STR73xF ARM7TDMI™ 32-bit MCU with Flash, 3x CAN, 4 UARTs, 20 timers, ADC, 12 comm. interfaces ■ Core – ARM7TDMI 32-bit RISC CPU – 32 MIPS @ 36 MHz ■ Temperature range -40 to 105 °C ■ Memories – Up to 256 Kbytes FLASH program memory (10,000 cycles endurance, data retention 20 years at 55°C) – 16 Kbytes RAM ■ ■ TQFP100 14 x 14 TQFP144 20 x 20 LFBGA144 10 x 10 x 1.7 – 72/112 multifunctional bidirectional I/Os Clock, reset and supply management – 4.5 - 5.5V application supply and I/Os – Embedded 1.8V regulator for core supply – Embedded oscillator running from external 4-8MHz crystal or ceramic resonator – Up to 36 MHz CPU freq. with internal PLL – Internal RC oscillator 32kHz or 2MHz software configurable for fast startup and backup clock – Realtime Clock for clock-calendar function – Wakeup Timer driven by internal RC for wakeup from STOP mode – 5 power saving modes: SLOW, WFI, LPWFI, STOP and HALT modes Nested interrupt controller – Fast interrupt handling with multiple vectors – 64 maskable IRQs with 64 vectors and 16 priority levels – 2 maskable FIQ sources – 16 ext. interrupts, up to 32 wake-up lines ■ DMA – 4 DMA controllers with 4 channels each ■ Timers – 16-bit watchdog timer (WDG) – 6/10 16-bit timers (TIM) each with: 2 input captures, 2 output compares, PWM and pulse counter modes – 6 16-bit PWM modules (PWM) – 3 16-bit timebase timers with 8-bit prescalers ■ 12 communications interfaces – 2 I2C interfaces – 4 UART asynchronous serial interfaces – 3 BSPI synchronous serial interfaces – Up to 3 CAN interfaces (2.0B Active) ■ 10-bit A/D converter – 12/16 channels – Conversion time: min 3µs, range: 0 to 5V ■ Development tools support – JTAG interface ■ Up to 112 I/O ports Table 1. Device summary Features FLASH memory - bytes STR730FZx 128K STR735FZx 256K 128K 256K STR731FVx 64K 128K STR736FVx 256K 64K 128K 256K RAM - bytes 16K 16K Peripheral Functions 10 TIM Timers, 112 I/Os, 32 Wake-Up lines, 16 ADC channels 6 TIM Timers, 72 I/Os, 18 Wake-Up lines, 12 ADC channels CAN Peripherals 3 0 3 Operating Voltage Operating Temperature Packages March 2006 0 4.5 to 5.5V -40 to +105°C T=TQFP144 20 x 20 H=LFBGA144 10 x10 T=TQFP100 14x14 Rev 3 1/40 www.st.com 40 Contents STR73xF Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 On-Chip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Related Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.5 2 3 1.4.1 STR730F/STR735F (TQFP144) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4.2 STR730F/STR735F (LFBGA144) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4.3 STR731F/STR736F (TQFP100) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Memory Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Voltage regulator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Preliminary power consumption data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6 RSTIN input filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.7 Main oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.8 PLL electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.9 RC oscillator electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.10 Flash electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.11 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.1.1 Power considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5 Known limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.1 6 2/40 Low Power Wait For Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 STR73xF 1 Introduction Introduction This datasheet provides the STR73x Ordering Information, Mechanical and Electrical Device Characteristics. For complete information on the STR73xF Microcontroller memory, registers and peripherals. please refer to the STR73x Reference Manual. For information on programming, erasing and protection of the internal Flash memory please refer to the STR7 Flash Programming Reference Manual For information on the ARM7TDMI core please refer to the ARM7TDMI Technical Reference Manual. 1.1 Overview ARM‚ core with embedded Flash & RAM STR73xF family combines the high performance ARM7TDMI™ CPU with an extensive range of peripheral functions and enhanced I/O capabilities. All devices have on-chip high-speed single voltage FLASH memory and high-speed RAM. The STR73xF family has an embedded ARM core and is therefore compatible with all ARM tools and software. Extensive tools support STMicroelectronics’ 32-bit, ARM core-based microcontrollers are supported by a complete range of high-end and low-cost development tools to meet the needs of application developers. This extensive line of hardware/software tools includes starter kits and complete development packages all tailored for ST’s ARM core-based MCUs. The range of development packages includes third-party solutions that come complete with a graphical development environment and an in-circuit emulator/programmer featuring a JTAG application interface. These support a range of embedded operating systems (OS), while several royalty-free OSs are also available. For more information, please refer to ST MCU site http://www.st.com/mcu Figure 1 shows the general block diagram of the device family. Package Choice: Reduced Pin-Count TQFP100 or Feature-Rich 144-pin TQFP or LFBGA The STR73xF family is available in 3 packages. The TQFP144 and LFBGA144 versions have the full set of all features. The 100-pin version has fewer timers, I/Os and ADC channels. Refer to the Device Summary