32-bit ARM® Cortex™-M3 Microcontroller,up to 256KB Flash and 32KB SRAM with 1 MSPS ADC, USART, UART, SPI, I2C, I2S, MCTM, GPTM, BFTM, PDMA, SCI, CRC, EBI and USB2.0 FS HT32F1656/HT32F1655 Series DataSheet Revision: V1.00 Date: ������������� July 24, 2014 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Table of Contents 1 General Description................................................................................................. 6 2 Features.................................................................................................................... 7 Core........................................................................................................................................ 7 Flash Memory Controller........................................................................................................ 7 Reset Control Unit.................................................................................................................. 8 Clock Control Unit................................................................................................................... 8 Power Management................................................................................................................ 8 External Interrupt/Event Controller......................................................................................... 9 Analog to Digital Converter..................................................................................................... 9 Analog Operational Amplifier/Comparator.............................................................................. 9 I/O Ports................................................................................................................................ 10 PWM Generation and Capture Timers – GPTM................................................................... 10 Motor Control Timer – MCTM............................................................................................... 10 Basic Function Timer – BFTM.............................................................................................. 11 Watchdog Timer.................................................................................................................... 11 Real Time Clock.................................................................................................................... 11 Inter-integrated Circuit – I2C................................................................................................. 12 Serial Peripheral Interface – SPI.......................................................................................... 12 Universal Synchronous Asynchronous Receiver Transmitter – USART............................... 12 Universal Asynchronous Receiver Transmitter – UART....................................................... 13 Smart Card Interface – SCI.................................................................................................. 13 Inter-IC Sound – I2S............................................................................................................. 14 Cyclic Redundancy Check – CRC........................................................................................ 14 Peripheral Direct Memory Access – PDMA.......................................................................... 15 External Bus Interface – EBI................................................................................................. 15 Universal Serial Bus Device Controller – USB..................................................................... 16 Debug Support...................................................................................................................... 16 Package and Operation Temperature................................................................................... 16 3 Overview................................................................................................................. 17 Device Information................................................................................................................ 17 Block Diagram...................................................................................................................... 18 Memory Map......................................................................................................................... 19 Clock Structure..................................................................................................................... 20 Pin Assignment..................................................................................................................... 21 Rev. 1.00 2 of 48 July 24, 2014 Table of Contents On-chip Memory..................................................................................................................... 7 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 4 Electrical Characteristics...................................................................................... 30 Absolute Maximum Ratings.................................................................................................. 30 Recommended DC Operating Conditions............................................................................ 30 On-Chip LDO Voltage Regulator Characteristics.................................................................. 30 Power Consumption............................................................................................................. 31 External Clock Characteristics.............................................................................................. 32 Internal Clock Characteristics............................................................................................... 33 PLL Characteristics............................................................................................................... 34 Memory Characteristics........................................................................................................ 34 I/O Port Characteristics......................................................................................................... 34 ADC Characteristics............................................................................................................. 36 Operational Amplifier/Comparator Characteristics................................................................ 38 GPTM/MCTM Characteristics............................................................................................... 38 I2C Characteristics................................................................................................................ 39 SPI Characteristics............................................................................................................... 40 I2S Characteristics................................................................................................................ 41 USB Characteristics.............................................................................................................. 43 5 Package Information............................................................................................. 44 48-pin LQFP (7mm×7mm) Outline Dimensions.................................................................... 45 64-pin LQFP (7mm×7mm) Outline Dimensions.................................................................... 46 100-pin LQFP (14mm×14mm) Outline Dimensions.............................................................. 47 Rev. 1.00 3 of 48 July 24, 2014 Table of Contents Reset and Supply Monitor Characteristics............................................................................ 32 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 List of Tables Rev. 1.00 4 of 48 July 24, 2014 List of Tables Table 1. HT32F1656/1655 Series Features and Peripheral List............................................................... 17 Table 2. HT32F1656/55 Series Pin Assignment for LQFP100 / 64 / 48 Package..................................... 24 Table 3. HT32F1656/55 Pin Description................................................................................................... 27 Table 4. Absolute Maximum Ratings......................................................................................................... 30 Table 5. Recommended DC Operating Conditions................................................................................... 30 Table 6. LDO Characteristics.................................................................................................................... 30 Table 7. Power Consumption Characteristics........................................................................................... 31 Table 8. LVD/BOD Characteristics............................................................................................................ 32 Table 9. High Speed External Clock (HSE) Characteristics...................................................................... 32 Table 10. Low Speed External Clock (LSE) Characteristics..................................................................... 32 Table 11. High Speed Internal Clock (HSI) Characteristics...................................................................... 33 Table 12. Low Speed Internal Clock (LSI) Characteristics........................................................................ 33 Table 13. PLL Characteristics................................................................................................................... 33 Table 14. Flash Memory Characteristics................................................................................................... 33 Table 15. I/O Port Characteristics............................................................................................................. 34 Table 16. ADC Characteristics.................................................................................................................. 