 61 45 PB10 CP1 MT1_ CH2N I2C1_ SCL EBI_ CS1 I2S_ SDO 62 46 PB11 COUT1 MT1_ CH3 I2C1_ SDA EBI_ CS2 I2S_ SDI 63 47 VDDA 64 48 VSSA Rev. 1.00 AF11 AF12 AF13 AF14 AF15 CKOUT SCI_ DET MT1_ CH1N 43 AF10 UR1_ TX EBI_ OE TRACESWO Pin Assignment 34 I2S_ MCLK EBI_ CS0 UR0_ RX 26 of 46 January 28, 2015 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Table 3 HT32F1654/1653 Pin Description Pin number (Note1) (Note2) Output Driving AI/O 33V 4/8mA PA0 AI/O 33V 4/8mA PA1 AI/O 33V 4/8mA PA2 33V 4/8mA PA3 AI/O 33V 4/8mA PA4 AI/O 33V 4/8mA PA5 Pin Name 2 2 PA1 3 3 PA2 4 4 PA3 AI/O 5 5 PA4 6 6 PA5 Default function (AF0) Pin Assignment LQFP 48 1 PA0 Description IO Structure Type LQFP 64 1 7 7 PA6 AI/O 33V 4/8mA PA6 8 8 PA7 AI/O 33V 4/8mA PA7 9 9 VDD33_1 P — — 3.3 V voltage for digital I/O 10 10 Ground reference for digital I/O VSS33_1 P — — 11 PC9 AI/O 33V 4/8mA PC9 12 PC10 AI/O 33V 4/8mA PC10 13 PC11 AI/O 33V 4/8mA PC11 14 PC12 AI/O 33V 4/8mA PC12 PB12 15 11 PB12 I/O 5VT 8mA 15 11 USBDM AI/O — — USB Differential data bus conforming to the Universal Serial Bus standard. 16 12 USBDP AI/O — — USB Differential data bus conforming to the Universal Serial Bus standard. 16 12 PB13 I/O 5VT 8mA PB13 17 13 CLDO P — — Core power LDO 1.8 V output It is recommended to connect a 4.7uF capacitor as close as possible between this pin and VSS33_2. 18 14 VDD33_2 P — — 3.3 V voltage for digital I/O 19 15 VSS33_2 P — — Ground reference for digital I/O I (BK) 5VT_PU — External reset pin and external wakeup pin in the Power-Down mode Battery power input for the backup domain 20 16 nRST 21 17 VBAT P — — 33V 1mA XTAL32KIN 22 18 PC13Note 4 AI/O (BK) 23 19 PC14 Note 4 AI/O (BK) 33V 1mA XTAL32KOUT 24 20 PC15 Note 4 I/O (BK) 5VT 1mA RTCOUT PD0 I/O 5VT 8mA PD0 26 21 PB14 AI/O 33V 4/8mA XTALIN 27 22 PB15 AI/O 33V 4/8mA XTALOUT 28 23 PD1 I/O 5VT 8mA PD1 29 24 PD2 I/O 5VT 8mA PD2 30 PC0 I/O 5VT 12mA PC0 31 PC1 I/O 5VT 12mA PC1 32 PC2 I/O 5VT 12mA PC2 33 PC3 I/O 5VT 12mA PC3 25 Rev. 1.00 27 of 46 January 28, 2015 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Pin number Description (Note1) IO Structure (Note2) Output Driving I/O 5VT_PU 12mA PA8_BOOT0 PA9 I/O 5VT_PU 12mA PA9_BOOT1 PA10 I/O 5VT 8mA PA10 LQFP 64 LQFP 48 Pin Name 34 25 PA8 35 26 36 27 Type Default function (AF0) 28 PA11 I/O 5VT 8mA TRACESWO 29 PA12 I/O 5VT_PU 8mA SWCLK 39 30 PA13 I/O 5VT_PU 8mA SWDIO 40 31 PA14 I/O 5VT 12mA PA14 41 32 PA15 I/O 5VT 12mA PA15 42 VDD33_3 P — — 3.3 V voltage for digital I/O 43 VSS33_3 P — — Ground reference for digital I/O PB0 I/O 5VT 12mA PB0 44 33 45 34 PB1 I/O 5VT 12mA PB1 46 PC4 I/O 5VT 8mA PC4 47 PC5 I/O 5VT 8mA PC5 PC6 48 PC6 I/O 5VT 8mA 35 VDD33_3 P — — 3.3 V voltage for digital I/O Ground reference for digital I/O 36 VSS33_3 P — — 49 37 PB2 I/O 5VT 12mA PB2 50 38 PB3 I/O 5VT 12mA PB3 51 39 PB4 I/O 5VT 12mA PB4 52 40 PB5 I/O 5VT 12mA PB5 53 PC7 I/O 5VT 8mA PC7 54 PC8 I/O 5VT 8mA PC8 55 VDD33_4 P — — 3.3 V voltage for digital I/O Ground reference for digital I/O 56 VSS33_4 P — — 57 41 PB6 AI/O 33V 4/8mA PB6 58 42 PB7 AI/O 33V 4/8mA PB7 59 43 PB8 AI/O 33V 4/8mA PB8 60 44 PB9 AI/O 33V 4/8mA PB9 61 45 PB10 AI/O 33V 4/8mA PB10 62 46 PB11 AI/O 33V 4/8mA PB11 63 47 VDDA P — — 3.3 V analog voltage for ADC and Comparator 64 48 VSSA P — — Ground reference for the ADC and Comparator Note: 1. I = input, O = output, A = Analog port, P = power supply, PU = pull-up, BK = Back-up domain 2. 