on Page 1 for a comparison of the I/Os available on each package. The family includes versions with and without CAN. 3/40 Introduction STR73xF High Speed Flash Memory The Flash program memory is organized in 32-bit wide memory cells which can be used for storing both code and data constants. It is accessed by CPU with zero wait states @ 36 MHz. The STR7 embedded Flash memory can be programmed using In-Circuit Programming or In-Application programming. The Flash memory endurance is 10K write/erase cycles and the data retention is 20 years at 55°C. IAP (In-Application Programming): The IAP is the ability to re-program the Flash memory of a microcontroller while the user program is running. ICP (In-Circuit Programming): The ICP is the ability to program the Flash memory of a microcontroller using JTAG protocol while the device is mounted on the user application board. The Flash memory can be protected against different types of unwanted access (read/write/erase). There are two types of protection: ● Sector Write Protection ● Flash Debug Protection (locks JTAG access) Flexible Power Management To minimize power consumption, you can program the STR73xF to switch to SLOW, WFI LPWFI, STOP or HALT modes depending on the current system activity in the application. Flexible Clock Control Two clock sources are used to drive the microcontroller, a main clock driven by an external crystal or ceramic resonator and an internal backup RC oscillator that operates at 2MHz or 32 kHz. The embedded PLL can be configured to generate an internal system clock of up to 36 MHz. The PLL output frequency can be programmed using a wide selection of multipliers and dividers. Voltage Regulators The STR73xF requires an external 4.5 to 5.5V power supply. There are two internal Voltage Regulators for generating the 1.8V power supply needed by the core and peripherals. The main VR is switched off and the Low Power VR switched on when the application puts the STR73xF in Low Power Wait for Interrupt (LPWFI) mode. Low Voltage Detectors The voltage regulator and Flash modules each have an embedded LVD that monitors the internal 1.8V supply. If the voltage drops below a certain threshold, the LVD will reset the STR73xF. Note: An external power-on reset must be provided ensure the microcontroller starts-up correctly. 4/40 STR73xF 1.2 Introduction On-Chip Peripherals CAN Interfaces The three CAN modules are compliant with the CAN specification V2.0 part B (active). The bit rate can be programmed up to 1 MBaud. These are not available in the STR735 and STR736. DMA 4 DMA controllers, each with 4 data streams manage memory to memory, peripheral to memory and memory to peripheral transfers. The DMA requests are connected to TIM timers, BSPI0, BSPI1, BSPI2 and ADC. One of the streams can be configured to be triggered by a software request, independently from any peripheral activity. 16-bit Timers (TIM) Each of the ten timers (six in 100-pin devices) have a 16-bit free-running counter with 7-bit prescaler, up to two input capture/output compare functions, a pulse counter function, and a PWM channel with selectable frequency. This provides a total of 16 independent PWMs (12 in 100-pin devices) when added with the PWM modules (see next paragraph). PWM Modules (PWM) The six 16-bit PWM modules have independently programmable periods and duty-cycles, with 5+3 bit prescaler factor. Timebase Timers (TB) The three 16-bit Timebase Timers with 8-bit prescaler for general purpose time triggering operations. Realtime Clock (RTC) The RTC provides a set of continuously running counters driven by separate clock signal derived from the main oscillator. The RTC can be used as a general timebase or clock/calendar/alarm function. When the STR73xF is in LPWFI mode the RTC keeps running, powered by the low power voltage regulator. UARTs The 4 UARTs allow full duplex, asynchronous, communications with external devices with independently programmable TX and RX baud rates up to 625K baud. Buffered Serial Peripheral Interfaces (BSPI) Each of the three BSPIs allow full duplex, synchronous communications with external devices, master or slave communication at up 6 Mb/s (@36 MHz System Clock). I2C Interfaces The two I2C Interfaces provide multi-master and slave functions, support normal and fast I2C mode (400 kHz) and 7 or 10-bit addressing modes. A/D Converter The 10-bit Analog to Digital Converter, converts up to 16 channels in single-shot or continuous conversion modes (12 channels in 100-pin devices). The minimum conversion time is 3us. 5/40 Introduction STR73xF Watchdog The 16-bit Watchdog Timer protects the application against hardware or software failures and ensures recovery by generating a reset. I/O Ports Up to 112 I/O ports (72 in 100-pin devices) are programmable as general purpose input/output or Alternate Function. External Interrupts and Wake-Up Lines 16 external interrupts lines are available for application use. In addition, up to 32 external Wakeup lines (18 in 100-pin devices) can be used as general purpose interrupts or to wakeup the application from STOP mode. 6/40 STR73xF Block Diagram Figure 1. RSTIN STR730F/STR735F block diagram PRCCU/PLL FLASH Program Memory 64/128/256K ARM7TDMI CPU JTDI JTCK JTMS JTRST JTDO JTAG V18 VDD VSS VDDA VSSA M0 M1 TEST RAM 16K ARM7 NATIVE BUS APB BRIDGE 0 POWER SUPPLY VREG APB BRIDGE 1 AHB BRIDGE AHB BUS DMA0-3 WATCHDOG CLOCK MGT (CMU) XTAL1 XTAL2 I2C0-1 4 AF INTERRUPT