35 Table 17. OPA/CMP Characteristics......................................................................................................... 37 Table 18. GPTM/MCTM Characteristics................................................................................................... 37 Table 19. I2C Characteristics..................................................................................................................... 38 Table 20. SPI Characteristics.................................................................................................................... 39 Table 21. I2S Characteristics..................................................................................................................... 40 Table 22. USB DC Electrical Characteristics............................................................................................ 42 Table 23 USB AC Electrical Characteristics.............................................................................................. 42 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 List of Figures Rev. 1.00 5 of 48 July 24, 2014 List of Figures Figure 1. HT32F1656/1655 Block Diagram.............................................................................................. 18 Figure 2. HT32F1656/1655 Memory Map................................................................................................. 19 Figure 3. HT32F1656/1655 Clock Structure............................................................................................. 20 Figure 4. HT32F1656/1655 LQFP-48 Pin Assignment............................................................................. 21 Figure 5. HT32F1656/1655 LQFP-64 Pin Assignment............................................................................. 22 Figure 6. HT32F1656/1655 LQFP-100 Pin Assignment........................................................................... 23 Figure 7. ADC Sampling Network Model.................................................................................................. 36 Figure 8. I2C Timing Diagrams.................................................................................................................. 38 Figure 9. SPI Timing Diagrams - SPI Master Mode.................................................................................. 39 Figure 10. SPI Timing Diagrams - SPI Slave Mode with CPHA=1........................................................... 40 Figure 11. Timing of I2S Master Mode....................................................................................................... 41 Figure 12. Timing of I2S Slave Mode........................................................................................................ 41 Figure 13. USB Signal Rise Time and Fall time and Cross-Point Voltage (VCRS) Definition..................... 42 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 1 General Description The Holtek HT32F1656/1655 devices are high performance, low power consumption 32-bit microcontrollers based around an ARM® Cortex™-M3 processor core. The Cortex™-M3 is a next-generation processor core which is tightly coupled with Nested Vectored Interrupt Controller (NVIC), SysTick timer, and includes advanced debug support. The above features ensure that the devices are suitable for use in a wide range of applications, especially in areas such as white goods application control, power monitors, alarm systems, consumer products, handheld equipment, data logging applications, motor control, fingerprint recognition and so on. Rev. 1.00 6 of 48 July 24, 2014 General Description The devices operate at a frequency of up to 72 MHz with a Flash accelerator to obtain maximum efficiency. They provide up to 256 KB of embedded Flash memory for code/data storage and 32 KB of embedded SRAM memory for system operation and application program usage. A variety of peripherals, such as ADC, I2C, USART, UART, SPI, I2S, PDMA, GPTM, MCTM, SCI, EBI, CRC16/32, USB2.0 FS, SW-DP (Serial Wire Debug Port), etc., are also implemented in the devices. Several power saving modes provide the flexibility for maximum optimisation between wakeup latency and power consumption, an especially important consideration in low power applications. 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 2 Features Core On-chip Memory ▀ Up to 256 KB on-chip Flash memory for instruction/data and option storage ▀ 32 KB on-chip SRAM ▀ Supports multiple boot modes The ARM® Cortex™-M3 processor is structured using Harvard architecture which uses a separate bus structure to fetch instructions and load/store data. The instruction code and data are both located in the same memory address space but in different address ranges. The maximum address range of the Cortex™-M3 is 4 GB due to its 32-bit bus address width. Additionally, a pre-defined memory map is provided by the Cortex™-M3 processor to reduce the software complexity of repeated implementation for different device vendors. However, some regions are used by the ARM® Cortex™-M3 system peripherals. Refer to the ARM® Cortex™-M3 Technical Reference Manual for more information. Figure 2 shows the memory map of the HT32F1656/55 series of devices, including Code, SRAM, peripheral, and other pre-defined regions. Flash Memory Controller ▀ Flash accelerator for maximum efficiency ▀ 32-bit word programming with In System Programming Interface (ISP) and In Application Programming (IAP) ▀ Flash protection capability to prevent illegal access The Flash Memory Controller, FMC, provides all the necessary functions and pre-fetch buffer for the embedded on-chip Flash Memory. Since the access speed of the Flash Memory is slower than the CPU, a wide access interface with a pre-fetch buffer and cache are provided for the Flash Memory in order to reduce the CPU waiting time which will cause CPU instruction execution delays. Flash Memory word program/page erase functions are also provided. Rev. 1.00 7 of 48 July 24, 2014 Features ® ▀ 32-bit ARM Cortex™-M3 processor core ▀ Up to 72 MHz operating frequency ▀ 1.25 DMIPS/MHz (Dhrystone 2.1) ▀ Single-cycle multiplication and hardware division ▀ Integrated Nested Vectored Interrupt Controller (NVIC) ▀ 24-bit SysTick timer The Cortex™-M3 processor is a general-purpose 32-bit processor core especially suitable for products requiring high performance and low power consumption microcontrollers. It offers many special features such as a Thumb-2 instruction set, hardware divider, low latency interrupt respond time, atomic bit-banding access and multiple buses for simultaneous accesses. The Cortex™-M3 processor is based on the ARMv7 architecture and supports both Thumb and Thumb-2 instruction sets. 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Reset Control Unit ▀ Supply supervisor: ● Power-on Reset - POR ● Brown-out Detector - BOD ● Programmable Low Voltage Detector - LVD Clock Control Unit ▀ External 4 to 16 MHz crystal oscillator ▀ External 32,768 Hz crystal oscillator ▀ Internal 8MHz RC oscillator trimmed to ±2% accuracy at 3.3V operating voltage and 25°C operating temperature ▀ Internal 32 kHz RC oscillator ▀ Integrated system clock PLL ▀ Independent clock gating bits for peripheral clock sources The Clock Control unit, CKCU, provides a range of oscillator and clock functions. These include a High Speed Internal RC oscillator (HSI), a High Speed External crystal oscillator (HSE), a Low Speed Internal RC oscillator (LSI), a Low Speed External crystal oscillator (LSE), a Phase Lock Loop (PLL), a HSE clock monitor, clock prescalers, clock multiplexers and clock gating circuitry. The clocks of the AHB, APB and CortexTM-M3 are derived from the system clock (CK_SYS) which can come from the HSI, HSE or PLL. The Watchdog Timer and Real Time Clock (RTC) use either the LSI or LSE as their clock source. The maximum operating frequency of the system core clock (CK_AHB) can be up to 72 MHz. Power Management ▀ Single 3.3 V power supply: 2.7 V to 3.6 V ▀ Integrated 1.8 V LDO regulator for core and peripheral power supply ▀ VBAT battery power supply for RTC and backup registers ▀ Three power domains: 3.3 V, 1.8 V and Backup ▀ Four power saving modes: Sleep, Deep-Sleep1, Deep-Sleep2, Power-Down Power consumption can be regarded as one of the most important issues for many embedded system applications. Accordingly the Power Control Unit, PWRCU, in these devices provides many types of power saving modes such as Sleep, Deep-Sleep1, Deep-Sleep2 and Power-Down mode. These operating modes reduce the power consumption and allow the application to achieve the best trade-off between the conflicting demands of CPU operating time, speed and power consumption. Rev. 1.00 8 of 48 July 24, 2014 Features The Reset Control Unit, RSTCU, has three kinds of reset, a power on reset, a system reset and an APB unit reset. The power on reset, known as a cold reset, resets the full system during power up. A system reset resets the processor core and peripheral IP components with the exception of the SW-DP controller. The resets can be triggered by an external signal, internal events and the reset generators. 