5VT = 5 V tolerant; 33V = 3.3 V tolerant. 3. The GPIOs are in an AF0 state after a VDD18 power on reset (POR) except for the RTCOUT pin in the Backup Domain I/O. The RTCOUT pin is reset by the Backup Domain power-on-reset (PORB) or by the Backup Domain software reset (BAK_RST bit in BAK_CR register). 4. The backup domain of the I/O pins have a source current capability limitation of <1 mA @ VBAT = 3.3V and sink current typical is 4 mA @ VBAT = 3.3V. Rev. 1.00 28 of 46 January 28, 2015 Pin Assignment 37 38 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 5 Electrical Characteristics Absolute Maximum Ratings Table 4 Absolute Maximum Ratings Symbol Parameter Min Max Unit VDD33 External main supply voltage VSS - 0.3 VSS + 3.6 V VDDA External analog supply voltage VSSA - 0.3 VSSA + 3.6 V VBAT External battery supply voltage VSS - 0.3 VSS + 3.6 V VLDOIN External LDO supply voltage VSS - 0.3 VSS + 3.6 V Input voltage on 5 V-tolerant I/O VSS - 0.3 VSS + 5.5 V Input voltage on other I/O VIN VSS - 0.3 VDD33 + 0.3 V TA Ambient operating temperature range -40 +85 °C TSTG Storage temperature range -55 +150 °C TJ Maximum junction temperature — 125 °C PD Total power dissipation — 500 mW VESD Electrostatic discharge voltage - human body mode -4000 +4000 V Recommended DC Operating Conditions Table 5 Recommended DC Operating Conditions Symbol VDD33 Parameter I/O operating voltage VDDA VBAT VLDOIN TA = 25°C, unless otherwise specified. Conditions Min 2.7 Typ 3.3 Max 3.6 Unit V Analog operating voltage 2.7 3.3 3.6 V Battery supply operating voltage 2.7 3.3 3.6 V LDO operating voltage 2.7 3.3 3.6 V On-Chip LDO Voltage Regulator Characteristics Table 6 LDO Characteristics Symbol VLDOOUT Rev. 1.00 Parameter Internal regulator output voltage TA = 25°C, unless otherwise specified. Conditions Min Typ Max Unit VDD33 = 3.3 V Regulator input 1.71 1.8 1.89 V VDD33 = 2.7 V Regulator input — — 200 mA 2.2 — 10 μF ILDOOUT Output current CLDO The capacitor value is depenExternal filter capacitor value dent on the core power curfor internal core power supply rent consumption 29 of 46 January 28, 2015 Electrical Characteristics The following table shows the absolute maximum ratings of the device. These are stress ratings only. Stresses beyond absolute maximum ratings may cause permanent damage to the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Power Consumption Table 7 Power Consumption Characteristics Symbol Parameter Conditions VDD33 = VBAT = 3.3 V, HSE = 8MHz, PLL = 144 MHz, fHCLK = 72 MHz, fPCLK = 72 MHz, All peripherals enabled Typ Max Unit — mA VDD33 = VBAT = 3.3 V, HSE = 8MHz, PLL = 144 MHz, fHCLK = 72 MHz, fPCLK = 72 MHz, All peripherals disabled — 33 — mA VDD = VBAT = 3.3 V, HSE = 8MHz, PLL = 144 MHz, fHCLK = 0 MHz, fPCLK = 72 MHz, All peripherals enabled — 55 — mA VDD33 = VBAT = 3.3 V, HSE = 8MHz, PLL = 144 MHz, fHCLK = 0 MHz, fPCLK = 72 MHz, All peripherals disabled — 10 — mA VDD33 = VBAT = 3.3 V, All clock