CTL (EIC) WAKEUP/INT (WIU) 32 AF 16 AF A/D CONVERTER (ADC) UART0, 1, 2, 3 8 AF 12 AF TIMER (TIM) 2-4 12 AF BSPI 0-2 WAKEUP TIMER (WUT) 6 AF CAN 0-2* TIMER (TIM) 0-1 8 AF 6 AF PWM 0-5 TIMER (TIM) 5-9 20 AF 122 ports RTC APB BUS OSC APB BUS 2 Block Diagram TIMEBASE TIMER (TB) 0-2 GPIO PORTS 0-6 *CAN peripherals not available on STR735F. AF: alternate function on I/O port pin 7/40 Block Diagram STR73xF Figure 2. RSTIN STR731F/STR736 block diagram PRCCU/PLL FLASH Program Memory 64/128/256K ARM7TDMI CPU JTAG V18 VDD VSS VDDA VSSA RAM 16K ARM7 NATIVE BUS JTDI JTCK JTMS JTRST JTDO M0 M1 TEST APB BRIDGE 0 POWER SUPPLY VREG APB BRIDGE 1 AHB BRIDGE AHB BUS DMA0-3 WATCHDOG CLOCK MGT (CMU) XTAL1 XTAL2 I2C0-1 4 AF INTERRUPT CTL (EIC) WAKEUP/INT (WIU) 18 AF 12 AF A/D CONVERTER (ADC) UART0, 1, 2, 3 8 AF 12 AF TIMER (TIM) 2-4 12 AF BSPI 0-2 WAKEUP TIMER (WUT) 6 AF CAN 0-2* TIMER (TIM) 0-1 8 AF 6 AF PWM 0-5 TIMER (TIM) 5 4 AF 72 ports TIMEBASE TIMER (TB) 0-2 GPIO PORTS 0-6 *CAN peripherals not available on STR736F. 8/40 APB BUS RTC APB BUS OSC AF: alternate function on I/O port pin STR73xF 2.1 Block Diagram Related Documentation Available from www.arm.com: ARM7TDMI Technical Reference Manual Available from http://www.st.com: STR73x Reference Manual STR7 Flash Programming Reference Manual STR73x Software Library User Manual For a list of related application notes refer to http://www.st.com. 9/40 Block Diagram STR73xF 2.2 Pin description 2.2.1 STR730F/STR735F (TQFP144) STR730F/STR735F pin configuration (top view) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 STR730F/STR735F 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 WUP12 / CAN0RX / P1.14 CAN0TX / P1.15 PWM0 / P2.0 WUP13 / CAN1RX / P2.1 CAN1TX / P2.2 PWM1 / P2.3 PWM2 / P2.4 PWM3 / P2.5 PWM4 / P2.6 PWM5 / P2.7 M0 RSTIN M1 VDD VSS XTAL1 XTAL2 VSS TDO1 / P2.8 WUP14 / RDI1 / P2.9 WUP16 / P2.10 WUP17 / P2.11 INT14 / P2.12 INT15 / P2.13 WUP15 / SCL0 / P2.14 SDA0 / P2.15 TEST VBIAS VSS VDD AIN0 / P3.0 AIN1 / P3.1 AIN2 / P3.2 AIN3 / P3.3 AIN4 / P3.4 AIN5 / P3.5 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 OCMPB2 / P0.0 OCMPA2 / P0.1 ICAPA2 / P0.2 ICAPB2 / P0.3 VSS VDD OCMPA5 / P0.4 OCMPB5 / P0.5 ICAPA5 / P0.6 ICAPB5 / P0.7 OCMPA6 / P0.8 OCMPB6 / P0.9 OCMPA7 / P0.10 OCMPB7 / P0.11 VDD VSS ICAPA3 / P0.12 ICAPB3 / P0.13 OCMPB3 / P0.14 OCMPA3 / P0.15 OCMPA4 / P1.0 OCMPB4 / P1.1 ICAPB4 / P1.2 ICAPA4 / P1.3 VSS VDD P1.4 P1.5 OCMPB1 / P1.6 OCMPA1 / P1.7 INT0 / OCMPA0 / P1.8 INT1 / OCMPB0 / P1.9 ICAPB0 / WUP28 / P1.10 ICAPA0 / WUP29 / P1.11 ICAPA1 / WUP30 / P1.12 ICAPB1 / WUP31 / P1.13 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 P6.15 / WUP9 P6.14 / SS0 P6.13 / SCK0 / WUP11 P6.12 / MOSI0 P6.11 / MISO0 P6.10 / WUP8 P6.9 / TDO0 P6.8 / RDI0 / WUP10 P6.7 / WUP7 P6.6 / WUP6 P6.5 / WUP5 P6.4 / TDO3 / WUP4 P6.3 / WUP3 P6.2 / RDI3 / WUP2 P6.1 / WUP1 P6.0 / WUP0 VDD VSS V18 P5.15 / INT13 P5.14 / INT12 P5.13 / INT11 P5.12 / INT10 P5.11 / TDO2 / INT9 P5.10 / RDI2 / INT8 P5.9 / INT7 P5.8 / INT6 P5.7 / MISO2 P5.6 / MOSI2 P5.5 / SCK2 / WUP23 P5.4 / SS2 P5.3 / OCMPB9 P5.2 / OCMPA9 P5.1 / MISO1 P5.0 / MOSI1 P4.15 / SCK1 / WUP22 Figure 3. Note 1: CAN alternate functions not available on STR735F. 10/40 P4.14 / SS1 P4.13 / ICAPB9 P4.12 / ICAPA9 / WUP21 P4.11 / OCMPB8 P4.10 / ICAPA6 / WUP20 P4.9 / ICAPB6 P4.8 / OCMPA8 P4.7 / SDA1 P4.6 / SCL1 / WUP19 P4.5 / CAN2RX / WUP18 P4.4 / CAN2TX P4.3 / ICAPB8 / WUP27 P4.2 / ICAPA8 / WUP26 P4.1 / ICAPB7 / WUP25 P4.0 / ICAPA7 / WUP24 VDD VSS JTDO JTCK JTMS JTDI JTRST VSS VDD P3.15 / AIN15 / INT5 P3.14 / AIN14 / INT4 P3.13 / AIN13 / INT3 P3.12 / AIN12 / INT2 P3.11 / AIN11 P3.10 / AIN10 P3.9 / AIN9 P3.8 / AIN8 VDDA VSSA P3.7 / AIN7 P3.6 / AIN6 STR73xF Block Diagram 2.2.2 STR730F/STR735F (LFBGA144) Table 2. STR730F/STR735F LFBGA ball connections Ball Name Ball Name Ball Name Ball Name A1 P0.0 / OCMPB2 B1 P0.4 / OCMPA5 C1 P0.5 / OCMPB5 D1 VSS A2 P6.10 / WUP8 B2 P0.1 / OCMPA2 C2 P0.2 / ICAPA2 D2 VDD A3 P6.9 / TDO0 B3 P6.15 / WUP9 C3 P0.3 / ICAPB2 D3 P0.6 / ICAPA5 A4 P6.12 / MOSI0 B4 P6.13 / SCKO / WUP11 C4 P6.14 / SSO D4 P0.7 /ICAPB5 A5 P6.6 / WUP6 B5 P6.7 / WUP7 C5 P6.8 / RDI0 / WUP10 D5 P6.11 / MISO0 A6 V18 B6 P6.2 / WUP2 / RDI3 C6 P6.3 / WUP3 D6 P6.4 / WUP4 /TDO3 A7 P5.15 / INT13 B7 P5.14 / INT12 C7 VSS D7 VDD A8 P5.8 / INT6 B8 P5.9 / INT7 C8 P5.10 / INT8 / RDI2 D8 P5.12 / INT10 P5.5 / SCK2 / WUP23 A9 P5.2 / OCMPA9 B9 P5.3 / OCMPB9 C9 P5.4 / SS2 D9 A10 P5.7 / MISO2 B10 P5.0 / MOSI1 C10 P5.1 / MISO1 D10 P4.13 / ICAPB9 A11 P5.6 / MOSI2 B11 P4.15 / SCK1 / WUP22 C11 P4.14 / SS1 D11 P4.12 / ICAPA9 / WUP21 A12 P5.11 / TDO2 / INT9 B12 P4.7 / SDA1 D12 P4.11 / OCMPB8 P4.8 / OCMPA8 C12 E1 P0.8 / OCMPA6 F1 VDD G1 VSS H1 VDD E2 P0.9 / OCMPB6 F2 P0.13 / ICAPB3 G2 P1.2 / ICAPB4 H2 P1.8 / OCMPA0 / INT0 E3 P0.10 / OCMPA7 F3 P0.14 / OCMPB3 G3 P1.3 / ICAPA4 H3 P1.9 / OCMPB0 / INT1 E4 P0.11 / OCMPB7 F4 P0.15 / OCMPA3 G4 VSS H4 P1.10 / ICAPB0 / WUP28 E5 P0.12 / ICAPA3 F5 P1.0 / OCMPA4 G5 P1.5 H5 XTAL2 E6 P6.5 / WUP5 F6 P1.1 / OCMPB4 G6 P2.11 / WUP17 H6 P2.10 / WUP16 E7 P6.0 / WUP0 F7 P6.1 / WUP1 G7 P4.0 / ICAPA7 / WUP24 H7 P2.15 / SDA 0 E8 P5.13 / INT11 F8 P4.4 / CAN2TX1) G8 VDD H8 JTMS E9 P4.10 / ICAPA6 / WUP20 F9 P4.3 / ICAPB8 / WUP27 G9 VSS H9 VSS E10 P4.9 / ICAPB6 F10 P4.2 / ICAPA8 / WUP26 G10 JTDO H10 VDD E11 P4.6 / SCL1 / WUP19 F11 P4.1 / ICAPB7 / WUP25 G11 JTCK H11 P3.15 / AIN15 / INT5 E12 P4.5 / WUP18 / CAN2RX 1) F12 JTDI G12 nJTRST H12 P3.14 / AIN14 / INT4 J1 P1.4 K1 P1.6 / OCMPB1 