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 External Interrupt/Event Controller Analog to Digital Converter ▀ 12-bit SAR ADC engine ▀ Up to 1 Msps conversion rate - 1 μs at 56 MHz, 1.17 μs at 72 MHz ▀ Up to 16 external analog input channels ▀ Supply voltage range: 2.7 V ~ 3.6 V ▀ Conversion range: VREF+ ~ VREFA 12-bit multi-channel ADC is integrated in the device. There are up to 16 multiplexed channels, which include external channels on which the external analog signals can be measured, and 2 internal channels. If the input voltage is required to remain within a specific threshold window, an Analog Watchdog function will monitor and detect these signals. An interrupt will then be generated to inform the device that the input voltage is not within the preset threshold levels. There are three conversion modes to convert an analog signal to digital data. The ADC can be operated in one shot, continuous and discontinuous conversion modes. Analog Operational Amplifier/Comparator ▀ Two Operational Amplifiers or Comparator functions which are software configurable ▀ Supply voltage range: 2.7 V ~ 3.6 V Two Operational Amplifiers/Comparators (OPA/CMP) are implemented within the devices. They can be configured either as Operational Amplifiers or as Analog Comparators. When configured as comparators, they are capable of generating interrupts to the NVIC. Rev. 1.00 9 of 48 July 24, 2014 Features ▀ Up to 16 EXTI lines with configurable trigger source and type ▀ All GPIO pins can be selected as EXTI trigger source ▀ Source trigger type includes high level, low level, negative edge, positive edge, or both edge ▀ Individual interrupt enable, wakeup enable and status bits for each EXTI line ▀ Software interrupt trigger mode for each EXTI line ▀ Integrated deglitch filter for short pulse blocking The External Interrupt/Event Controller, EXTI, comprises 16 edge detectors which can generate a wake-up event or interrupt requests independently. Each EXTI line can also be masked independently. 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 I/O Ports The GPIO ports are pin-shared with other alternative functions to obtain maximum functional flexibility on the package pins. The GPIO pins can be used as alternative functional pins by configuring the corresponding registers regardless of the input or output pins. The external interrupts on the GPIO pins of the device have related control and configuration registers in the External Interrupt Control Unit, EXTI. PWM Generation and Capture Timers – GPTM ▀ Two 16-bit General-Purpose Timers - GPTM ▀ Up to 4-channel with PWM, Compare Output or Input Capture function for each GPTM ▀ External trigger input The General Purpose Timers, known as GPTM0 and GPTM1, consist of one 16-bit up/downcounter, four 16-bit Capture/Compare Registers (CCRs), one 16-bit Counter Reload Register (CRR) and several control/status registers. They can be used for a variety of purposes including general time measurement, input signal pulse width measurement, output waveform generation such as single pulse generation, or PWM output generation. The GPTM supports an Encoder Interface using a decoder with two inputs. Motor Control Timer – MCTM ▀ Two 16-bit up, down, up/down auto-reload counters ▀ 16-bit programmable prescaler allowing division of the counter clock frequency by any factor between 1 and 65536 ▀ Input Capture function ▀ Compare Match Output ▀ PWM waveform generation with edge aligned and centre-aligned Counting Modes ▀ Single Pulse Mode Output ▀ Complementary Outputs with programmable dead-time insertion ▀ Encoder interface controller with two inputs using quadrature decoder ▀ Supports 3-phase motor control and hall sensor interface ▀ Brake input to force the timer’s output signals into a reset or fixed condition The Motor Control Timer consists of a single 16-bit up/down counter; four 16-bit CCRs (Capture/ Compare Registers), single one 16-bit counter-reload register (CRR), single 8-bit repetition counter and several control/status registers. It can be used for a variety of purposes including measuring the pulse widths of input signals or generating output waveforms such as compare match outputs, PWM outputs or complementary PWM outputs with dead-time insertion. The MCTM supports an Encoder interface controller to an incremental encoder with two inputs. The MCTM is capable of offering full functional support for motor control, hall sensor interfacing and brake input. Rev. 1.00 10 of 48 July 24, 2014 Features ▀ Up to 80 GPIOs ▀ Port A, B, C, D, E are mapped as 16 external interrupts - EXTI ▀ Almost all I/O pins are 5 V-tolerant except for pins shared with analog inputs There are up to 80 General Purpose I/O pins, GPIO, named from PA0~PA15 to PE0~PE15 for the implementation of logic input/output functions. Each of the GPIO ports has a series of related control and configuration registers to maximise flexibility and to meet the requirements of a wide range of applications. 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Basic Function Timer – BFTM Watchdog Timer ▀ 12-bit down counter with 3-bit prescaler ▀ Interrupt or reset event for the system ▀ Programmable watchdog timer window function ▀ Register write protection function The Watchdog Timer is a hardware timing circuit that can be used to detect system failures due to software malfunctions. It includes a 12-bit count-down counter, a prescaler, a WDT counter value register, a WDT delta value register, interrupt related circuits, WDT operation control circuitry and a WDT protection mechanism. The Watchdog Timer can be operated in an interrupt mode or a reset mode. The Watchdog Timer will generate an interrupt or a reset when the counter counts down and reaches a zero value. If the software does not reload the counter value before a Watchdog Timer underflow occurs, an interrupt or a reset will be generated when the counter underflows. In addition, an interrupt or reset is also generated if the software reloads the counter when the counter value is greater than or equal to the WDT delta value. This means the counter must be reloaded within a limited timing window using a specific method. The Watchdog Timer counter can be stopped while the processor is in the debug mode. There is a register write protect function which can be enabled to prevent it from changing the Watchdog Timer configuration unexpectedly. Real Time Clock ▀ 32-bit up-counter with a programmable prescaler ▀ Alarm function ▀ Interrupt and Wake-up event The Real Time Clock, RTC for short, includes an APB interface, a 32-bit count-up counter, a control register, a prescaler, a compare register and a status register. Most of the RTC circuits are located in the Backup Domain except for the APB interface. The APB interface is located in the VDD18 power domain. Therefore, it is necessary to be isolated from the ISO signal that comes from the power control unit when the V DD18 power domain is powered off, that is when the device enters the Power-Down mode. The RTC counter is used as a wakeup timer to generate a system resume signal from the Power-Down mode. Rev. 1.00 11 of 48 July 24, 2014 Features ▀ Two 32-bit compare/match count-up counters - no I/O control features ▀ One shot mode - counting stops after a match condition ▀ Repetitive mode - restart counter after a match condition The Basic Function Timer is a simple count-up 32-bit counter designed to measure time intervals and generate a one shot or repetitive interrupts. The BFTM operates in two functional modes, repetitive or one shot mode. In the repetitive mode the BFTM restarts the counter when a compare match event occurs. The BFTM also supports a one shot mode which forces the counter to stop counting when a compare match event occurs. 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Inter-integrated Circuit – I2C The SDA line which is connected directly to the I2C bus is a bi-directional data line between the master and slave devices and is used for data transmission and reception. The I2C module also has an arbitration detect function and clock synchronisation to prevent situations where more than one master attempts to transmit data to the I2C bus at the same time. Serial Peripheral Interface – SPI ▀ Supports both master and slave mode ▀ Frequency of up to 36 MHz for master mode and 24MHz for slave mode ▀ FIFO Depth: 8 levels ▀ Multi-master and multi-slave operation The Serial Peripheral Interface, SPI, provides an SPI protocol data transmit and receive function in both master and slave mode. The SPI interface uses 4 pins, which are the serial data input and output lines MISO and MOSI, the clock line, SCK, and the slave select line, SEL. One SPI device acts as a master device which controls the data flow using the SEL and SCK signals to indicate the start of data communication and the data sampling rate. To receive a data byte, the streamed data bits are latched on a specific clock edge and stored in the data register or in the RX FIFO. Data transmission is carried out in a similar way but in a reverse sequence. The mode fault detection provides a capability for multi-master applications. Universal Synchronous Asynchronous Receiver Transmitter – USART ▀ ▀ ▀ ▀ ▀ ▀ ▀ ▀ ▀ Rev. 1.00 Supports both asynchronous and clocked synchronous serial communication modes Asynchronous operating baud rate up to 4.5 MHz and synchronous operating rate up to 9 MHz Full duplex communication Fully programmable serial communication characteristics including: ● Word length: 7, 8, or 9-bit character ● Parity: Even, odd, or no-parity bit generation and detection ● Stop bit: 1 or 2 stop bit generation ● Bit order: LSB-first or MSB-first transfer Error detection: Parity, overrun, and frame error Auto hardware flow control mode - RTS, CTS IrDA SIR encoder and decoder RS485 mode with output enable control FIFO Depth: 16 x 9 bits for both receiver and transmitter 12 of 48 July 24, 2014 Features ▀ Supports both master and slave modes with a frequency of up to 1 MHz ▀ Provide an arbitration function and clock synchronisation ▀ Supports 7-bit and 10-bit addressing modes and general call addressing ▀ Supports slave multi-addressing mode with maskable address The I2C Module is an internal circuit allowing communication with an external I2C interface which is an industry standard two line serial interface used for connection to external hardware. These two serial lines are known as a serial data line, SDA, and a serial clock line, SCL. The I2C module provides three data transfer rates: 1. 100 kHz in the Standard mode, 2. 400 kHz in the Fast mode and 3. 1 MHz in the Fast mode plus mode. The SCL period generation register is used to setup different kinds of duty cycle implementations for the SCL pulse. 