off Supply current (HSE/PLL/fHCLK), LDO in low power mode, (Deep-Sleep1 mode) LSI on, RTC on — 63 — μA VDD33 = VBAT = 3.3 V, All clock off Supply current (HSE/PLL/fHCLK), LDO off (DMOS on), (Deep-Sleep2 mode) LSI on, RTC on — 22 — μA — - — μA — - — μA — - — μA — 5 — μA — 4 — μA — 3.9 — μA VDD33 = VBAT = 3.3 V, LDO off, LSE on, LSI off, RTC on VDD33 = VBAT = 3.3 V, LDO off, LSE on, LSI off, RTC off Supply current (Power-Down mode) VDD33 = VBAT = 3.3 V, LDO off, LSE off, LSI on, RTC on VDD33 = VBAT = 3.3 V, LDO off, LSE off, LSI on, RTC off VDD33 not present, VBAT = 3.3 V, Battery supply LDO off, LSE off, LSI on, RTC on current (Power-Down VDD33 not present, VBAT = 3.3 V, mode) LDO off, LSE off, LSI on, RTC off Note: 1. HSE means high speed external oscillator. HSI means 8MHz high speed internal oscillator. 2. LSE means low speed external oscillator. LSI means 32.768KHz low speed internal oscillator. 3. RTC means real time clock. 4. Code = while (1) { 208 NOP } executed in Flash. Rev. 1.00 30 of 46 January 28, 2015 Electrical Characteristics 76 Supply current (Sleep mode) IBAT Min — Supply current (Run mode) IDD TA = 25°C, unless otherwise specified. 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Reset and Supply Monitor Characteristics Table 8 LVD/BOD Characteristics Symbol VBOD TA = 25°C, unless otherwise specified. Parameter LVDS Typ Max Unit — 2.6 — V — 2.7 — V — 2.8 — V Voltage of Low Voltage Detector (Note1) = ‘010’ — 2.9 — V LVDS (Note1) = ‘011’ — 3.0 — V LVDS (Note1) = ‘100’ — 3.1 — V LVDS (Note1) = ‘101’ — 3.2 — V = ‘110’ — 3.4 — V LVDS (Note1) = ‘111’ — 3.5 — V — 1.36 — V Power On Reset Voltage (Note1) (Note1) — Note: LVDS field is in PWRCU LVDCSR register External Clock Characteristics Table 9 High Speed External Clock (HSE) Characteristics TA = 25°C, unless otherwise specified. Symbol Rev. 1.00 Parameter Conditions Min Typ Max Unit VDD33 = 3.3 V 4 — 16 MHz fHSE High Speed External oscillator frequency (HSE) CHSE Recommended load capacitance on XTALIN and XTALOUT pins — — TBD — pF RFHSE Recommended external feedback resistor between XTALIN and XTALOUT pins — — 1.0 — MΩ DHSE HSE oscillator Duty cycle — 40 — 60 % IDDHSE HSE oscillator current consumption VDD33 = 3.3 V, TA = 25°C — 0.96 — mA ISTBHSE HSE oscillator standby current VDD33 = 3.3 V, TA = 25°C — — 0.1 μA tSUHSE HSE oscillator startup time VDD33 = 3.3 V, TA = 25°C — — 4 ms 31 of 46 January 28, 2015 Electrical Characteristics = ‘000’ LVDS VPOR Min — LVDS (Note1) = ‘001’ LVDS VLVD Conditions Brown Out Detector Voltage 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Table 10 Low Speed External Clock (LSE) Characteristics TA = 25°C, unless otherwise specified. Symbol fLSE Parameter Low Speed External oscillator frequency (LSE) Conditions VDD33 = VBAT = 3.3 V Min Typ Max Unit — 32.768 — kHz Recommended load capacitance on XTAL32KIN and XTAL32KOUT pins — — TBD — pF RFLSE Recommended external feedback resistor between XTAL32KIN and XTAL32KOUT pins — — 10 — MΩ DLSE LSE oscillator Duty cycle 40 — 60 % — 1.7 — μA IDDLSE LSE Oscillator Operating current VDD33 = VBAT = 3.3 V, LSESM = 0 (Normal startup mode) ISTBLSE LSE Oscillator Standby current VDD33 = VBAT = 3.3 V, LSESM = 1 (Fast startup mode) — 3 8 μA tSULSE LSE Oscillator Startup time VDD33 = VBAT = 3.3 V, LSESM = 1 (Fast startup mode) — 200 — ms Note: The following PCB layout guidelines are recommended to increase the stability of the crystal circuit for the HSE/LSE clock: ■■ The crystal oscillator should be located as close as possible to the MCU to minimise trace length thus reducing parasitic capacitance. ■■ Use a ground plane as a shield under the crystal circuit to reduce the effects of noise interference.. ■■ Route high frequency signals away from crystal oscillator area to prevent crosstalk. Internal Clock Characteristics Table 11 High Speed Internal Clock (HSI) Characteristics TA = 25°C, unless otherwise specified. Symbol fHSI Parameter High Speed Internal Oscillator Frequency (HSI) Conditions VDD33 = 3.3 V, TA = -40°C ~ +85°C Min Typ Max Unit — 8 — MHz — +5 % ACCHSI Factory-trimmed, HSI Oscillator Frequency accuracy VDD33 = 3.3 V, TA = -40°C ~ +85°C -5 DHSI HSI Oscillator Duty cycle VDD33 = 3.3 V, fHSI = 8 MHz 35 — 65 % IDDHSI HSI Oscillator current VDD33 = 3.3 V, fHSI = 8 MHz — 0.92 — mA tSUHSI HSI Oscillator Startup time VDD33 = 3.3 V, fHSI = 8 MHz, HSIRCBL = 0 (HSI Ready Counter Bits Length 7 Bits ) — 17 — μs Note: HSIRCBL field is in PWRCU HSIRCR register Rev. 1.00 32 of 46 January 28, 2015 Electrical Characteristics CLSE 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Table 12 Low Speed Internal Clock (LSI) Characteristics TA = 25°C, unless otherwise specified. Symbol Conditions VDD33 = VBAT = 3.3 V, TA = -40°C ~ +85°C IDDLSI LSI Oscillator Operating current tSULSI LSI Oscillator startup time fLSI Min Typ Max Unit 25 32 43 kHz VDD33 = VBAT = 3.3 V, TA = 25°C — 1.0 2 μA VDD33 = VBAT = 3.3 V, TA = 25°C — 35 — ms PLL Characteristics Table 13 PLL Characteristics Symbol TA = 25°C, unless otherwise specified. fPLLIN Parameter PLL input clock Conditions — Min 4 Typ — Max 16 Unit MHz fCK_PLL PLL output clock — 8 — 144 MHz tLOCK PLL lock time — — TBD — ms Memory Characteristics Table 14 Flash Memory Characteristics Symbol Parameter Conditions Number of guaranteed program/ erase cycles before failure. TA = -40°C ~ +85°C (Endurance) Min Typ Max Unit 20 — — K cycles TRET Data retention time TA = 25°C 100 — — Years tPROG Word programming time TA = -40°C ~ +85°C 20 — 40 μs tERASE Page erase time TA = -40°C ~ +85°C 20 — 40 ms tMERASE Mass erase time TA = -40°C ~ +85°C 20 — 40 ms NENDU Rev. 1.00 TA = 25°C, unless otherwise specified. 33 of 46 January 28, 2015 Electrical Characteristics Parameter Low Speed Internal Oscillator Frequency (LSI) 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 I/O Port Characteristics Table 15 I/O Port Characteristics Symbol TA = 25°C, unless otherwise specified. Parameter Min Typ Max Unit VI = 0 V, 5 V-tolerant IO On-chip pull-up resister disabled. Reset pin — — 3 IIL IIH VIL VIH VHYS IOL IOH VOL Rev. 1.00 Low level input current μA — — 3 μA — — 3 μA 3.3 V IO — — 3 μA High level input current — — 3 μA — — 3 μA 3.3 V IO -0.3 — 0.8 V Low level input voltage 5 V-tolerant IO -0.3 — 0.8 V Reset pin -0.3 — 0.8 V 3.3 V IO 2 — 3.6 V High level input voltage 5 V-tolerant IO 2 — 5.5 V Reset pin 2 — 5.5 V Schmitt trigger input voltage hysteresis Low level output current (GPIO Sink current) High level output current (GPIO Source current) Low level output voltage VI = VDD33, 5 V-tolerant IO On-chip pull-down resister disabled. Reset pin 3.3 V IO — 400 — mV 5 V-tolerant IO — 400 — mV Reset pin — 400 — mV 3.3 V IO 4 mA drive, VOL = 0.4 V 4 — — mA 3.3 V IO 8 mA drive, VOL = 0.4 V 8 — — mA 5 V-tolerant IO 8 mA drive, VOL = 0.4 V 8 — — mA 5 V-tolerant IO 12 mA drive, VOL = 0.4 V 12 — — mA Backup Domain IO drive @ VBAT = 3.3 V, VOL = 0.4 V, PC13, PC14, PC15. — 4 — mA 3.3 V I/O 4 mA drive, VOH = VDD33 - 0.4 V 4 — — mA 3.3 V I/O 8 mA drive, VOH = VDD33 - 0.4 V 8 — — mA 5 V-tolerant I/O 8 mA drive, VOH = VDD33 - 0.4 V 8 — — mA 5 V-tolerant I/O 12 mA drive, VOH = VDD33 - 0.4 V 12 — — mA Backup Domain IO drive @ VBAT = 3.3 V, VOL = VDD33 - 0.4V, PC13, PC14, PC15. — — 1 mA 3.3 V 4 mA drive IO, IOL = 4 mA — — 0.4 V 3.3 V 8 mA drive IO, IOL = 8 mA — — 0.4 V 5 V-tolerant 8 mA drive IO, IOL = 8 mA — — 0.4 V 5 V-tolerant 12 mA drive IO, IOL = 12 mA — — 0.4 V 34 of 46 January 28, 2015 Electrical Characteristics Conditions 3.3 V IO 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Symbol VOH Parameter High level output voltage Internal pull-up resistor RPD Internal pull-down resistor Min Typ Max Unit 3.3 V 4 mA drive IO, IOH = 4 mA VDD33 0.4 V — — V 3.3 V 8 mA drive IO, IOH = 8 mA VDD33 0.4 V — — V 5 V-tolerant 8 mA drive IO, IOH = 8 mA VDD33 0.4 V — — V 5 V-tolerant 12 mA drive IO, IOH = 12 mA VDD33 0.4 V — — V 3.3 V I/O 34 — 74 kΩ 5 V-tolerant I/O 38 — 89 kΩ 3.3 V I/O 29 — 86 kΩ 5 V-tolerant I/O 35 — 107 kΩ ADC Characteristics Table 16 ADC Characteristics TA = 25°C, unless otherwise specified. Symbol Parameter Operating voltage VDDA Conditions — Min 2.7 — 0 — — Typ Max 3.3 3.6 VADCIN A/D Converter input voltage range VREF+ A/D Converter Reference voltage IADC Current consumption VDDA = 3.3 V — 1 TBD mA IADC_DN Power down current consumption VDDA = 3.3 V — 1 10 μA fADC A/D Converter clock — 0.7 — 14 MHz fS Sampling rate — 0.05 — 1 MHz fADCCONV A/D Converter conversion time — — 14 — 1/fADC Cycles RI Input sampling switch resistance — — — 1 kΩ — — 5 pF No pin/pad capacitance included — VREF+ Unit V VDDA VDDA V V CI Input sampling capacitance tSU Startup up time — — — 1 μs N Resolution — — 12 — bits INL Integral Non-linearity error fS = 1 MHz, VDDA = 3.3 V — ±2 ±5 LSB DNL Differential Non-linearity error fS = 1 MHz, VDDA = 3.3 V — — ±1 LSB EO Offset error — — — ±10 LSB EG Gain error — — — ±10 LSB Note: 1. Guaranteed by design, not tested in production. 2. The figure below shows the equivalent circuit of the A/D Converter Sample-and-Hold input stage where CI is the storage capacitor, RI is the resistance of the sampling switch and RS is the output impedance of the signal source VS. Normally the sampling phase duration is approximately, 1.5/fADC. The capacitance, CI, must be charged within this time frame and it must be ensured that the voltage at its terminals becomes sufficiently close to VS for accuracy. To guarantee this, RS may not have an arbitrarily large value. Rev. 1.00 35 of 46 January 28, 2015 