L1 P1.7 / OCMPA1 M1 P1.14 / CAN0RX 1) / WUP12 J2 P1.11 / ICAPA0 / WUP29 K2 P1.13 / ICAPB1 / WUP31 L2 P1.15 / CAN0TX1) M2 P2.4 / PWM2 J3 P1.12 / ICAPA1 / WUP30 K3 P2.1 / CAN1RX1) / WUP13 L3 P2.0 / PWM0 M3 P2.5 / PWM3 J4 P2.7 / PWM5 K4 P2.6 / PWM4 L4 P2.3 / PWM1 M4 P2.2 / CAN1TX1) J5 VDD K5 M1 L5 RSTIN M5 M0 J6 P2.9 / RDI1 / WUP14 K6 P2.8 / TDO1 L6 VSS M6 VSS J7 P2.14 / SCL 0 / WUP15 K7 P2.13 / INT15 L7 P2.12 / INT14 M7 XTAL1 J8 P3.1 / AIN1 K8 P3.0 / AIN0 L8 VBIAS M8 TST P3.2 / AIN2 J9 P3.13 / AIN13 / INT3 K9 P3.4 / AIN4 L9 P3.3 / AIN3 M9 J10 P3.12 / AIN12 / INT2 K10 VDDA L10 P3.5 / AIN5 M10 VSS J11 P3.9 / AIN9 K11 VSSA L11 P3.7 / AIN7 M11 VDD J12 P3.8 / AIN8 K12 P3.11 / AIN11 L12 P3.10 / AIN10 M12 P3.6 / AIN6 Note 1: CAN alternate functions not available on STR735F. 11/40 Block Diagram 2.2.3 STR73xF STR731F/STR736F (TQFP100) STR731F/STR736F pin configuration (top view) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 STR731F/STR736F WUP12 / CAN0RX / P1.14 CAN0TX / P1.15 PWM0 / P2.0 WUP13 / CAN1RX / P2.1 CAN1TX / P2.2 PWM1 / P2.3 PWM2 / P2.4 M0 RSTIN M1 VDD VSS XTAL1 XTAL2 VSS CAN2RX / TDO1 / P2.8 WUP14 / CAN2TX / RDI1 / P2.9 WUP15 / SCL0 / P2.14 SDA0 / P2.15 TEST VBIAS VSS VDD AIN0 / P3.4 AIN1 / P3.5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 OCMPB2 / P0.0 OCMPA2 / P0.1 ICAPA2 / P0.2 ICAPB2 / P0.3 OCMPA5 / P0.4 OCMPB5 / P0.5 ICAPA5 / P0.6 VDD VSS ICAPA3 / P0.12 ICAPB3 / P0.13 OCMPB3 / P0.14 OCMPA3 / P0.15 OCMPA4 / P1.0 OCMPB4 / P1.1 ICAPB4 / P1.2 ICAPA4 / P1.3 OCMPB1 / P1.6 OCMPA1 / P1.7 INT0 / OCMPA0 / P1.8 INT1 / OCMPB0 / P1.9 ICAPB0 / WUP28 / P1.10 ICAPA0 / WUP29 / P1.11 ICAPA1 / WUP30 / P1.12 ICAPB1 / WUP31 / P1.13 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 P6.14 / SS0 P6.13 / SCK0 / WUP11 P6.12 / MOSI0 P6.11 / MISO0 P6.9 / TDO0 P6.8 / RDI0 / WUP10 P6.6 / WUP6 P6.4 / TDO3 / WUP4 P6.2 / RDI3 / WUP2 P6.0 / WUP0 VDD VSS V18 P5.12 / INT10 P5.11 / TDO2 / INT9 P5.10 / RDI2 / INT8 P5.9 / PWM5 / INT7 P5.8 / PWM4 / INT6 P5.7 / MISO2 P5.6 / MOSI2 P5.5 / SCK2 / WUP23 P5.4 / SS2 /PWM3 P5.1 / MISO1 P5.0 / MOSI1 P4.15 / SCK1 / WUP22 Figure 4. Note 1: CAN alternate functions not available on STR736F. 12/40 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P4.14 / SS1 P4.10 / ICAPB5 / WUP20 P4.7 / SDA1 P4.6 / SCL1 / WUP19 VDD VSS JTDO JTCK JTMS JTDI JTRST VSS VDD P3.15 / AIN11 / INT5 P3.14 / AIN10 / INT4 P3.13 / AIN9 / INT3 P3.12 / AIN8 / INT2 P3.11 / AIN7 P3.10 / AIN6 P3.9 / AIN5 P3.8 / AIN4 VDDA VSSA P3.7 / AIN3 P3.6 / AIN2 STR73xF Block Diagram Legend / Abbreviations for Table 3: Type: I = input, O = output, S = supply, HiZ= high impedance, In/Output level: TT= TTL 0.8V / 2V with input trigger CT= CMOS 0.3VDD/0.7VDD with input trigger Port and control configuration: Input: pu/pd = with internal 100kΩ weak pull-up or pull down Output: OD = open drain (logic level) PP = push-pull Interrupts: INTx =external interrupt line WUPx =Wake-Up interrupt line The reset state of the I/O ports is input floating. To avoid excess power consumption, unused I/O ports must be tied to ground. Table 3. STR73xF pin description I/O TT 2mA X X Port 0.0 TIM2: Output Compare B output 2 B2 2 P0.1/OCMPA2 I/O TT 2mA X X Port 0.1 TIM2: Output Compare A output 3 C2 3 P0.2/ICAPA2 I/O TT 2mA X X Port 0.2 TIM2: Input Capture A input 4 C3 4 P0.3/ICAPB2 I/O TT 2mA X X Port 0.3 TIM2: Input Capture B input 5 D1 VSS S Ground 6 D2 VDD S Supply voltage (5V) 7 B1 5 P0.4/OCMPA5 I/O TT 2mA X X Port 0.4 TIM5: Output Compare A output 8 C1 6 P0.5/OCMPB5 I/O TT 2mA X X Port 0.5 TIM5: Output Compare B output 9 D3 7 P0.6/ICAPA5 I/O TT 2mA X X Port 0.6 TIM5: Input Capture A input 10 D4 P0.7/ICAPB5 I/O TT 2mA X X Port 0.7 TIM5: Input Capture B input 11 E1 P0.8/OCMPA6 I/O TT 2mA X X Port 0.8 TIM6: Output Compare A output 12 E2 P0.9/OCMPB6 I/O TT 2mA X X Port 0.9 TIM6: Output Compare B output 13 E3 P0.10/OCMPA7 I/O TT 2mA X X Port 0.10 TIM7: Output Compare A output 14 E4 P0.11/OCMPB 7 TT 2mA X X Port 0.11 TIM7: Output Compare B output 15 F1 8 VDD S Supply voltage (5V) 16 G1 9 VSS S Ground 17 E5 10 P0.12/ICAPA3 I/O I/O TT PP P0.0/OCMPB2 OD 1 Capability A1 interrupt Input Level 1 Pin Name pu/pd Type Main functio n (after reset) TQFP100 Output LFBGA144 Input TQFP144 Pin n° 2mA X X Port 0.12 Alternate function TIM3: Input Capture A input 13/40 Block Diagram Table 3. STR73xF STR73xF pin description TT 2mA X X Port 0.13 TIM3: Input Capture B input 19 F3 12 P0.14/OCMPB 3 I/O TT 2mA X X Port 0.14 TIM3: Output Compare B output 20 F4 13 P0.15/OCMPA3 I/O TT 2mA X X Port 0.15 TIM3: Output Compare A output 21 F5 14 P1.0/OCMPA4 I/O TT 2mA X X Port 1.0 TIM4: Output Compare A output 22 F6 15 P1.1/OCMPB4 I/O TT 2mA X X Port 1.1 TIM4: Output Compare B output 23 G2 16 P1.2/ICAPB4 I/O TT 2mA X X Port 1.2 TIM4: Input Capture B input 24 G3 17 P1.3/ICAPA4 I/O TT 2mA X X Port 1.3 TIM4: Input Capture A input 25 G4 VSS S Ground 26 H1 VDD S Supply voltage (5V) 27 J1 P1.4 I/O TT 2mA X X Port 1.4 28 G5 P1.5 I/O TT 2mA X X Port 1.5 29 K1 18 P1.6/OCMPB1 I/O TT 2mA X X Port 1.6 TIM1: Output Compare B output 30 L1 19 P1.7/OCMPA1 I/O TT 2mA X X Port 1.7 TIM1: Output Compare A output 31 H2 20 P1.8/OCMPA0 I/O TT INT0 2mA X X Port 1.8 TIM0: Output Compare A output 32 H3 21 P1.9/OCMPB0 I/O TT INT1 2mA X X Port 1.9 TIM0: Output Compare B output 33 H4 22 P1.10/ICAPB0 I/O TT WUP28 2mA X X Port 1.10 TIM0: Input Capture B input 34 J2 23 P1.11/ICAPA0 I/O TT WUP29 2mA X X Port 1.11 TIM0: Input Capture A input 35 J3 24 