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Universal Asynchronous Receiver Transmitter – UART ▀ Asynchronous serial communication operating baud-rate up to 4.5 MHz ▀ Full duplex communication ▀ Fully programmable serial communication characteristics including: ● Word length: 7, 8, or 9-bit character ● Parity: Even, odd, or no-parity bit generation and detection ● Stop bit: 1 or 2 stop bit generation ● Bit order: LSB-first or MSB-first transfer ▀ Error detection: Parity, overrun, and frame error ▀ FIFO Depth: 16 x 9 bits for both receiver and transmitter The Universal Asynchronous Receiver Transceiver, UART, provides a flexible full duplex data exchange using asynchronous transfer. The UART is used to translate data between parallel and serial interfaces, and is commonly used for RS232 standard communication. The UART peripheral function supports four types of interrupt including Line Status Interrupt, Transmitter FIFO Empty Interrupt, Receiver Threshold Level Reaching Interrupt and Time Out Interrupt. The UART module includes a 16-byte transmitter FIFO, (TX_FIFO) and a 16-byte receiver FIFO (RX_ FIFO). The software can detect a UART error status by reading the Line Status Register, LSR. The status includes the type and the condition of transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events. Smart Card Interface – SCI ▀ Supports ISO 7816-3 standard ▀ Character mode ▀ Single transmit buffer and single receive buffer ▀ 11-bit ETU (elementary time unit) counter ▀ 9-bit guard time counter ▀ 24-bit general purpose waiting time counter ▀ Parity generation and checking ▀ Automatic character retry on parity error detection in transmission and reception modes The Smart Card Interface is compatible with the ISO 7816-3 standard. This interface includes Card Insertion/Removal detection, SCI data transfer control logic and data buffers, internal Timer Counters and corresponding control logic circuits to perform all the necessary Smart Card operations. The Smart Card interface acts as a Smart Card Reader to facilitate communication with the external Smart Card. The overall functions of the Smart Card interface are controlled by a series of registers including control and status registers together with several corresponding interrupts which are generated to get the attention of the microcontroller for SCI transfer status. Rev. 1.00 13 of 48 July 24, 2014 Features The Universal Synchronous Asynchronous Receiver Transceiver, USART, provides a flexible full duplex data exchange using synchronous or asynchronous transfer. The USART is used to translate data between parallel and serial interfaces, and is commonly used for RS232 standard communication. The USART peripheral function supports four types of interrupt including Line Status Interrupt, Transmitter FIFO Empty Interrupt, Receiver Threshold Level Reaching Interrupt and Time Out Interrupt. The USART module includes a 16-byte transmitter FIFO, (TX_FIFO) and a 16-byte receiver FIFO (RX_FIFO). The software can detect a USART error status by reading the Line Status Register, LSR. The status includes the type and the condition of transfer operations as well as several error conditions resulting from Parity, Overrun, Framing and Break events. 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Inter-IC Sound – I2S Cyclic Redundancy Check – CRC ▀ Supports CRC16 polynomial: 0x8005, X16+X15+X2+1 ▀ Supports CCITT CRC16 polynomial: 0x1021, X16+X12+X5+1 ▀ Supports IEEE-802.3 CRC32 polynomial: 0x04C11DB7, X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X+1 ▀ Supports 1’s complement, byte reverse & bit reverse operation on data and checksum ▀ Supports byte, half-word & word data size ▀ Programmable CRC initial seed value ▀ CRC computation executed in 1 AHB clock cycle for 8-bit data and 4 AHB clock cycles for 32bit data Supports PDMA to complete a CRC computation of a block of memory ▀ The CRC calculation unit is an error detection technique test algorithm which is used to verify data transmission or storage data correctness. A CRC calculation takes a data stream or a block of data as input and generates a 16- or 32-bit output remainder. Ordinarily, a data stream is suffixed by a CRC code and used as a checksum when being sent or stored. Therefore, the received or restored data stream is calculated by the same generator polynomial as described above. If the new CRC code result does not match the one calculated earlier, that means data stream contains a data error. Rev. 1.00 14 of 48 July 24, 2014 Features ▀ Master or slave mode ▀ Mono and stereo 2 ▀ I S-justified, Left-justified, and Right-justified mode ▀ 8/16/24/32-bit sample size with 32-bit channel extended ▀ 8 x 32-bit Tx & Rx FIFO with PDMA supported ▀ 8-bit Fractional Clock Divider with rate control The I2S is a synchronous communication interface that can be used as a master or slave to exchange data with other audio peripherals, such as ADCs or DACs. The I2S supports a variety of data formats. In addition to the stereo I2S-justified, Left-justified and Right-justified modes, there are mono PCM modes with 8/16/24/32-bit sample size. When the I2S operates in the master mode, then when using the fractional divider, it can provide an accurate sampling frequency output and support the rate control function and fine-tuning of the output frequency to avoid system problems caused by the cumulative frequency error between different devices. 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Peripheral Direct Memory Access – PDMA 8 channels with trigger source grouping 8-/16-/32-bit width data transfer Supports Address increment, decrement or fixed mode 4-level programmable channel priority Auto reload mode Supports trigger source: ADC, SPI, USART, UART, I2C, I2S, EBI, GPTM, MCTM, SCI and software request The Peripheral Direct Memory Access controller, PDMA, moves data between the peripherals and the system memory on the AHB bus. Each PDMA channel has a source address, destination address, block length and transfer count. The PDMA can exclude the CPU intervention and avoid interrupt service routine execution. It improves system performance as the software does not need to join each data movement operation. External Bus Interface – EBI ▀ ▀ ▀ ▀ ▀ ▀ Programmable interface for various memory types Translate the AHB transactions into the appropriate external device protocol Memory bank regions and independent chip select control for each memory bank Programmable timings to support a wide range of devices Includes page read mode Automatic translation when the AHB transaction width and external memory interface width is different Write buffer to decrease the stalling of the AHB write burst transaction Supports multiplexed and non-multiplexed address and data line configurations Up to 25 address lines Up to 16-bit data bus width ▀ ▀ ▀ ▀ The external bus interface is able to access external parallel interface devices such as SRAM, Flash and LCD modules. The interface is memory mapped into the internal address map of the Cortex-M3. The data and address lines can be multiplexed in order to reduce the number of pins required to connect to the external devices. Tthe read/write timing of the bus can be adjusted to meet the timing specification of the external devices. Note the interface only supports asynchronous 8 or 16-bit bus interface. Rev. 1.00 15 of 48 July 24, 2014 Features ▀ ▀ ▀ ▀ ▀ ▀ 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Universal Serial Bus Device Controller – USB Debug Support ▀ Serial Wire Debug Port - SW-DP ▀ 6 instruction comparators and 2 literal comparators for hardware breakpoint or code / literal patches ▀ 4 comparators for hardware watchpoints ▀ 1-bit asynchronous trace (TRACESWO) Package and Operation Temperature ▀ 48/64/100-pin LQFP package ▀ Operation temperature range: -40°C to +85°C Rev. 1.00 16 of 48 July 24, 2014 Features ▀ Complies with USB 2.0 full-speed (12Mbps) specification ▀ On-chip USB full-speed transceiver ▀ 1 control endpoint (EP0) for control transfer ▀ 3 single-buffered endpoints for bulk and interrupt transfer ▀ 4 double-buffered endpoints for bulk, interrupt and isochronous transfer ▀ 1,024 bytes EP-SRAM used as the endpoint data buffers The USB device controller is compliant with the USB 2.0 full-speed specification. There is one control endpoint known as Endpoint 0 and seven configurable endpoints. A 1024-byte SRAM is used as the endpoint buffer. Each endpoint buffer size is programmable using corresponding registers, which provides maximum flexibility for various applications. The integrated USB fullspeed transceiver helps to minimise the overall system complexity and cost. The USB functional block also contains the resume and suspend feature to meet the requirements of low-power consumption. 