Electrical Characteristics RPU Conditions 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 SAR ADC sample RS RI Figure 6 ADC Sampling Network Model The worst case occurs when the extremities of the input range (0V and VREF) are sampled consecutively. In this situation a sampling error below ¼ LSB is ensured by using the following equation: RS < 1.5 − RI f ADC C I ln(2 N + 2 ) where fADC is the ADC clock frequency and N is the ADC resolution (N = 12 in this case). A safe margin should be considered due to the pin/pad parasitic capacitances, which are not accounted for in this simple model. If, in a system where the A/D Converter is used, there are no rail-to-rail input voltage variations between consecutive sampling phases, Rs may be larger than the value indicated by the equation above. Rev. 1.00 36 of 46 January 28, 2015 Electrical Characteristics CI VS 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Comparator Characteristics Table 17 Comparator Characteristics Symbol Parameter Operating voltage VDDA TA = -40°C ~ 85°C, unless otherwise specified. Conditions Comparator mode Min 2.7 Typ Max Unit 3.3 3.6 V Input Common Mode Voltage Range CP or CN VSSA — VDDA V VIOS Input offset voltage(Note) TA = 25°C -5 — 5 mV No hysteresis (CMPnHM [1:0] = 00) — 0 — mV Low hysteresis (CMPnHM [1:0] = 01) — 30 — mV Middle hysteresis (CMPnHM [1:0] = 10) — 70 — mV High hysteresis (CMPnHM [1:0] = 11) — 100 — mV — 50 100 ns — 2 5 us Vhys Input Hysteresis tRT High Speed mode Response time Input Overdrive = ±100mV Low Speed mode ICMP Current Consumption VDDA = 3.3 V tCMPST ICMP_DN High Speed mode — 100 uA Low Speed mode — 10 uA Comparator Startup Time Comparator enabled to output valid. — — 50 us Power Down Supply Current CMPEN = 0 CVREFEN = 0 CVREFOE=0 — — 0.1 uA Comparator Voltage Reference (CVR) VCVR Output Range — VSSA — VDDA V NBits CVR Scaler Resolution — — 6 — bits tCVRST Setting Time CVR scaler setting time from CVREF = “000000” to “111111” — — 100 us ICVR Current Consumption VDDA = 3.3 V CVREFEN=1, CMPREFOE=0 — 10 — uA CVREFEN=1, CVREFOE=1 — 20 40 uA Note: Guaranteed by design, not tested in production. GPTM/MCTM Characteristics Table 18 GPTM/MCTM Characteristics Symbol Rev. 1.00 fTM Parameter Timer clock source for GPTM and MCTM tRES Timer resolution time — 1 — — fEXT External single frequency on channel 1 ~ 4 — — — 1/2 fTM RES Timer resolution — — — 16 bits 37 of 46 Conditions — Min — Typ Max Unit — 72 MHz fTM January 28, 2015 Electrical Characteristics VIN 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 I2C Characteristics Table 19 I2C Characteristics Symbol Standard mode Parameter fSCL SCL clock frequency Min — Fast mode Fast mode plus Max 100 Min — Max 400 Min — Max 1000 Unit kHz SCL clock high time 4.5 — 1.125 — 0.45 — μs SCL clock low time 4.5 — 1.125 — 0.45 — μs tFALL SCL and SDA fall time — 1.3 — 0.34 — 0.135 μs tRISE SCL and SDA rise time tSU(SDA) SDA data setup time — 1.3 — 0.34 — 0.135 μs 500 — 125 — 50 — ns ns tH(SDA) SDA data hold time 0 — 0 — 0 — tSU(STA) START condition setup time 500 — 125 — 50 — ns tH(STA) START condition hold time 0 — 0 — 0 — ns tSU(STO) STOP condition setup time 500 — 125 — 50 — ns Note: 1. Guaranteed by design, not tested in production. 