P1.12/ICAPA1 I/O TT WUP30 2mA X X Port 1.12 TIM1: Input Capture A input 36 K2 25 P1.13/ICAPB1 I/O TT WUP31 2mA X X Port 1.13 TIM1: Input Capture B input 37 M1 26 P1.14/CAN0RX I/O TT WUP12 2mA X X Port 1.14 CAN0: Receive Data input 38 L2 27 P1.15/CAN0TX I/O TT 2mA X X Port 1.15 CAN0: Transmit Data output 39 L3 28 P2.0/PWM0 I/O TT 2mA X X Port 2.0 PWM0: PWM output 40 K3 29 P2.1/CAN1RX I/O TT 41 M4 30 P2.2/CAN1TX I/O TT 2mA X X Port 2.2 CAN1: Transmit Data output 42 L4 31 P2.3/PWM1 I/O TT 2mA X X Port 2.3 PWM1: PWM output 43 M2 32 P2.4/PWM2 I/O TT 2mA X X Port 2.4 PWM2: PWM output 14/40 PP I/O OD 11 P0.13/ICAPB3 Capability F2 interrupt Input Level 18 Pin Name pu/pd Type Main functio n (after reset) TQFP100 Output LFBGA144 Input TQFP144 Pin n° Alternate function WUP13 2mA X X Port 2.1 CAN1: Receive Data input STR73xF Table 3. Block Diagram STR73xF pin description 2mA X X Port 2.5 PWM3: PWM output 45 K4 P2.6/PWM4 I/O TT 2mA X X Port 2.6 PWM4: PWM output 46 J4 P2.7/PWM5 I/O TT 2mA X X Port 2.7 PWM5: PWM output 47 M5 33 M0 I TT pd BOOT: Mode selection 0 input 48 L5 34 RSTIN I CT pu Reset input 49 K5 35 M1 I TT pd BOOT: Mode selection 1 input 50 J5 36 VDD S Supply voltage (5V) 51 M6 37 VSS S Ground 52 M7 38 XTAL1 I Oscillator amplifier circuit input and internal clock generator input. 53 H5 39 XTAL2 O Oscillator amplifier circuit output. 54 L6 40 VSS S Ground K6 P2.8/TDO1/CA 41 N2RX 55 42 PP TT OD I/O Capability P2.5/PWM3 interrupt M3 Pin Name pu/pd 44 TQFP100 Input Level Main functio n (after reset) Type Output LFBGA144 Input TQFP144 Pin n° Alternate function TT UART1: 2mA X X Port 2.8 Transmit Data output P2.9/RDI1/CAN I/O 2TX TT UART1: WUP14 2mA X X Port 2.9 Receive Data input I/O 56 J6 57 H6 P2.10 I/O TT WUP16 2mA X X Port 2.10 58 G6 P2.11 I/O TT WUP17 2mA X X Port 2.11 59 L7 P2.12 I/O TT INT14 2mA X X Port 2.12 60 K7 P2.13 I/O TT INT15 2mA X X Port 2.13 61 J7 43 P2.14/SCL0 I/O TT WUP15 2mA X X Port 2.14 I2C0:Serial Clock 62 H7 44 P2.15/SDA0 I/O TT 2mA X X Port 2.15 I2C0:Serial Data 63 M8 45 Test I pd CAN2: Receive Data input (TQFP100 only) CAN2: Transmit Data output (TQFP100 only) Reserved pin. Must be tied to ground 15/40 Block Diagram STR73xF pin description PP OD Capability Output interrupt Input Level Pin Name Type Input TQFP100 LFBGA144 TQFP144 Pin n° pu/pd Table 3. STR73xF Main functio n (after reset) Alternate function S Internal RC Oscillator bias. A 1.3MΩ external resistor has to be connected to this pin when a 32kHZ RC oscillator frequency is used. 65 M10 47 VSS S Ground 66 M11 48 VDD S Supply voltage (5V) 64 L8 46 VBIAS 67 K8 P3.0/AIN0 I/O TT 2mA X X Port 3.0 ADC: Analog input 0 68 J8 P3.1/AIN1 I/O TT 2mA X X Port 3.1 ADC: Analog input 1 69 M9 P3.2/AIN2 I/O TT 2mA X X Port 3.2 ADC: Analog input 2 70 L9 P3.3/AIN3 I/O TT 2mA X X Port 3.3 ADC: Analog input 3 71 K9 49 P3.4/AIN4 I/O TT 2mA X X Port 3.4 ADC: Analog input 4 (AIN0 in TQFP100) 72 L10 50 P3.5/AIN5 I/O TT 2mA X X Port 3.5 ADC: Analog input 5 (AIN1 in TQFP100) 73 M12 51 P3.6/AIN6 I/O TT 2mA X X Port 3.6 ADC: Analog input 6 (AIN2 in TQFP100) 74 L11 52 P3.7/AIN7 I/O TT 2mA X X Port 3.7 ADC: Analog input 7 (AIN3 in TQFP100) 75 K11 53 VSSA S Reference ground for A/D converter 76 K10 54 VDDA S Reference voltage for A/D converter 77 J12 55 P3.8/AIN8 I/O TT 2mA X X Port 3.8 ADC: Analog input 8 (AIN4 in TQFP100) 78 J11 56 P3.9/AIN9 I/O TT 2mA X X Port 3.9 ADC: Analog input 9 (AIN5 in TQFP100) 79 L12 57 P3.10/AIN10 I/O TT 2mA X X Port 3.10 ADC: Analog input 10 (AIN6 in TQFP100) 80 K12 58 P3.11/AIN11 I/O TT 2mA X X Port 3.11 ADC: Analog input 11 (AIN7 in TQFP100) 81 J10 59 P3.12/AIN12 I/O TT INT2 2mA X X Port 3.12 ADC: Analog input 12 (AIN8 in TQFP100) 82 J9 60 P3.13/AIN13 I/O TT INT3 2mA X X Port 3.13 ADC: Analog input 13 (AIN9 in TQFP100) 83 H12 61 P3.14/AIN14 I/O TT INT4 2mA X X Port 3.14 ADC: Analog input 14 (AIN10 in TQFP100) 84 H11 62 P3.15/AIN15 I/O TT INT5 2mA X X Port 3.15 ADC: Analog input 15 (AIN11 in TQFP100) 85 H10 63 VDD 16/40 S Supply voltage (5V) STR73xF STR73xF pin description PP OD Capability 64 VSS Output interrupt H9 Pin Name Input Level TQFP100 86 Type LFBGA144 Input TQFP144 Pin n° pu/pd Table 3. Block Diagram S Main functio n (after reset) Alternate function Ground 87 G12 65 JTRST I TT pu JTAG Reset Input 88 F12 66 JTDI I TT pu JTAG Data input 89 H8 67 JTMS I TT pu JTAG Mode Selection Input 90 G11 68 JTCK I TT pd JTAG Clock Input 91 G10 69 JTDO O 92 G9 70 VSS S Ground 93 G8 71 VDD S Supply voltage (5V) 94 G7 P4.0/ICAPA7 I/O TT WUP24 2mA X X Port 4.0 TIM7: Input Capture A input 95 F11 P4.1/ICAPB7 I/O TT WUP25 2mA X X Port 4.1 TIM7: Input Capture B input 96 F10 P4.2/ICAPA8 I/O TT WUP26 2mA X X Port 4.2 TIM8: Input Capture A input 97 F9 P4.3/ICAPB8 I/O TT WUP27 2mA X X Port 4.3 TIM8: Input Capture B input 98 F8 P4.4/CAN2TX I/O TT 2mA X X Port 4.4 CAN2: Transmit Data output 99 E12 P4.5/CAN2RX I/O TT WUP18 2mA X X Port 4.5 CAN2: Receive Data input 100 E11 72 P4.6/SCL1 I/O TT WUP19 2mA X X Port 4.6 I2C1:Serial Clock 101 C12 73 P4.7/SDA1 I/O TT 2mA X X Port 4.7 I2C1:Serial Data 102 B12 P4.8/OCMPA8 I/O TT 2mA X X Port 4.8 TIM8: Output Compare A output 103 E10 P4.9/ICAPB6 I/O TT 2mA X X Port 4.9 TIM6: Input Capture B input JTAG data output. Note: Reset state = HiZ 4mA P4.10/ICAPA6/I I/O CAPB5 TT WUP20 2mA X X Port 4.10 TIM5: Input TIM6: Input Capture B Capture A input input (144-pin pkg (TQFP100 only) only) 105 D12 P4.11/OCMPB 8 I/O TT 2mA X X Port 4.11 TIM8: Output Compare B