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 3 Overview Device Information Table 1. HT32F1656/1655 Series Features and Peripheral List Peripherals HT32F1655 128 Option Bytes Flash 1 1 SRAM (KB) 32 32 Communication Timers 255 MCTM 2 GPTM 2 BFTM 2 RTC 1 WDT 1 USB 1 SPI 2 USART 2 UART 2 IC 2 IS 1 SCI 1 2 2 EBI 1 CRC-16/32 1 EXTI 16 12-bit ADC Number of channels 1 OPA/Comparator 2 Overview Rev. 1.00 HT32F1656 Main Flash (KB) 16 Channels GPIO Up to 80 CPU frequency Up to 72 MHz Operating voltage 2.7V ~ 3.6V Operating temperature -40℃ ~ +85℃ Packages 48/64/100-pin LQFP 17 of 48 July 24, 2014 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Block Diagram TRACESWO BOOT0 BOOT1 SWCLK SWDIO AF Powered b� V DD18 SW-DP MPU F�ash Memor� Interface fMax: 7� MHz PDMA Contro� Registers VSS33 VLDOOUT LDO 1.8 V VDD18 BOD LVD USB Device Powered b� VDD33 AF WDT UART0 USART1 AF SPI0 UART1 AF I�C 0 ~ 1 BFTM 0 ~ 1 AF AF ... AF Ana�og OPA/CMP RTC ADC CH3 ~ CH0 ETI AF SCI 1�-bit SAR ADC SDA SCL Power contro� APB1 AF MCTM1 GPTM 0 ~ 1 APB0 MCTM0 TX� RX MOSI� MISO SCK� SEL AF AFIO TX� RX RTS/TXE CTS/SCK AF SPI1 AD0~AD15 A0~A�� CS0~CS3 OE� WR ALE� RDY BL0~BL1 DP DM AF I�S XTALIN XTALOUT VDD33 HSI 8 MHz USART0 ADC_IN15 CN0� CP0 AOUT0 CN1� CP1 AOUT1 VDDA VSSA � ~ 16 MHz AF DMA req�est AHB to APB Bridge AF ADC_IN0 SRAM AF 8 Channe�s EXTI CH0 ~CH� CH0N ~ CH�N CH3� ETI� BRK HSE Externa� B�s Interafce PDMA MCLK� BCLK WS� SDO� SDI CH0 ~CH� CH0N ~ CH�N CH3� ETI� BRK USB Contro�/Data Registers AF MOSI� MISO SCK� SEL CKCU/RSTCU Contro� Registers CRC -16/3� C�ock and reset contro� Interr�pt req�est SRAM Contro��er GPIO A~E AF TX� RX PLL AF TX� RX RTS/TXE CTS/SCK FMC Contro� Registers AHB Periphera�s B�s Matrix NVIC 1.8 V fMax: 1�� MHz DCode S�stem CortexTM-M3 Processor POR F�ash Memor� CLK� DIO� DET RTCOUT PWRSW VBAT VBAK PWRCU OPA/CMP VDD33 VSS33 PORB Powered b� V DDA BREG 3� kHz LSE WAKEUP 3��768 Hz nRST Back�p Domain Powered b� V DD18 AF VBAK 3.3 V LSI AF XTAL3�KIN XTAL3�KOUT Power s�pp��: B�s: Contro� signa�: A�ternate f�nction: AF Figure 1. HT32F1656/1655 Block Diagram Rev. 1.00 18 of 48 July 24, 2014 Overview ICode TPIU PA ~ PE[15:0] AF AF 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Memory Map 0xFFFF_FFFF Reserved 0xE010_0000 0x7000_0000 Private peripheral bus Reserved EBI Selection Bank 64 MB x 4 0x6000_0000 0x4400_0000 Peripheral 0x4200_0000 0x4010_0000 0x4008_0000 0x4000_0000 0x2220_0000 Reserved APB/AHB bit band alias 32 MB Reserved AHB peripherals 512 KB APB peripherals 512 KB Reserved SRAM bit band alias SRAM 2 MB 0x2200_0000 0x2000_8000 Reserved 32 KB on-chip SRAM 32 KB 0x2000_0000 0x1FF0_0400 0x1FF0_0000 0x1F00_2000 0x1F00_0000 Code 0x0004_0000 Reserved Option byte alias 1 KB Reserved Boot loader 8 KB Reserved Up to 256 KB on-chip Flash Up to 256 KB 0x0000_0000 0x4001_0000 0x4000_5000 0x4000_4000 0x4000_2000 0x4000_1000 0x4000_0000 Reserved GPIOA,B,C,D,E Reserved USB SRAM USB Reserved EBI Reserved PDMA Reserved CRC CKCU/RSTCU Reserved FMC Reserved BFTM1 BFTM0 Reserved GPTM1 GPTM0 Reserved RTC/PWRCU Reserved WDT Reserved I2C1 I2C0 Reserved SPI1 SCI Reserved UART1 USART1 Reserved MCTM1 MCTM0 Reserved I2S Reserved EXTI Reserved AFIO Reserved OPA/CMP Reserved ADC Reserved SPI0 Reserved UART0 USART0 AHB APB1 APB0 Figure 2. HT32F1656/1655 Memory Map Rev. 1.00 19 of 48 July 24, 2014 Overview 0xE000_0000 0x400F_FFFF 0x400B_A000 0x400B_0000 0x400A_C000 0x400A_A000 0x400A_8000 0x4009_A000 0x4009_8000 0x4009_2000 0x4009_0000 0x4008_C000 0x4008_A000 0x4008_8000 0x4008_2000 0x4008_0000 0x4007_8000 0x4007_7000 0x4007_6000 0x4007_0000 0x4006_F000 0x4006_E000 0x4006_B000 0x4006_A000 0x4006_9000 0x4006_8000 0x4004_A000 0x4004_9000 0x4004_8000 0x4004_5000 0x4004_4000 0x4004_3000 0x4004_2000 0x4004_1000 0x4004_0000 0x4002_E000 0x4002_D000 0x4002_C000 0x4002_7000 0x4002_6000 0x4002_5000 0x4002_4000 0x4002_3000 0x4002_2000 0x4001_9000 0x4001_8000 0x4001_1000 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Clock Structure Divider ÷2 Prescaler ÷ 1~32 CK_REF CKREFPRE CKREFEN Prescaler ÷ 1,2,3 fCK_USB,max = 48MHz CK_USB USBEN PLLSRC 8 MHz HSI RC 1 HSIEN PLLEN f CK_PLL,max = 144MHz URnEN CK_PLL PLL 0 ÷8 fCK_SYS,max = 144MHz 0x CK_HSI 11 CK_HSE CK_SYS CK_LSE LSEEN(Note1) 32 kHz LSI RC STCLK (to SysTick) CK_GPIO ( to GPIO port) GPIOAEN GPIOEEN AHB Prescaler ÷ 1,2,4,8 FCLK ( free running clock) 10 HCLKC ( to CortexTM-M3) CM3EN (control by HW) CK_AHB Clock Monitor 32.768 kHz LSE OSC fCK_USARTn,max = 72MHz CK_USART0 CK_USART1 CK_UART0 CK_UART1 SW[1:0] 4-16 MHz HSE XTAL HSEEN Prescaler ÷ 1,2 PDMAEN HCLKD ( to PDMA) EBIEN CK_EBI ( to EBI) CRCEN CK_CRC ( to CRC) WDTSRC 1 0 CK_LSI CK_WDT WDTEN RTCSRC(Note1) LSIEN(Note1) HCLKF ( to Flash) CM3EN 1 0 FMCEN CK_RTC HCLKS ( to SRAM) RTCEN (Note1) CM3EN SRAMEN CKOUTSRC[2:0] CKOUT HCLKBM ( to Bus Matrix) 000 CK_REF 001 010 CK_AHB/16 CK_SYS/16 011 CK_HSE/16 100 CK_HSI/16 101 CK_LSE 110 CK_LSI CM3EN BMEN HCLKAPB0 ( to APB0 Bridge) CM3EN APB0EN HCLKAPB1 ( to APB1 Bridge) CM3EN Legend: HSE = High Speed External clock HSI = High Speed Internal clock LSE = Low Speed External clock LSI = Low Speed Internal clock APB1EN PCLK ( OPAx, AFIO, ADC, SPIx, USARTx, UARTx, I2Cx, I2S, GPTMx, MCTMx, BFTMx, EXTI, RTC, SCI, WDT) OPA0EN Note 1: Those control bits are located at RTC Control Register (RTC_CTRL) WDTREN ADC Prescaler ÷ 2,4,6,8,16... CK_ADC ADCEN Figure 3. HT32F1656/1655 Clock Structure Rev. 1.00 20 of 48 July 24, 2014 Overview fCK_AHB,max = 72MHz 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Pin Assignment Holtek HT32F1656/1655 LQFP-48 5 33V PA5 6 33V PA6 7 33V PA7 8 33V VDD33_1 9 P33 VSS33_1 10 P33 USBDM /PB12 USBDP /PB13 11 1� �7 �6 �5 �� �3 �� �1 �0 39 38 37 AP AP 33V 33V 33V 33V 33V 33V 5VT 5VT 5VT 5VT P33 3.3 V Digital Power Pad AP 3.3 V Analog Power Pad P18 1.8 V Power Pad 33V 3.3 V I/O Pad 5VT 5 V Tolerance I/O Pad 5VT High Current Output 5 V Tolerance I/O Pad USB USB PHY Pad USB USB BAK Backup Domain Pad P33 BAK 5VT BAK BAK P33 33V BAK 33V BAK 5VT 33V 33V P33 P33 13 1� 15 16 17 19 �0 �1 �� �3 �� VLDOOUT VLDOIN VSSLDO nRST VBAT RTCOUT XTALIN XTALOUT VDD33_2 VSS33_2 PC15 PB14 PB15 18 P33 36 VSS33_3 P33 35 VDD33_3 5VT 3� PB1 5VT 33 PB0 5VT 3� PA15 5VT 31 PA14 5VT 30 SWDIO PA13 5VT �9 SWCLK PA12 5VT �8 TRACESWO 5VT �7 5VT �6 5VT �5 PA11 PA10 PA9_ BOOT1 PA8_ BOOT0 XTAL32K OUT XTAL32K IN PC14 PC13 AF1 P33 AF1 AF0 (Default) P18 AF0 (Default) Figure 4. HT32F1656/1655 LQFP-48 Pin Assignment Rev. 1.00 21 of 48 July 24, 2014 Overview PA4 �8 AF0 (Default) 33V PB2 � PB3 PA3 PB4 33V PB5 3 PB6 PA2 PB7 33V PB8 � PB9 PA1 PB10 33V PB11 1 VDDA PA0 VSSA AF0 (Default) 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Holtek HT32F1656/1655 LQFP-64 PB11 PB10 PB9 PB8 PB7 PB6 VSS33_4 VDD33_4 PC8 PC7 PB5 PB4 PB3 PB2 63 6� 61 60 59 58 57 56 55 5� 53 5� 51 50 �9 AP AP 33V 33V 33V 33V 33V 33V P33 P33 5VT 5VT 5VT 5VT 5VT 5VT AF0 (Default) PA0 1 33V 5VT �8 PC6 PA1 � 33V 5VT �7 PC5 PA2 3 33V 5VT �6 PC4 PA3 � 33V 5VT �5 PB1 PA4 5 33V 5VT �� PB0 PA5 6 33V P33 �3 VSS33_3 PA6 7 33V P33 �� VDD33_3 PA7 8 33V 5VT �1 PA15 VDD33_1 9 P33 VSS33_1 10 P33 PC9 11 33V PC10 1� 33V PC11 13 33V 1� 33V 15 USB 16 USB PC12 USBDM /PB12 USBDP /PB13 P33 3.3 V Digital Power Pad AP 3.3 V Analog Power Pad P18 1.8 V Power Pad 33V 3.3 V I/O Pad AF1 5VT 5 V Tolerance I/O Pad 5VT �0 PA14 High Current Output 5 V Tolerance I/O Pad 5VT 5VT 39 SWDIO PA13 5VT 38 SWCLK PA12 USB USB PHY Pad 5VT 37 TRACESWO Backup Domain Pad 5VT BAK 36 5VT 35 5VT 3� 5VT 33 5VT 5VT 5VT �3 �� �5 �6 �7 �8 �9 30 31 3� VDD33_2 VSS33_2 PC0 PC1 PC2 PB15 �0 �1 �� PA9_ BOOT1 PA8_ BOOT0 PC3 PC14 PC13 AF1 P33 PA10 AF0 (Default) P33 PC15 33V XTALOUT 19 VBAT 33V PB14 18 nRST 5VT XTALIN 17 VSSLDO BAK 5VT PD0 P33 VLDOIN BAK 33V RTCOUT P33 VLDOOUT BAK BAK P33 33V XTAL32K OUT XTAL32K IN P18 BAK 5VT PA11 Figure 5. HT32F1656/1655 LQFP-64 Pin Assignment Rev. 1.00 22 of 48 July 24, 2014 Overview VDDA 6� AF0 (Default) VSSA AF0 (Default) 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Holtek HT32F1656/1655 LQFP-100 78 77 76 5VT 5VT 5VT 5VT AF0 (Default) PA0 1 33V 5VT 75 PE0 PA1 � 33V 5VT 7� PD15 PA2 3 33V 5VT 73 PD14 PA3 � 33V 5VT 7� PD13 PA4 5 33V 5VT 71 PD12 PA5 6 33V 5VT 70 PD11 PA6 7 33V 5VT 69 PD10 PA7 8 33V 5VT 68 PD9 PE8 9 33V 5 V Tolerance I/O Pad 5VT 67 PC6 PE9 10 33V 66 PC5 PE10 11 33V High Current Output 5 V Tolerance I/O Pad 5VT 5VT 65 PC4 PE11 1� 33V USB PHY Pad 5VT 6� PB1 PE12 13 33V 5VT 63 PB0 VDD33_1 1� P33 P33 6� VSS33_3 P33 AP P18 33V 5VT 5VT USB BAK 3.3 V Digital Power Pad 3.3 V Analog Power Pad 1.8 V Power Pad 3.3 V I/O Pad Backup Domain Pad AF1 VSS33_1 15 P33 P33 61 VDD33_3 PC9 16 33V 5VT 60 PA15 PC10 17 33V 5VT 59 PA14 PC11 18 33V 5VT 58 SWDIO PA13 PC12 19 33V 5VT 57 SWCLK PA12 PD6 �0 33V 5VT 56 TRACESWO PB12 �1 33V 5VT 55 USBDM �� USB 5VT 5� USBDP �3 USB 5VT 53 PB13 �� 33V 5VT 5� PD8 NC �5 5VT 51 PD7 33V 33V P33 P33 5VT 5VT 5VT 5VT 5VT 5VT 5VT 5VT 5VT 35 36 37 38 39 �0 �1 �� �3 �� �5 �6 �7 �8 �9 50 PE13 PE14 PE15 XTALIN XTALOUT VDD33_2 VSS33_2 PD1 PD2 PD3 PD4 PD5 PC0 PC1 PC2 PC3 PB14 PB15 AF1 5VT 3� PA9_ BOOT1 PA8_ BOOT0 AF0 (Default) 5VT 33 PC15 nRST VBAT 5VT 3� PD0 VLDOIN VSSLDO 5VT 31 PC14 30 RTCOUT �9 PC13 BAK BAK BAK BAK BAK 5VT P33 33V 33V 5VT �8 XTAL32KIN P33 �7 XTAL32KOUT P33 �6 VLDOOUT P18 PA11 PA10 Figure 6. HT32F1656/1655 LQFP-100 Pin Assignment Rev. 1.00 23 of 48 July 24, 2014 Overview 79 5VT PB2 80 5VT PB3 81 5VT PB4 8� 5VT PC7 83 5VT PB5 8� P33 PC8 85 P33 PE1 86 5VT PE2 87 5VT PE3 88 5VT AF0 (Default) VSS33_4 VDD33_4 89 5VT PE4 90 33V PE5 91 33V PE6 9� 33V PE7 93 33V PB6 9� 33V PB7 95 33V PB8 96 AP PB9 97 AP AP PB10 VDDA 98 AP PB11 VREF- VREF+ 100 99 VSSA AF0 (Default) 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Table 2. HT32F1656/55 Series Pin Assignment for LQFP100 / 64 / 48 Package Alternate function number Package AF0 LQFP LQFP LQFP -100 -64 -48 System Default AF1 GPIO AF2 ADC AF3 AF4 CMP MCTM /GPTM AF5 AF6 SPI USART /UART AF7 I2C AF8 SMC AF9 EBI AF10 I2S 1 1 PA0 ADC_IN0 GT1_CH0 USR0_RTS I2C1_SCL SCI_CLK I2S_WS 2 2 2 PA1 ADC_IN1 GT1_CH1 USR0_CTS I2C1_SDA SCI_DIO I2S_ BCLK 3 3 3 PA2 ADC_IN2 GT1_CH2 USR0_TX I2S_ SDO 4 4 4 PA3 ADC_IN3 GT1_CH3 USR0_RX I2S_SDI 5 5 5 PA4 ADC_IN4 GT0_CH0 SPI0_SCK USR1_TX I2C0_SCL 6 6 6 PA5 ADC_IN5 GT0_CH1 SPI0_MOSI USR1_RX I2C0_SDA 7 7 7 PA6 ADC_IN6 GT0_CH2 SPI0_MISO USR1_RTS 8 8 8 PA7 ADC_IN7 GT0_CH3 SPI0_SEL USR1_CTS 9 PE8 ADC_IN8 SPI1_SEL USR0_RTS 10 PE9 ADC_IN9 SPI1_SCK USR0_CTS 11 PE10 ADC_IN10 SPI1_MOSI USR0_TX 12 PE11 ADC_IN11 SPI1_MISO USR0_RX 13 PE12 ADC_IN12 14 9 9 VDD33_1 15 10 10 VSS33_1 16 11 PC9 ADC_IN13 GT0_CH0 SPI1_SEL UR0_TX I2C1_SCL 12 PC10 ADC_IN14 GT0_CH1 SPI1_SCK UR0_RX I2C1_SDA 18 13 PC11 ADC_IN15 GT0_CH2 SPI1_MOSI 19 14 PC12 GT0_CH3 SPI1_MISO PD6 GT0_ETI MT1_CH2 I2C0_SCL MT1_ CH2N I2C0_SDA MT1_ETI I2C0_SDA EBI_ A18 I2S_SDI I2C0_SCL EBI_ A19 I2S_ MCLK EBI_ A20 I2S_WS 21 15 11 PB12 22 15 11 USBDM 23 16 12 USBDP 24 16 12 PB13 26 17 13 VLDOOUT 27 18 14 VLDOIN 28 19 15 VSSLDO 29 20 16 nRST 30 21 17 VBAT 31 22 18 XTAL32KIN 32 23 19 XTAL32KOUT PC14 33 24 20 RTCOUT 34 25 25 N/A N/A AF15 N/A System Other I2S_ MCLK 17 20 N/A AF14 Overview 1 AF11 AF12 AF13 EBI_ ARDY N.C. PC13 PC15_ WAKEUP PD0 35 