2. To achieve 100kHz standard mode, the peripheral clock frequency must be higher than 2MHz. 3. To achieve 400kHz fast mode, the peripheral clock frequency must be higher than 8MHz. 4. To achieve 1MHz fast mode plus, the peripheral clock frequency must be higher than 20MHz. 5. The above characteristic parameters of the I2C bus timing are based on: SEQ_FILTER = 01 and COMB_FILTER_En is disabled. tFALL tRISE SCL tSCL(L) tH(STA) tSCL(H) tH(SDA) tSU(SDA) tSU(STO) SDA tSU(STA) Figure 7 I2C Timing Diagrams Rev. 1.00 38 of 46 January 28, 2015 Electrical Characteristics tSCL(H) tSCL(L) 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 SPI Characteristics Table 20 SPI Characteristics Symbol Parameter SCK clock frequency fSCK Conditions — Min — Typ — Max fPCLK/2 Unit MHz tSCK(H) SCK clock high time — fPCLK/8 — — ns tSCK(L) SCK clock low time — fPCLK/8 — — ns tV(MO) Data output valid time — — — 5 ns tH(MO) Data output hold time — 2 — — ns tSU(MI) Data input setup time — 5 — — ns tH(MI) Data input hold time — 5 — — ns ns SPI Slave mode tSU(SEL) SEL enable setup time — 4 tPCLK — — tH(SEL) SEL enable hold time — 2 tPCLK — — ns tA(SO) Data output access time — — — 3 tPCLK ns tDIS(SO) Data output disable time — — — 10 ns tV(SO) Data output valid time — — — 25 ns tH(SO) Data output hold time — 15 — — ns tSU(SI) Data input setup time — 5 — — ns tH(SI) Data input hold time — 4 — — ns tSCK SCK (CPOL = 0) tSCK(H) tSCK(L) SCK (CPOL = 1) tV(MO) MOSI DATA VALID tSU(MI) MISO MOSI MISO DATA VALID DATA VALID tH(MI) CPHA = 1 DATA VALID DATA VALID tV(MO) tH(MO) DATA VALID tSU(MI) tH(MO) DATA VALID DATA VALID DATA VALID tH(MI) DATA VALID CPHA = 0 DATA VALID DATA VALID Figure 8 SPI Timing Diagrams - SPI Master Mode Rev. 1.00 39 of 46 January 28, 2015 Electrical Characteristics SPI Master mode 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 SEL tSU(SEL) tH(SEL) tSCK tSCK(H) Electrical Characteristics SCK (CPOL=0) tSCK(L) SCK (CPOL=1) tSU(SI) MOSI tH(SI) LSB/MSB IN MSB/LSB IN tA(SO) tV(SO) tDIS(SO) tH(SO) LSB/MSB OUT MSB/LSB OUT MISO Figure 9 SPI Timing Diagrams - SPI Slave Mode with CPHA=1 I2S Characteristics Table 21 I2S Characteristics Symbol I2S Master mode Parameter Conditions Min Typ Max Unit tWSD(MO) WS output to BCLK delay — — TBD — ns tDOD(MO) Data output to BCLK delay — — TBD — ns tDIS(MI) Data input setup time — — TBD — ns tDIH(MI) Data input hold time — — TBD — ns I2S Slave mode Rev. 1.00 tBCH(SI) BCLK high pulse width — — TBD — ns tBCL(SI) BCLK low pulse width — — TBD — ns tWSS(SI) WS input setup time — — TBD — ns tDOD(SO) Data output to BCLK delay — — TBD — ns tDIS(SI) Data input setup time — — TBD — ns tDIH(SI) Data input hold time — — TBD — ns 40 of 46 January 28, 2015 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 BCLK tWSD(MO) WS Electrical Characteristics tDOD(MO) SDO tDIS(MI) tDIH(MI) SDI Figure 10 Timing of I2S Master Mode tBCH(SI) tBCL(SI) BCLK tWSS(SI) WS tDOD(SO) SDO tDIS(SI) tDIH(SI) SDI Figure 11 Timing of I2S Slave Mode Rev. 1.00 41 of 46 January 28, 2015 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 USB Characteristics The USB interface is