output 106 D11 P4.12/ICAPA9 I/O TT WUP21 2mA X X Port 4.12 TIM9: Input Capture A input 107 D10 P4.13/ICAPB9 I/O TT 2mA X X Port 4.13 TIM9: Input Capture B input 108 C11 75 P4.14/SS1 I/O TT 2mA X X Port 4.14 BSPI1: Slave Select 109 B11 76 P4.15/SCK1 I/O TT WUP22 2mA X X Port 4.15 BSPI1: Serial Clock 104 E9 74 17/40 Block Diagram Table 3. STR73xF STR73xF pin description Output Main functio n (after reset) TT 2mA X X Port 5.1 BSPI1: Master input/Slave output 112 A9 P5.2/OCMPA9 I/O TT 2mA X X Port 5.2 TIM9: Output Compare A output 113 B9 P5.3/OCMPB9 I/O TT 2mA X X Port 5.3 TIM9: Output Compare B output 114 C9 P5.4/SS2/PWM I/O 79 3 TT BSPI2: Slave 2mA X X Port 5.4 Select 115 D9 80 P5.5/SCK2 I/O TT 116 A11 81 P5.6/MOSI2 I/O TT 2mA X X Port 5.6 BSPI2: Master Output/Slave input 117 A10 82 P5.7/MISO2 I/O TT 2mA X X Port 5.7 BSPI2: Master input/Slave output 118 A8 83 P5.8/PWM4 I/O TT INT6 2mA X X Port 5.8 PWM4: PWM output (TQFP100 only) 119 B8 84 P5.9/PWM5 I/O TT INT7 2mA X X Port 5.9 PWM5: PWM output (TQFP100 only) 120 C8 85 P5.10/RDI2 I/O TT INT8 2mA X X Port 5.10 UART2: Receive Data input 121 A12 86 P5.11/TDO2 I/O TT INT9 2mA X X Port 5.11 UART2: Transmit Data output 122 D8 87 P5.12 I/O TT INT10 2mA X X Port 5.12 123 E8 P5.13 I/O TT INT11 2mA X X Port 5.13 124 B7 P5.14 I/O TT INT12 2mA X X Port 5.14 125 A7 P5.15 I/O TT INT13 2mA X X Port 5.15 126 A6 88 V18 S Supply voltage for core provided by internal voltage regulator 127 C7 89 VSS S Ground 128 D7 90 VDD S Supply voltage (5V) 129 E7 91 P6.0 I/O TT WUP0 8mA X X Port 6.0 130 F7 P6.1 I/O TT WUP1 2mA X X Port 6.1 18/40 PP I/O OD 111 C10 78 P5.1/MISO1 Capability BSPI1: Master Output/Slave input interrupt 2mA X X Port 5.0 Pin Name pu/pd TT TQFP100 I/O LFBGA144 110 B10 77 P5.0/MOSI1 TQFP144 Input Level Input Type Pin n° Alternate function PWM3: PWM output (TQFP100 only) WUP23 2mA X X Port 5.5 BSPI2: Serial Clock STR73xF Table 3. Block Diagram STR73xF pin description Output Main functio n (after reset) 2mA X X Port 6.3 I/O TT WUP4 2mA X X Port 6.4 UART3: Transmit Data output P6.5 I/O TT WUP5 2mA X X Port 6.5 A5 94 P6.6 I/O TT WUP6 2mA X X Port 6.6 136 B5 P6.7 I/O TT WUP7 2mA X X Port 6.7 137 C5 95 P6.8/RDI0 I/O TT WUP10 2mA X X Port 6.8 UART0: Receive Data input 138 A3 96 P6.9/TDO0 I/O TT 139 A2 P6.10 I/O TT 140 D5 97 P6.11/MISO0 I/O 141 A4 98 P6.12/MOSI0 142 B4 143 144 C6 133 D6 134 E6 135 P6.3 93 P6.4/TDO3 PP WUP3 132 OD TT 92 P6.2/RDI3 Capability I/O B6 interrupt 2mA X X Port 6.2 UART3: Receive Data input 131 Pin Name pu/pd WUP2 TQFP100 TT LFBGA144 I/O TQFP144 Input Level Input Type Pin n° Alternate function 2mA X X Port 6.9 UART0: Transmit Data output 2mA X X Port 6.10 TT 2mA X X Port 6.11 BSPI0: Master input/Slave output I/O TT 2mA X X Port 6.12 BSPI0: Master Output/Slave input 99 P6.13/SCK0 I/O TT WUP11 2mA X X Port 6.13 BSPI0: Serial Clock C4 10 P6.14/SS0 0 I/O TT 2mA X X Port 6.14 BSPI0: Slave Select B3 P6.15 I/O TT 2mA X X Port 6.15 WUP8 WUP9 19/40 Block Diagram 2.3 STR73xF Memory Mapping Figure 5 shows the various memory configurations of the STR73xF system. The system memory map (from 0x0000_0000 to 0xFFFF_FFFF) is shown on the left part of the figure, the right part shows maps of the Flash and APB areas. For flexibility the Flash or RAM addresses can be aliased to Block 0 addresses using the remapping feature Most reserved memory spaces (gray shaded areas in Figure 5) are protected from access by the user code. When an access this memory space is attempted, an ABORT signal is generated. Depending on the type of access, the ARM processor will enter “prefetch abort” state (Exception vector 0x0000_000C) or “data abort” state (Exception vector 0x0000_0010). It is up to the application software to manage these abort exceptions. Figure 5. Memory map APB Memory Space 32 Kbytes Addressable Memory Space 4 Gbytes 0xFFFF FFFF 0xFFFF 8000 APB TO ARM7 BRIDGE 0xFFFF FFFF 32K 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 7 FLASH Memory Space 64K/128/256 Kbytes 0xE000 0000 0xDFFF FFFF EIC 1K ADC 1K CMU RTC 1K DMA 0-3 1K TIM 4 1K TIM 3 1K TIM 2 1K BSPI 2 1K BSPI 1 1K BSPI 0 1K GP I/O 0-6 1K PWM 0-5 1K CAN 2(4) 1K (4) CAN 1 1K CAN 0(4) 1K APB BRIDGE 1 REGS 1K reserved 1K WAKEUP 1K reserved 1K TIM 5-9 1K TIM 1 1K 0xFFFF FC00 0xFFFF FBFF F800 F7FF F600 F400 F3FF 0xFFFF F000 0xFFFF EFFF 0xFFFF EC00 0xFFFF EBFF 0x8010 DFFF 6 0x8010 C000 0x8010 0017 0x8010 0000 System Memory 8K Flash registers 20B 0xFFFF E800 0xFFFF E7FF 0xFFFF E400 0xFFFF E3FF 0xFFFF E000 0xFFFF DFFF 0xC000 0000 0xBFFF FFFF 0xFFFF DC00 0xFFFF DBFF 0xFFFF D800 0xFFFF D7FF 5 0xA000 3FFF 0xA000 0000 0x9FFF FFFF 0xFFFF D400 0xFFFF D3FF RAM 16K 0xFFFF D000 0xFFFF CFFF 0xFFFF CC00 0xFFFF CBFF 0xFFFF C800 0xFFFF C7FF 4 0x8010 0017 0x8000 0000 0x7FFF FFFF 0xFFFF C400 0xFFFF C3FF FLASH 64K/128K/256K 0xFFFF C000 0xFFFF BFFF 0xFFFF BC00 0xFFFF BBFF 0xFFFF B800 0xFFFF B7FF 3 0x6000 03FF 0x6000 0000 0x5FFF FFFF 0xFFFF B400 0xFFFF B3FF PRCCU 1K 0xFFFF B000 0xFFFF AFFF 0x8003 FFFF B0F7(2) 2 0x4000 003F 0x4000 0000 0x3FFF FFFF 64K 0x8003 0000 0x8002 FFFF CONFIG. REGS B0F6(2) 64B 64K 0x8002 0000 0x8001 FFFF 1 0x2000 000F 0x2000 0000 0x1FFF FFFF B0F5(3) 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF A800 A7FF A600 A400 A3FF A200 A000 9FFF 9E00 9C00 9BFF 16B 0x8001 0000 0x8000 FFFF 0 FLASH (1) 64K/128K/256K 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 0x8000 8000 7FFF 6000 5FFF 4000 3FFF 2000 1FFF 0000 0xFFFF 9000 0xFFFF 8FFF 32K B0F1 8K 8K 8K