PE13 36 PE14 GT1_ETI 37 PE15 GT1_CH0 38 26 21 XTALIN PB14 39 27 22 XTALOUT PB15 40 28 23 VDD33_2 Rev. 1.00 UR0_TX 24 of 48 EBI_ A21 July 24, 2014 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Alternate function number Package AF0 LQFP LQFP LQFP -100 -64 -48 41 29 24 System Default AF1 GPIO AF2 ADC AF3 AF4 CMP MCTM /GPTM AF5 AF6 AF7 AF8 AF9 AF10 SPI USART /UART IC SMC EBI IS EBI_ A22 I2S_ BCLK 2 2 GT1_CH1 43 PD2 GT1_CH2 EBI_ A23 I2S_ SDO GT1_CH3 EBI_ A24 I2S_SDI PD4 MT1_CH0 SPI0_SEL I2C1_SCL EBI_ A16 I2S_ MCLK PD5 MT1_ CH0N SPI0_SCK I2C1_SDA EBI_ A17 PD3 46 UR0_RX 47 30 PC0 GT1_CH0 SPI1_SEL EBI_ AD13 I2S_WS 48 31 PC1 GT1_CH1 SPI1_SCK EBI_ AD14 I2S_ BCLK 49 32 PC2 GT1_CH2 SPI1_MOSI UR1_TX I2C0_SCL EBI_ AD15 I2S_ SDO 50 33 PC3 GT1_CH3 SPI1_MISO UR1_RX I2C0_SDA EBI_ CS3 I2S_SDI 51 PD7 I2C1_SCL EBI_ SCI_CLK A2 52 PD8 I2C1_SDA SCI_DIO 53 34 25 PA8_BOOT0 I2S_ MCLK USR0_TX I2S_WS EBI_ A0 I2S_ MCLK 35 26 PA9_BOOT1 36 27 PA10 56 37 28 TRACESWO PA11 57 38 29 SWCLK PA12 58 39 30 SWDIO PA13 59 40 31 PA14 MT0_CH0 SPI1_SEL USR1_TX SCI_CLK EBI_ AD0 PA15 MT0_ CH0N USR1_RX SCI_DIO EBI_ AD1 61 42 62 43 63 44 64 45 65 46 32 SPI0_MOSI EBI_ A1 55 41 N/A N/A EBI_ A0 54 60 N/A AF15 System Other MT1_CH1 MT1_ CH1N USR0_RX CKOUT SCI_DET SPI0_MISO SPI1_SCK Overview PD1 45 N/A AF14 VSS33_2 42 44 AF11 AF12 AF13 TRACESWO VDD33_3 VSS33_3 33 34 PB0 MT0_CH1 SPI1_MOSI USR0_TX I2C0_SCL EBI_ AD2 PB1 MT0_ CH1N I2C0_SDA EBI_ AD3 PC4 MT1_CH2 USR1_RTS SCI_CLK EBI_ AD10 USR1_CTS SCI_DIO EBI_ AD11 SCI_DET EBI_ AD12 66 47 PC5 MT1_ CH2N 67 48 PC6 MT1_CH3 SPI1_MISO USR0_RX 68 PD9 SPI0_SEL EBI_ A3 69 PD10 SPI0_SCK EBI_ A4 70 PD11 SPI0_MOSI EBI_ A5 71 PD12 SPI0_MISO EBI_ A6 72 PD13 SPI1_SEL EBI_ A7 73 PD14 SPI1_SCK EBI_ A8 74 PD15 SPI1_MOSI EBI_ A9 SPI1_MISO EBI_ A10 75 PE0 35 VDD33_3 36 VSS33_3 EBI_ AD4 76 49 37 PB2 MT0_CH2 SPI0_SEL UR0_TX 77 50 38 PB3 MT0_ CH2N UR0_RX EBI_ AD5 SPI0_SCK 78 51 39 PB4 MT0_BRK SPI0_MOSI UR1_TX EBI_ AD6 79 52 40 PB5 MT1_BRK SPI0_MISO UR1_RX EBI_ AD7 Rev. 1.00 25 of 48 July 24, 2014 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Alternate function number Package AF0 LQFP LQFP LQFP -100 -64 -48 System Default AF1 GPIO AF2 ADC AF3 AF4 CMP MCTM /GPTM AF5 AF6 AF7 AF8 AF9 AF10 SPI USART /UART IC SMC EBI IS 2 80 53 PC7 MT0_CH3 I2C0_SCL EBI_ AD8 81 54 PC8 MT0_ETI I2C0_SDA EBI_ AD9 82 MT1_CH0 83 PE2 MT1_ CH0N 84 PE3 MT1_CH1 85 55 VDD33_4 86 56 VSS33_4 USR1_TX SCI_CLK EBI_ A11 SCI_DIO EBI_ A12 PE4 MT1_ CH1N 88 PE5 MT1_CH2 USR1_RX 89 PE6 MT1_ CH2N USR1_RTS EBI_ BL0 I2S_ BCLK MT1_BRK USR1_CTS EBI_ BL1 I2S_ MCLK CN0 MT1_CH0 SPI1_SEL UR1_TX EBI_ OE I2S_ MCLK MT1_ CH0N 91 PE7 57 41 PB6 CN1 MT1_CH2 SPI1_MISO UR0_TX EBI_ ALE I2S_ BCLK CP1 MT1_ CH2N I2C1_SCL EBI_ CS1 I2S_ SDO I2C1_SDA EBI_ CS2 I2S_SDI CP0 93 59 43 PB8 COUT0 94 60 44 PB9 95 61 45 PB10 PB11 97 63 47 VDDA 98 63 47 VREF+ 99 64 48 VREF- 100 64 48 VSSA Rev. 1.00 EBI_ A15 EBI_ WE PB7 46 I2C1_SDA SPI1_MOSI UR1_RX 42 62 EBI_ A14 SPI1_SCK 58 96 I2C1_SCL EBI_ CS0 92 COUT1 MT1_CH3 N/A N/A N/A AF14 AF15 N/A System Other EBI_ A13 87 90 AF11 AF12 AF13 Overview PE1 2 UR0_RX 26 of 48 July 24, 2014 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Table 3. HT32F1656/55 Pin Description Pin Number LQFP LQFP LQFP 100 64 48 1 1 Pin Name Type IO Output Structure Driving (Note2) (Note1) Description Default Function (AF0) 1 PA0 AI/O 33V 4/8mA PA0 2 2 2 PA1 AI/O 33V 4/8mA PA1 3 3 3 PA2 AI/O 33V 4/8mA PA2 4 4 PA3 AI/O 33V 4/8mA PA3 5 5 PA4 AI/O 33V 4/8mA PA4 6 6 6 PA5 AI/O 33V 4/8mA PA5 7 7 7 PA6 AI/O 33V 4/8mA PA6 8 8 8 PA7 AI/O 33V 4/8mA PA7 9 — PE8 AI/O 33V 4/8mA PE8 10 — PE9 AI/O 33V 4/8mA PE9 11 — PE10 AI/O 33V 4/8mA PE10 12 — PE11 AI/O 33V 4/8mA PE11 33V 4/8mA PE12 PE12 AI/O 14 9 9 VDD33_1 P 15 10 10 VSS33_1 P 16 11 PC9 AI/O 13 — — — 3.3 V voltage for digital I/O — Ground reference for digital I/O 33V 4/8mA PC9 17 12 PC10 AI/O 33V 4/8mA PC10 18 13 — PC11 AI/O 33V 4/8mA PC11 19 14 — PC12 I/O 33V 4/8mA PC12 20 Overview 4 5 PD6 I/O 33V 4/8mA PD6 21 15 11 PB12 I/O 5VT 8mA 22 15 11 USBDM AI/O — — 23 16 12 USBDP AI/O — — 24 16 12 PB13 I/O PB12 USB Differential data bus conforming to the Universal Serial Bus standard. USB Differential data bus conforming to the Universal Serial Bus standard. PB13 25 5VT 8mA NC 26 17 13 VLDOOUT P — — 27 18 14 VLDOIN P — — 28 19 15 VSSLDO P — — 29 20 16 nRST I(BK) 5VT_PU — 30 21 17 VBAT — 31 22 18 PC13 32 23 19 PC14 33 24 20 PC15 34 25 P AI/O (BK) AI/O (BK) I/O (BK) I/O Rev. 1.00 PD0 — No connection LDO power 1.8 V output It is recommended to connect a capacitor, denoted as CLDO, as close as possible between this pin and VSSLDO. LDO power 3.3 V input Connected to the power switch circuitry for the internal backup domain. LDO ground reference External reset pin and external wakeup pin in the Power-Down mode Battery power input for the backup domain 33V 1mA XTAL32KIN 33V 1mA XTAL32KOUT 5VT 1mA RTCOUT 5VT 8mA PD0 27 of 48 July 24, 2014 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Pin Number LQFP LQFP LQFP 100 64 48 Pin Name Type IO Output Structure Driving (Note2) I/O 5VT (Note1) 8mA Description Default Function (AF0) 35 PE13 PE13 36 PE14 I/O 5VT 8mA PE14 37 PE15 I/O 5VT 8mA PE15 26 21 PB14 AI/O 33V 4/8mA XTALIN 39 27 22 PB15 AI/O 33V 4/8mA XTALOUT 40 28 23 VDD33_2 P — — 3.3 V voltage for digital I/O 41 29 24 VSS33_2 P — — Ground reference for digital I/O 42 PD1 I/O 5VT 8mA PD1 43 PD2 I/O 5VT 8mA PD2 44 PD3 I/O 5VT 8mA PD3 45 PD4 I/O 5VT 8mA PD4 46 PD5 I/O 5VT 8mA PD5 47 30 PC0 I/O 5VT 12mA PC0 48 31 PC1 I/O 5VT 12mA PC1 49 32 PC2 I/O 5VT 12mA PC2 50 33 PC3 I/O 5VT 12mA PC3 51 PD7 I/O 5VT 8mA PD7 52 PD8 I/O 5VT 8mA PD8 53 34 25 PA8 I/O 5VT_PU 12mA PA8 54 35 26 PA9 I/O 5VT_PU 12mA PA9 55 36 27 PA10 I/O 5VT 8mA PA10 56 37 28 PA11 I/O 5VT 8mA TRACESWO 57 38 29 PA12 I/O 5VT_PU 8mA SWCLK 58 39 30 PA13 I/O 5VT_PU 8mA SWDIO 59 40 31 PA14 I/O 5VT_PU 12mA PA14 32 PA15 I/O 5VT_PU 12mA PA15 VDD33_3 P 60 41 61 42 62 43 VSS33_3 P 63 44 33 PB0 I/O 5VT 34 — — — 3.3 V voltage for digital I/O — Ground reference for digital I/O 12mA PB0 64 45 PB1 I/O 5VT 12mA PB1 65 46 PC4 I/O 5VT 8mA PC4 66 47 PC5 I/O 5VT 8mA PC5 67 48 PC6 I/O 5VT 8mA PC6 68 PD9 I/O 5VT 8mA PD9 69 PD10 I/O 5VT 8mA PD10 70 PD11 I/O 5VT 8mA PD11 71 PD12 I/O 5VT 8mA PD12 72 PD13 I/O 5VT 8mA PD13 73 PD14 I/O 5VT 8mA PD14 74 PD15 I/O 5VT 8mA PD15 75 PE0 I/O 5VT 8mA PE0 Rev. 1.00 28 of 48 July 24, 2014 Overview 38 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Pin Number LQFP LQFP LQFP 100 64 48 76 49 Pin Name Type (Note1) Description IO Output Structure Driving (Note2) — Default Function (AF0) 35 VDD33_3 P 36 VSS33_3 P 37 PB2 I/O 5VT 12mA PB2 — — 3.3 V voltage for digital I/O — Ground reference for digital I/O 50 38 PB3 I/O 5VT 12mA PB3 51 39 PB4 I/O 5VT 12mA PB4 40 79 52 PB5 I/O 5VT 12mA PB5 80 53 PC7 I/O 5VT 8mA PC7 81 54 PC8 I/O 5VT 8mA PC8 82 PE1 I/O 5VT 8mA PE1 83 PE2 I/O 5VT 8mA PE2 84 PE3 I/O 5VT 8mA PE3 85 55 VDD33_4 P 86 56 VSS33_4 P PE4 I/O 87 — — 5VT — 3.3 V voltage for digital I/O — Ground reference for digital I/O 8mA PE4 88 PE5 I/O 5VT 8mA PE5 89 PE6 I/O 5VT 8mA PE6 90 PE7 I/O 5VT 8mA PE7 57 41 PB6 AI/O 33V 4/8mA PB6 92 58 42 PB7 AI/O 33V 4/8mA PB7 93 59 43 PB8 AI/O 33V 4/8mA PB8 91 Overview 77 78 94 60 44 PB9 AI/O 33V 4/8mA PB9 95 61 45 PB10 AI/O 33V 4/8mA PB10 96 62 46 PB11 AI/O 33V 4/8mA PB11 97 63 47 VDDA P — — 3.3 V analog voltage for ADC and OPA/ Comparator 98 VREF+ P — — ADC positive reference voltage has to be lower or equal to VDDA 99 VREF- P — — ADC negative reference voltage has to be directly connected to VSSA VSSA P — — Ground reference for the ADC and OPA/ Comparator 100 64 48 Note: 1. I = Input, O = Output, A = Analog port, P = Power supply, PU = Pull-up, BK = Back-up domain 2. 5VT = 5 V tolerant; 33V = 3.3 V tolerant. 3. The GPIOs are in an AF0 state after a VDD18 power on reset (POR) except for the RTCOUT pin in the Backup Domain I/O. The RTCOUT pin is reset by the Backup Domain power-on-reset (PORB) or by the Backup Domain software reset (BAK_RST bit in BAK_CR register). 4. The backup domain of the I/O pins have a source current capability limitation of < 1mA @ VBAT = 3.3V. Rev. 1.00 29 of 48 July 24, 2014 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 4 Electrical Characteristics Absolute Maximum Ratings Table 4. Absolute Maximum Ratings Min Max Unit VDD33 Symbol External main supply voltage VSS - 0.3 VSS + 3.6 V VDDA External analog supply voltage VSSA - 0.3 VSSA + 3.6 V VBAT External battery supply voltage VSS - 0.3 VSS + 3.6 V VLDOIN External LDO supply voltage VSS - 0.3 VSS + 3.6 V Input voltage on 5 V-tolerant I/O VSS - 0.3 VSS + 5.5 V Input voltage on other I/O VSS - 0.3 VDD33 + 0.3 V VIN Parameter TA Ambient operating temperature range -40 +85 °C TSTG Storage temperature range -55 +150 °C TJ Maximum junction temperature — 125 °C PD Total power dissipation — 500 mW VESD Electrostatic discharge voltage - human body mode -4000 +4000 V Recommended DC Operating Conditions Table 5. Recommended DC Operating Conditions Symbol VDD33 VDDA Parameter I/O operating voltage Analog operating voltage VBAT Battery supply operating voltage VLDOIN LDO operating voltage TA = 25°C, unless otherwise specified. Conditions Min Typ Max Unit — 2.7 3.3 3.6 V — 2.7 3.3 3.6 V — 2.7 3.3 3.6 V — 2.7 3.3 3.6 V On-Chip LDO Voltage Regulator Characteristics Table 6. LDO Characteristics Symbol Parameter TA = 25°C, unless otherwise specified. Conditions Min Typ Max Unit VLDOOUT Internal regulator output voltage VLDOIN = 3.3V Regulator input 1.71 1.8 1.89 V ILDOOUT Output current VLDOIN = 2.7V Regulator input — — 200 mA CLDO External filter capacitor value for internal core power supply The capacitor value is dependent on the core power current consumption 2.2 — 10 μF Rev. 1.00 30 of 48 July 24, 2014 Electrical Characteristics The following table shows the absolute maximum ratings of the device. These are stress ratings only. Stresses beyond absolute maximum ratings may cause permanent damage to the device. Note that the device is not guaranteed to operate properly at the maximum ratings. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability. 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Power Consumption Table 7. Power Consumption Characteristics Symbol Parameter Supply current (Run mode) IDD Supply current (Deep-Sleep1 mode) Supply current (Deep-Sleep2 mode) Supply current (Power-Down mode) IBAT Conditions Min Typ Max Unit VDD33 = VBAT = 3.3 V, HSE = 8MHz, PLL = 144MHz, fHCLK = 72MHz, fPCLK = 72MHz, All peripherals enabled — 62 72 mA VDD33 = VBAT = 3.3 V, HSE = 8MHz, PLL = 144MHz, fHCLK = 72MHz, fPCLK = 72MHz, All peripherals disabled — 29 34 mA VDD33 = VBAT = 3.3 V, HSE = 8MHz, PLL = 144 MHz, fHCLK = 0MHz, fPCLK = 72MHz, All peripherals enabled — 43 50 mA VDD33 = VBAT = 3.3 V, HSE = 8MHz, PLL = 144MHz, fHCLK = 0MHz, fPCLK = 72MHz, All peripherals disabled — 8.5 12 mA VDD33 = VBAT = 3.3 V, All clock off (HSE/PLL/fHCLK), LDO in low power mode, LSI on, RTC on — 63 90 μA VDD33 = VBAT = 3.3 V, All clock off (HSE/PLL/fHCLK), LDO off (DMOS on), LSI on, RTC on — 20 25 μA VDD33 = VBAT = 3.3 V, LDO off, LSE on, LSI off, RTC on — — — μA VDD33 = VBAT = 3.3 V, LDO off, LSE on, LSI off, RTC off — — — μA VDD33 = VBAT = 3.3 V, LDO off, LSE off, LSI on, RTC on — — — μA VDD33 = VBAT = 3.3 V, LDO off, LSE off, LSI on, RTC off — 5 6 μA — 4 — μA — 3.9 — μA VDD33 not present, VBAT = 3.3 V, LDO off, LSE off, LSI Battery supply on, RTC on current (PowerVDD33 not present, VBAT = 3.3 V, LDO off, LSE off, LSI Down mode) on, RTC off Note: 1. HSE means high speed external oscillator. HSI means 8MHz high speed internal oscillator. 2. LSE means low speed external oscillator. LSI means 32.768KHz low speed internal oscillator. 3. RTC means real time clock. 4. Code = while (1) { 208 NOP } executed in Flash. Rev. 1.00 31 of 48 July 24, 2014 Electrical Characteristics Supply current (Sleep mode) TA = 25°C, unless otherwise specified. 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Reset and Supply Monitor Characteristics Table 8. LVD/BOD Characteristics Symbol VBOD Parameter Min Typ Max Unit — — 2.6 — V Voltage of Low Voltage Detector LVDS (Note1) = ‘000’ — 2.7 — V LVDS (Note1) = ‘001’ — 2.8 — V LVDS (Note1) = ‘010’ — 2.9 — V = ‘011’ — 3.0 — V LVDS (Note1) = ‘100’ — 3.1 — V LVDS (Note1) = ‘101’ — 3.2 — V LVDS (Note1) = ‘110’ — 3.4 — V = ‘111’ — 3.5 — V — 1.36 — V LVDS LVDS VPOR Conditions Brown Out Detector Voltage (Note1) (Note1) Power On Reset Voltage — Note: LVDS field is in PWRCU LVDCSR register External Clock Characteristics Table 9. High Speed External Clock (HSE) Characteristics Symbol Parameter fHSE High Speed External oscillator frequency (HSE) CHSE Recommended load capacitance on XTALIN and XTALOUT pins Conditions VDD33 = 3.3 V TA = 25°C, unless otherwise specified. Min Typ Max Unit 4 — 16 MHz — TBD — pF — 1.0 — MΩ 40 — 60 % DHSE Recommended external feedback resistor between XTALIN and XTALOUT pins HSE oscillator Duty cycle IDDHSE HSE oscillator current consumption VDD33 = 3.3 V, TA = 25°C — 0.96 — mA ISTBHSE HSE oscillator standby current VDD33 = 3.3 V, TA = 25°C — — 0.1 μA tSUHSE HSE oscillator startup time VDD33 = 3.3 V, TA = 25°C — — 4 ms RFHSE Rev. 1.00 32 of 48 July 24, 2014 Electrical Characteristics VLVD TA = 25°C, unless otherwise specified. 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Table 10. Low Speed External Clock (LSE) Characteristics Symbol Parameter IDDLSE LSE Oscillator Operating current ISTBLSE LSE Oscillator Standby current tSULSE LSE Oscillator Startup time fLSE CLSE RFLSE Conditions VDD33 = VBAT = 3.3 V VDD33 = VBAT = 3.3 V, LSESM = 0 (Normal startup mode) VDD33 = VBAT = 3.3 V, LSESM = 1 (Fast startup mode) VDD33 = VBAT = 3.3 V, LSESM = 1 (Fast startup mode) Min Typ Max Unit — 32.768 — kHz — TBD — pF — 10 — MΩ 40 — 60 % — 1.7 — μA — 3 8 μA — 200 — ms Note: The following PCB layout guidelines are recommended to increase the stability of the crystal circuit for the HSE/LSE clock: 1. The crystal oscillator should be located as close as possible to the MCU to minimise trace length thus reducing parasitic capacitance. 2. Use a ground plane as a shield under the crystal circuit to reduce the effects of noise interference. 3. Route high frequency signals away from crystal oscillator area to prevent crosstalk. Internal Clock Characteristics Table 11. High Speed Internal Clock (HSI) Characteristics Symbol Parameter TA = 25°C, unless otherwise specified. Conditions Min Typ Max Unit fHSI High Speed Internal Oscillator Frequency (HSI) VDD33 = 3.3 V, TA = -40°C ~ +85°C — 8 — MHz ACCHSI HSI Oscillator Frequency accuracy Factory-trimmed, VDD33 = 3.3 V, TA = -40°C ~+85°C -5 — +5 % DHSI HSI Oscillator Duty cycle VDD33 = 3.3 V, fHSI = 8 MHz 35 — 65 % IDDHSI HSI Oscillator current VDD33 = 3.3 V, fHSI = 8 MHz — 0.92 — mA tSUHSI HSI Oscillator Startup time VDD33 = 3.3 V, fHSI = 8 MHz, HSIRCBL = 0 (HSI Ready Counter Bits Length 7 Bits ) — 17 — μs Note: HSIRCBL field is in PWRCU HSIRCR register Table 12. Low Speed Internal Clock (LSI) Characteristics Symbol Parameter fLSI Low Speed Internal Oscillator Frequency (LSI) IDDLSI tSULSI Rev. 1.00 TA = 25°C, unless otherwise specified. Conditions VDD33 = VBAT = 3.3 V, TA = -40°C ~ +85°C Min Typ Max Unit 25 32 43 kHz LSI Oscillator Operating current VDD33 = VBAT = 3.3 V, TA = 25°C — 1.0 2 μA LSI Oscillator startup time — 35 — ms VDD33 = VBAT = 3.3 V, TA = 25°C 33 of 48 July 24, 2014 Electrical Characteristics DLSE Low Speed External oscillator frequency (LSE) Recommended load capacitance on XTAL32KIN and XTAL32KOUT pins Recommended external feedback resistor between XTAL32KIN and XTAL32KOUT pins LSE oscillator Duty cycle TA = 25°C, unless otherwise specified. 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 PLL Characteristics Table 13. PLL Characteristics Symbol TA = 25°C, unless otherwise specified. Parameter Conditions Min Typ Max Unit PLL input clock 4 — 16 MHz fCK_PLL PLL output clock 8 — 144 MHz tLOCK PLL lock time — TBD — ms Memory Characteristics Table 14. Flash Memory Characteristics Symbol TA = 25°C, unless otherwise specified. Parameter Conditions Min Typ Max Unit — K cycles NENDU Number of guaranteed program/erase cycles before failure. (Endurance) TA = -40°C ~ +85°C 20 — TRET Data retention time TA = 25°C 100 — — Years tPROG Word programming time TA = -40°C ~ +85°C 20 — 40 μs tERASE Page erase time TA = -40°C ~ +85°C 20 — 40 ms tMERASE Mass erase time TA = -40°C ~ +85°C 20 — 40 ms I/O Port Characteristics Table 15. I/O Port Characteristics Symbol TA = 25°C, unless otherwise specified. Parameter Conditions 3.3 V IO IIL Low level input current 5 V-tolerant IO Reset pin High level input current VIH VHYS Rev. 1.00 Low level input voltage High level input voltage Schmitt trigger input voltage hysteresis — 3 μA — — 3 μA — — 3 μA — 3 μA — — 3 μA — — 3 μA 3.3 V IO -0.3 — 0.8 V 5 V-tolerant IO -0.3 — 0.8 V Reset pin -0.3 — 0.8 V 3.3 V IO 2 — 3.6 V 5 V-tolerant IO 2 — 5.5 V Reset pin 2 — 5.5 V 3.3 V IO — 400 — mV 5 V-tolerant IO — 400 — mV Reset pin — 400 — mV 5 V-tolerant IO Reset pin VIL Typ Max Unit — — 3.3 V IO IIH VI = 0 V, On-chip pullup resister disabled. Min 34 of 48 VI = VDD33, On-chip pulldown resister disabled. July 24, 2014 Electrical Characteristics fPLLIN 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Symbol IOL VOL VOH RPU RPD Rev. 1.00 Low level output current (GPIO Sink current) High level output current (GPIO Source current) Low level output voltage Conditions Internal pull-down resistor Typ Max Unit 3.3 V IO 4 mA drive, VOL = 0.4 V 4 — — mA 3.3 V IO 8 mA drive, VOL = 0.4 V 8 — — mA 5 V-tolerant IO 8 mA drive, VOL = 0.4 V 8 — — mA 5 V-tolerant IO 12 mA drive, VOL = 0.4 V 12 — — mA Backup Domain IO drive @ VBAT = 3.3 V, VOL = 0.4 V, PC13, PC14, PC15 — 4 — mA 3.3 V I/O 4 mA drive, VOH = VDD33 - 0.4 V 4 — — mA 3.3 V I/O 8 mA drive, VOH = VDD33 - 0.4 V 8 — — mA 5 V-tolerant I/O 8 mA drive, VOH = VDD33 - 0.4 V 8 — — mA 5 V-tolerant I/O 12 mA drive, VOH = VDD33 - 0.4 V 12 — — mA Backup Domain IO drive @ VBAT = 3.3 V, VOL = VDD33 - 0.4 V, PC13, PC14, PC15 — — 1 mA 3.3 V 4 mA drive IO, IOL = 4 mA — — 0.4 V 3.3 V 8 mA drive IO, IOL = 8 mA — — 0.4 V 5 V-tolerant 8 mA drive IO, IOL = 8 mA — — 0.4 V 5 V-tolerant 12 mA drive IO, IOL = 12 mA — — 0.4 V 3.3 V 4 mA drive IO, IOH = 4 mA VDD33 0.4 V — — V 3.3 V 8 mA drive IO, IOH = 8 mA VDD33 0.4 V — — V 5 V-tolerant 8 mA drive IO, IOH = 8 mA VDD33 0.4 V — — V 5 V-tolerant 12 mA drive IO, IOH = 12 mA VDD33 0.4 V — — V High level output voltage Internal pull-up resistor Min 3.3 V I/O 34 74 kΩ 5 V-tolerant I/O 38 89 kΩ 3.3 V I/O 29 86 kΩ 5 V-tolerant I/O 35 107 kΩ 35 of 48 July 24, 2014 Electrical Characteristics IOH Parameter 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 ADC Characteristics Table 16. ADC Characteristics Symbol Parameter TA = 25°C, unless otherwise specified. Conditions Operating voltage VADCIN A/D Converter input voltage range VREF+ A/D Converter Reference voltage IADC Current consumption VDDA = 3.3 V VDDA = 3.3 V Min Typ Max Unit 2.7 3.3 3.6 V 0 — VREF+ V VDDA VDDA — 1 TBD V mA IADC_DN Power down current consumption — 1 10 μA fADC A/D Converter clock 0.7 — 14 MHz fS Sampling rate 0.05 — 1 fADCCONV A/D Converter conversion time — 14 — RI Input sampling switch resistance — — 1 MHz 1/fADC Cycles kΩ CI Input sampling capacitance — — 5 pF tSU Startup up time — — 1 μs N Resolution — 12 — bits INL Integral Non-linearity error fS = 1 MHz, VDDA = 3.3 V — ±2 ±5 LSB DNL Differential Non-linearity error fS = 1 MHz, VDDA = 3.3 V — — ±1 LSB EO Offset error — — ±10 LSB EG Gain error — — ±10 LSB No pin/pad capacitance included Note: 1. Guaranteed by design, not tested in production. 