USB-IF certified - Full Speed. Table 22 USB DC Electrical Characteristics Symbol Parameter USB operating voltage VDD33 Conditions — USBDP-USBDM Min 3.0 Typ — Max 3.6 Unit V Differential input sensitivity 0.2 — — V Common mode voltage range — 0.8 — 2.5 V VSE Single-ended receiver threshold — 0.8 — 2.0 V VOL Pad output low voltage 0 — 0.3 V VOH Pad output high voltage 2.8 — 3.6 V VCRS Differential output signal crosspoint voltage 1.3 — 2.0 V ZDRV Driver output resistance — — 10 — Ω CIN Transceiver pad capacitance — — — 20 pF RL of 1.5 kΩ to VDD33 Note: 1. Guaranteed by design, not tested in production. 2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP pin should be pulled up with a 1.5 kΩ external resistor to a 3.0-to-3.6 V voltage supply. 3. The USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which will experience degradation in the 2.7-to-3.0 V VDD33 voltage range. 4. RL is the load connected to the USB driver USBDP. Rise Time Fall Time Tr Tf 90% 90% VCRS 10% 10% Figure 12 USB Signal Rise Time and Fall Time and Cross-Point Voltage (VCRS) Definition Table 23 USB AC Electrical Characteristics Symbol Parameter Rise time Tr Rev. 1.00 Conditions CL = 50 pF Min 4 Typ - Max 20 Unit ns Tf Fall time CL = 50 pF 4 - 20 ns Tr/f Rise time / fall time matching Tr/f = Tr / Tf 90 - 110 % 42 of 46 January 28, 2015 Electrical Characteristics VDI VCM 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 6 Package Information Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the Holtek website for the latest version of the package information. • Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications) • Packing Meterials Information • Carton information Rev. 1.00 43 of 46 January 28, 2015 Package Information Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page. 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 48-pin LQFP (7mm×7mm) Outline Dimensions Package Information Symbol Dimensions in inch Min. Nom. Max. A — 0.354 BSC — B — 0.276 BSC — C — 0.354 BSC — D — 0.276 BSC — E — 0.0197 BSC — F 0.007 0.009 0.011 G 0.053 0.055 0.057 H — — 0.063 I 0.002 — 0.006 J 0.018 0.024 0.030 K 0.004 — 0.008 α 0° ― 7° Symbol Rev. 1.00 Dimensions in mm Min. Nom. A — 9.0 BSC Max. — B — 7.0 BSC — C — 9.0 BSC — D — 7.0 BSC — E — 0.5 BSC — F 0.17 0.22 0.27 G 1.35 1.4 1.45 H — — 1.60 I 0.05 — 0.15 J 0.45 0.60 0.75 K 0.09 — 0.20 α 0° ― 7° 44 of 46 January 28, 2015 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 64-pin LQFP (7mm×7mm) Outline Dimensions Package Information Symbol Nom. Max. A — 0.354 BSC — B — 0.276 BSC — C — 0.354 BSC — D — 0.276 BSC — E — 0.016 BSC — F 0.005 0.007 0.009 G 0.053 0.055 0.057 H — — 0.063 I 0.002 — 0.006 J 0.018 0.024 0.030 K 0.004 — 0.008 α 0° ― 7° Symbol Rev. 1.00 Dimensions in inch Min. Dimensions in mm Min. Nom. Max. A — 9.0 BSC — B — 7.0 BSC — C — 9.0 BSC — D — 7.0 BSC — E — 0.4 BSC — 0.23 F 0.13 0.18 G 1.35 1.4 1.45 H — — 1.60 I 0.05 — 0.15 J 0.45 0.60 0.75 K 0.09 — 0.20 α 0° ― 7° 45 of 46 January 28, 2015 32-bit ARM® Cortex™-M3 MCU HT32F1653/HT32F1654 Copyright© 2015 by HOLTEK SEMICONDUCTOR INC. The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw. Rev. 1.00 46 of 46 January 28, 2015