B0TF 8K B0F3 B0F2 TIM 0 WAKEUPTIM WDG UART 3 UART 1 UART 2 UART 0 0xFFFF 8C00 0xFFFF 8BFF 0xFFFF 8800 0xFFFF 87FF 0xFFFF 8400 0xFFFF 83FF 1K 1K 1K 1K TB 0-2 1K reserved 1K reserved 1K reserved 1K I2C 1 1K I2C 1K 0xFFFF 9800 0xFFFF 97FF 0xFFFF 9400 0xFFFF 93FF NATIVE ARBITER B0F4 0x0010 0017 0x0000 0000 64K 0xFFFF AC00 0xFFFF ABFF 0 APB BRIDGE 0 REGS 1K 0xFFFF 8000 (1) FLASH aliased at 0x0000 0000h by system decoder for booting with valid instruction upon RESET from Block B0 (8 Kbytes) (2) Only available in STR73xZ2/V2 (3) Only available in STR73xZ2/V2 and STR73xZ1/V1 (4) Only available in STR730/STR731 20/40 access to gray shaded area will return an ABORT Drawing not to scale STR73xF 3 Electrical characteristics Electrical characteristics This product contains devices to protect the inputs against damage due to high static voltages, however it is advisable to take normal precautions to avoid application of any voltage higher than the specified maximum rated voltages. For proper operation it is recommended that VIN be higher than VSS and lower than VDD. Reliability is enhanced if unused inputs are connected to an appropriate logic voltage level (VDD or VSS). Caution: All values indicated in this section are preliminary and to be confirmed by product characterization. 3.1 Absolute maximum ratings Stresses exceeding the recommended “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During overload conditions (VIN>VDD or VIN<VSS) the voltage on pins with respect to ground (VSS) must not exceed the recommended values. Table 4. Absolute Maximum Ratings Symbol Parameter Value Unit VDD Voltage on VDD pins with respect to ground (VSS) –0.3 to +6.0 V VSSA Voltage on VSSA pin with respect to ground (VSS) VSS V VDDA Voltage on VDDA pin with respect to ground (VSS) –0.3 to VDD + 0.3 V Voltage on any pin with respect to ground (VSS) –0.3 to VDD + 0.3 V Input current on any pin during overload condition ±101) mA IINJ Absolute sum of all input currents during overload condition ±75 mA TST Storage temperature –55 to +150 °C ESD ESD Susceptibility (Human Body Model) 2000 V VIN 1. In 144-pin devices, only +10mA on P0.3, P1.13, P3.6 and P4.13 pins (negative injection not allowed). 21/40 Electrical characteristics 3.2 STR73xF Recommended operating conditions Table 5. Operating Conditions Value Symbol Parameter Unit Min Max VDD Operating Supply Voltage with respect to ground (VSS) 4.5 5.5 V VSSA Voltage on VSSA pin with respect to ground (VSS) VSS VSS V VDDA Operating Analog Reference Voltage with respect to ground (VSS) 4.5 VDD + 0.1 V TA Ambient temperature under bias –40 +105 °C TJ Junction temperature under bias –40 +125 °C Note: RAM data retention is not guaranteed when VDD is below 3.5 Volt. 3.3 Voltage regulator characteristics VDD = 5V ± 10%, TA = -40 / +105°C, unless otherwise specified. Table 6. Symbol Voltage Regulator Characteristics Parameter Value Conditions Unit Min 22/40 Typ VOUT Main Regulator Output Voltage 1.8 CV18 External decoupling capacitor to be connected between V18 pin and nearest VSS pin. 100 Max nF STR73xF 3.4 Electrical characteristics Preliminary power consumption data Table 7 to Table 8 give expected typical values based on bench measurements on a small number of parts. Table 7. STR73xF consumption in Run mode at 25°C and 85°C Conditions fMCLK (MHz) fADC (MHz) Typical IDD (mA) 10 VDD= 5.5V, RC Oscillator off, PLL on, RTC enabled, 1 Timer (TIM) running, and ADC running in scan mode. Code executing in RAM 20 36 WFI SLOW LPWFI STOP HALT 9 42 22 10 20 32 9 48 STR73xF consumption in Run and low power modes at 25°C Mode RUN 29 10 Code executing in Flash 36 Table 8. 20 10 Conditions fMCLK Typical IDD 36MHz 76mA 24MHz 56mA Main Voltage Regulator on, Flash on, EIC on, WIU on, GPIOs on. 36MHz 33mA 24MHz 31mA PLL off, Main Voltage Regulator on 4MHz 11mA CLOCK2/16, Main Voltage Regulator on, 250kHz 8mA CLOCK2/16, Main Voltage Regulator off, 250kHz 3mA RC oscillator running in Low Frequency, Main Quartz oscillator off, Main Voltage Regulator off 29kHz 2.5mA CLOCK2/16, Main Voltage Regulator off, LP Voltage Regulator = 2mA, Flash in power down mode.. 250kHz 528µA Main Voltage Regulator off, RTC on, RC oscillator off - 378µA Main Voltage Regulator off, RTC off, RC oscillator off, LP Voltage Regulator = 6mA - 83µA Main Voltage Regulator off, RTC off, RC oscillator off, LP Voltage Regulator = 4mA - 64µA Main Voltage Regulator off, RTC off, RC oscillator off, LP Voltage Regulator = 2mA - 44µA RTC off, LP Voltage Regulator = 2mA - 44µA All peripherals on 23/40 Electrical characteristics 3.5 STR73xF DC electrical characteristics VDD = 5V ± 10%, TA = -40 / +105°C, unless otherwise specified. Table 9. DC electrical characteristics Value Symbol VIH Parameter 24/40 Unit Min Typ Max Input High Level TTL Schmitt Trigger M0, M1 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:0), 100-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(7:0) 2.0 - VDD+0.3 V Input High Level TTL Schmitt Trigger JTDI, JTCK, JTRST, JTMS 2.0 - VDD+0.3 V 0.7VDD - VDD+0.3 V Input Low Level TTL Schmitt Trigger M0, M1 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:0), 100-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(7:0) -0.3 - 0.8 V Input Low Level TTL Schmitt Trigger JTDI, JTCK, JTRST, JTMS -0.3 - 0.8 V Input Low Level CMOS Schmitt Trigger RSTIN -0.3 - 0.3VDD V Input High Level CMOS Schmitt Trigger RSTIN VIL Conditions STR73xF Electrical characteristics Table 