2. The figure below shows the equivalent circuit of the A/D Converter Sample-and-Hold input stage where CI is the storage capacitor, RI is the resistance of the sampling switch and RS is the output impedance of the signal source VS. Normally the sampling phase duration is approximately, 1.5/fADC. The capacitance, CI, must be charged within this time frame and it must be ensured that the voltage at its terminals becomes sufficiently close to VS for accuracy. To guarantee this, RS may not have an arbitrarily large value. Rev. 1.00 36 of 48 July 24, 2014 Electrical Characteristics VDDA 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 SAR ADC sample RS RI Figure 7. ADC Sampling Network Model The worst case occurs when the extremities of the input range (0V and VREF) are sampled consecutively. In this situation a sampling error below ¼ LSB is ensured by using the following equation: RS < 1.5 − RI f ADC C I ln(2 N + 2 ) where fADC is the ADC clock frequency and N is the ADC resolution (N = 12 in this case). A safe margin should be considered due to the pin/pad parasitic capacitances, which are not accounted for in this simple model. If, in a system where the A/D Converter is used, there are no rail-to-rail input voltage variations between consecutive sampling phases, Rs may be larger than the value indicated by the equation above. Rev. 1.00 37 of 48 July 24, 2014 Electrical Characteristics CI VS 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Operational Amplifier/Comparator Characteristics Table 17. OPA/CMP Characteristics Symbol TA = 25°C, unless otherwise specified. Parameter Conditions Min Typ Max Unit VDDA Operating voltage 2.7 3.3 3.6 V IOPA/CMP Typical operating current — 230 — μA VIOS Input offset voltage VIOS_DRIFT Input offset voltage drift Assign registers OPAEN = 0 and EN_OPAOP = 0 VDDA = 3.3 V, AnOF[5:0] = ‘100000’ — — 0.1 μA -15 — 15 mV VDDA = 3.3 V, After calibration -1 — TA = -40°C ~ +85°C RINPUT Input resistance GV Voltage Gain Ut Unit-Gain Bandwidth VCM OPA common mode voltage range VDDA = 3.3 V VSSA VOV OPA output voltage swing VDDA = 3.3 V VSSA + 0.3 SR Slew Rate tRT Comparator response time 60 mV mV/°C 10 MΩ 100 dB RL=100KΩ 1,3 RL=100KΩ, CL=100pF 1.24 VDDA = 3.3 V; Output capacitor load CL=100pF VDDA = 3.3 V; Input Overdrive = ±10mV 1 0.04 — MHz VDDA – 1.2 VDDA – 0.5 1.6 — V V V/μs 1 — μs Note: Guaranteed by design, not tested in production. GPTM/MCTM Characteristics Table 18. GPTM/MCTM Characteristics Symbol Parameter Conditions Min Typ Max Unit fTM Timer clock source for GPTM and MCTM — — — 72 MHz tRES Timer resolution time — 1 — — fTM fEXT External single frequency on channel 1 ~ 4 — — — 1/2 fTM RES Timer resolution — — — 16 bits Rev. 1.00 38 of 48 July 24, 2014 Electrical Characteristics IOPA/CMP_DN Power down supply current 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 I2C Characteristics Table 19. I2C Characteristics Symbol fSCL Standard mode Min Max Parameter SCL clock frequency — Fast mode Min Max 100 Fast mode plus Min Max 400 1000 Unit kHz SCL clock high time 4.5 1.125 0.45 μs SCL clock low time 4.5 1.125 0.45 μs tFALL SCL and SDA fall time 1.3 0.34 0.135 μs tRISE SCL and SDA rise time 1.3 0.34 0.135 μs tSU(SDA) SDA data setup time tH(SDA) SDA data hold time tSU(STA) START condition setup time 500 125 50 ns 0 0 0 ns 500 125 50 ns tH(STA) START condition hold time 0 0 0 ns tSU(STO) STOP condition setup time 500 125 50 ns Note: 1. Guaranteed by design, not tested in production. 2. To achieve 100kHz standard mode, the peripheral clock frequency must be higher than 2MHz. 3. To achieve 400kHz fast mode, the peripheral clock frequency must be higher than 8MHz. 4. To achieve 1MHz fast mode plus, the peripheral clock frequency must be higher than 20MHz. 5. The above characteristic parameters of the I2C bus timing are based on: SEQ_FILTER = 01 and COMB_ FILTER_En is disabled. tRISE tFALL SCL tSCL(L) tH(STA) tSCL(H) tH(SDA) tSU(SDA) tSU(STO) SDA tSU(STA) Figure 8. I2C Timing Diagrams Rev. 1.00 39 of 48 July 24, 2014 Electrical Characteristics tSCL(H) tSCL(L) 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 SPI Characteristics Table 20. SPI Characteristics Symbol Parameter Conditions Min Typ Max Unit fSCK SCK clock frequency — — fPCLK/2 MHz tSCK(H) SCK clock high time fPCLK/8 — — ns tSCK(L) SCK clock low time fPCLK/8 — — ns tV(MO) Data output valid time — — 5 ns tH(MO) Data output hold time 2 — — ns tSU(MI) Data input setup time 5 — — ns tH(MI) Data input hold time 5 — — ns SPI Slave mode tSU(SEL) SEL enable setup time 4 tPCLK — — ns tH(SEL) SEL enable hold time 2 tPCLK — — ns tA(SO) Data output access time — — 3 tPCLK ns tDIS(SO) Data output disable time — — 10 ns tV(SO) Data output valid time — — 25 ns tH(SO) Data output hold time 15 — — ns tSU(SI) Data input setup time 5 — — ns tH(SI) Data input hold time 4 — — ns tSCK SCK (CPOL = 0) tSCK(H) tSCK(L) SCK (CPOL = 1) tV(MO) MOSI DATA VALID tSU(MI) MISO MOSI MISO DATA VALID DATA VALID tH(MI) CPHA = 1 DATA VALID DATA VALID tV(MO) tH(MO) DATA VALID tSU(MI) tH(MO) DATA VALID DATA VALID DATA VALID tH(MI) DATA VALID CPHA = 0 DATA VALID DATA VALID Figure 9. SPI Timing Diagrams - SPI Master Mode Rev. 1.00 40 of 48 July 24, 2014 Electrical Characteristics SPI Master mode 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 SEL tSU(SEL) tH(SEL) tSCK SCK (CPOL=0) tSCK(L) Electrical Characteristics tSCK(H) SCK (CPOL=1) tSU(SI) MOSI tH(SI) LSB/MSB IN MSB/LSB IN tA(SO) tV(SO) tDIS(SO) tH(SO) LSB/MSB OUT MSB/LSB OUT MISO Figure 10. SPI Timing Diagrams - SPI Slave Mode with CPHA=1 I2S Characteristics Table 21. I2S Characteristics Symbol Parameter Conditions Min Typ Max Unit I2S Master mode tWSD(MO) WS output to BCLK delay TBD ns tDOD(MO) Data output to BCLK delay TBD ns tDIS(MI) Data input setup time TBD ns tDIH(MI) Data input hold time TBD ns I S Slave mode 2 tBCH(SI) BCLK high pulse width TBD ns tBCL(SI) BCLK low pulse width TBD ns tWSS(SI) WS input setup time TBD ns tDOD(SO) Data output to BCLK delay TBD ns tDIS(SI) Data input setup time TBD ns tDIH(SI) Data input hold time TBD ns Rev. 1.00 41 of 48 July 24, 2014 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 BCLK tWSD(MO) WS Electrical Characteristics tDOD(MO) SDO tDIS(MI) tDIH(MI) SDI Figure 11. Timing of I2S Master Mode tBCH(SI) tBCL(SI) BCLK tWSS(SI) WS tDOD(SO) SDO tDIS(SI) tDIH(SI) SDI Figure 12. Timing of I2S Slave Mode Rev. 1.00 42 of 48 July 24, 2014 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 USB Characteristics The USB interface is USB-IF certified – Full Speed. Table 22. USB DC Electrical Characteristics Symbol Parameter Conditions Min Max 3.0 — 3.6 V 0.2 — — V — 2.5 V 2.0 V VDD33 USB operating voltage VDI Differential input sensitivity VCM Common mode voltage range 0.8 VSE Single-ended receiver threshold 0.8 |USBDP-USBDM| VOL Pad output low voltage VOH Pad output high voltage VCRS Differential output signal cross-point voltage 1.3 ZDRV Driver output resistance — CIN Transceiver pad capacitance RL of 1.5kΩ to VDD33 Unit 0 — 0.3 V 2.8 — 3.6 V 2.0 V 10 — Ω — 20 pF Note: 1. Guaranteed by design, not tested in production. 2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP pin should be pulled up with a 1.5kΩ external resistor to a 3.0-to-3.6 V voltage supply. 3. The USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which will experience degradation in the 2.7-to-3.0 V VDD33 voltage range. 4. RL is the load connected to the USB driver USBDP. Rise Time Fall Time Tr Tf 90% 90% VCRS 10% 10% Figure 13. USB Signal Rise Time and Fall time and Cross-Point Voltage (VCRS) Definition Table 23 USB AC Electrical Characteristics Symbol Parameter Conditions Min Typ Max Unit Tr Rise time CL = 50 pF 4 — 20 ns Tf Fall time CL = 50 pF 4 — 20 ns Tr/f Rise time / fall time matching Tr/f = Tr / Tf 90 — 110 % Rev. 1.00 43 of 48 July 24, 2014 Electrical Characteristics Typ 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 5 Package Information Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the Holtek website for the latest version of the package information. • Further Package Information (include Outline Dimensions, Product Tape and Reel Specifications) • Packing Meterials Information • Carton information Rev. 1.00 44 of 48 July 24, 2014 Package Information Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page. 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 48-pin LQFP (7mm×7mm) Outline Dimensions Package Information Symbol Dimensions in inch Min. Nom. Max. A — 0.354 BSC — B — 0.276 BSC — C — 0.354 BSC — D — 0.276 BSC — E — 0.020 BSC — F 0.007 0.009 0.011 G 0.053 0.055 0.057 H — — 0.063 I 0.002 — 0.006 J 0.018 0.024 0.030 K 0.004 — 0.008 α 0° ― 7° Symbol Rev. 1.00 Dimensions in mm Min. Nom. Max. A — 9.0 BSC — B — 7.0 BSC — C — 9.0 BSC — D — 7.0 BSC — E — 0.5 BSC — F 0.17 0.22 0.27 G 1.35 1.40 1.45 H — — 1.60 I 0.05 — 0.15 J 0.45 0.60 0.75 K 0.09 — 0.20 α 0° ― 7° 45 of 48 July 24, 2014 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 64-pin LQFP (7mm×7mm) Outline Dimensions Package Information Symbol Min. Nom. Max. A — 0.354 BSC — B — 0.276 BSC — C — 0.354 BSC — D — 0.276 BSC — E — 0.016 BSC — F 0.005 0.007 0.009 G 0.053 0.055 0.057 H — — 0.063 I 0.002 — 0.006 J 0.018 0.024 0.030 K 0.004 — 0.008 α 0° ― 7° Symbol Rev. 1.00 Dimensions in inch Dimensions in mm Min. Nom. Max. A — 9.00 BSC — B — 7.00 BSC — C — 9.00 BSC — D — 7.00 BSC — E — 0.40 BSC — F 0.13 0.18 0.23 G 1.35 1.40 1.45 H — — 1.60 I 0.05 — 0.15 J 0.45 0.60 0.75 K 0.09 — 0.20 α 0° ― 7° 46 of 48 July 24, 2014 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 100-pin LQFP (14mm×14mm) Outline Dimensions Package Information Symbol Dimensions in inch Min. Nom. Max. A — 0.630 BSC — B — 0.551 BSC — C — 0.630 BSC — D — 0.551 BSC — E — 0.020 BSC — F 0.007 0.009 0.011 G 0.053 0.055 0.057 H — — 0.063 I 0.002 — 0.006 J 0.018 0.024 0.030 K 0.004 — 0.008 α 0° ― 7° Symbol Rev. 1.00 Dimensions in mm Min. Nom. Max. A — 16.00 BSC — B — 14.00 BSC — C — 16.00 BSC — D — 14.00 BSC — E — 0.50 BSC — F 0.17 0.22 0.27 G 1.35 1.40 1.45 H ― ― 1.60 I 0.05 — 0.15 J 0.45 0.60 0.75 K 0.09 — 0.20 α 0° ― 7° 47 of 48 July 24, 2014 32-bit ARM® Cortex™-M3 MCU HT32F1656/HT32F1655 Copyright© 2014 by HOLTEK SEMICONDUCTOR INC. The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw. Rev. 1.00 48 of 48 July 24, 2014