9. DC electrical characteristics Value Symbol VHYS Parameter Unit Min Typ Max Input Hysteresis TTL Schmitt Trigger M0, M1 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:0), 100-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(7:0) 450 - - mV Input Hysteresis TTL Schmitt Trigger JTDI, JTCK, JTRST, JTMS 450 - - mV 800 - - mV Push Pull, IOH = 2mA VDD - 0.8 - - V Output high level standard 144-pin: P6(0) Push Pull, IOH = 8mA VDD - 0.8 100-pin: P3(14) - - V Output high level (JTAG) JTDO - - V Input Hysteresis CMOS Schmitt Trigger RSTIN VOH1) Conditions Output high level standard 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:1) 100-pin: P0(15:0), P1(15:0), P2(15:0), P3(15), P3(13:0), P4(7:0) Output Low Level standard 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:1) 100-pin:P0(15:0), P1(15:0), P2(15:0), P3(15), P3(13:0), P4(7:0) Push Pull, IOH = 4mA VDD - 0.8 25/40 Electrical characteristics STR73xF Table 9. DC electrical characteristics Value Symbol VOL ttr 26/40 Parameter Conditions Unit Min Typ Max Output Low Level standard 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:1) 100-pin: P0(15:0), P1(15:0), P2(15:0), P3(15), P3(13:0), P4(7:0) Push Pull, IOL = 2mA - - 0.4 V Output low level standard 144-pin: P6(0) 100-pin: P3(14) Push Pull, IOL = 8mA - - 0.4 V Output low level (JTAG) JTDO Push Pull, IOL = 4mA - - 0.4 V Output transition time standard (10%-90% and 90%-10%) 144-pin: P0(15:0), P1(15:0), P2(15:0), P3(15:0), P4(15:0), P5(15:0), P6(15:1) 100-pin: P0(15:0), P1(15:0), P2(15:0), P3(15), P3(13:0), P4(7:0) CL = 20pF CL = 50pF 3 6 5 10 10 20 ns Output transition time standard (10%-90% and 90%-10%) 144-pin: P6(0) 100-pin: P3(14) CL = 50pF CL = 100pF 1 3 3 5 7 10 ns Output transition time (10%-90% and 90%-10%) JTDO CL = 20pF CL = 50pF 2 3 3 6 7 12 ns RWPU Weak Pull-Up Resistor 80 120 200 kΩ RWPD Weak Pull-Down Resistor 80 120 200 kΩ STR73xF Electrical characteristics Table 9. DC electrical characteristics Value Symbol Ilkg 1. 3.6 Parameter Conditions Unit Min Typ Max Input Leakage Current Standard M0, M1, JTDI, JTCK, JTRST, JTMS, RSTIN 144-pin: P0(15:0), P1(15:0), P2(15:0), P4(15:0), P5(15:0), P6(15:0) 100-pin: P0(15:0), P1(15:0), P2(15:14), P2(1:0), P3(15:0), P4(7:0) - - 1 µA Input Leakage Current Analog Input - - 1 µA This specification is not valid for outputs which are switched to open drain mode. In this case, the respective output will float and the voltage is imposed by external circuitry. RSTIN input filter characteristics VDD = 5V ± 10%, TA = -40 / +105°C, unless otherwise specified. Table 10. RSTIN input filter characteristics Value Symbol Parameter Conditions Unit Min Typ Max - - 50 tFRST RSTIN Input Filtered Pulse ns tNFRST RSTIN Input Not Filtered Pulse 2000 - ns tSTART RSTIN removal after Power-up 100 - µs 27/40 Electrical characteristics 3.7 STR73xF Main oscillator electrical characteristics The STR73xF can operate with a crystal oscillator or resonator clock source. Figure 6 describes a simple model of the internal oscillator driver as well as example of connection for a crystal oscillator or a resonator. Figure 6. Crystal oscillator and resonator VDD DEVICE I XTAL2 XTAL1 R XTAL1 XTAL2 XTAL1 Crystal XTAL2 DEVICE DEVICE Resonator RS CL CL VDD = 5V ± 10%, TA = -40 / +105°C, unless otherwise specified. 28/40 STR73xF Electrical characteristics Table 11. Main oscillator electrical characteristics Value Symbol Parameter Conditions Unit Min fOSC gm VOSC VAV tSTUP Oscillator frequency 4 Oscillator Transconductance Oscillation amplitude Oscillator operating point Oscillator Start-up Time Typ fOSC = 4 MHz, TA= 25oC Max 8 MHz mA/V 1.5 2.3 4.2 - 2.3 V fOSC = 8 MHz, TA= 25oC 1.5 Sine wave middle, TA= 25oC - 0.85 - V External crystal, VDD = 5.5V, fOSC = 4 MHz, TA=-40oC - - 12 ms External crystal, VDD = 5.0V, fOSC = 4 MHz, TA=25oC - 5.5 - ms External crystal, VDD = 5.5V, fOSC = 6 MHz, TA=-40oC - - 8 ms External crystal, VDD = 5.0V, fOSC = 6 MHz, TA=25oC - 3.3 - ms External crystal, VDD = 5.5V, fOSC = 8 MHz, TA=-40oC - - 7 ms External crystal, VDD = 5.0V, fOSC = 8 MHz, TA= 25oC - 2.7 - ms 29/40 Electrical characteristics Table 11. STR73xF Main oscillator electrical characteristics Value Symbol Parameter Conditions fOSC = 4 MHz Cp(1) = 10pF fOSC = 5 MHz Cp = 10pF R-ESR Module of oscillator Negative Resistance fOSC = 6 MHz Cp = 10pF fOSC = 7 MHz Cp = 10pF fOSC = 8MHz Cp = 10pF Unit Min Typ Max C1(2) = C2 (3)= 10pF 150 555 - C1 = C2 = 20pF 490 1035 - C1 = C2 = 30pF 490 1030 - C1 = C2 = 40pF 380 850 - C1 = C2 = 10pF 160 470 - C1 = C2 = 20pF 415 800 - C1 = C2 = 30pF 340 735 - C1 = C2 = 40pF 260 580 - C1 = C2 = 10pF 160 415 - C1 = C2 = 20pF 325 640 - C1 = C2 = 30pF 250 550 - C1 = C2 = 40pF 180 420 - C1 = C2 = 10pF 160 375 - C1 = C2 = 20pF 260 525 - C1 = C2 = 30pF 185 420 - C1 = C2 = 40pF 135 315 - C1 = C2 = 10pF 155 340 - C1 = C2 = 20pF 210 435 - C1 = C2 = 30pF 145 335 - C1 = C2 = 40pF 100 245 - Ω 1. CP represents the total capacitance between XTAL1 and XTAL2, including the shunt capacitance of the external quartz crystal as well as the total board parasitic cross-capacitance between XTAL1 track and XTAL2 track. 2. C1 represents the total capacitance between XTAL1 and ground, including the external capacitance tied to XTAL1 pin (CL) as well as the total parasitic capacitance between XTAL1 track and ground (this includes application board track capacitance to ground and device pin capacitance). 3. C2 represents the total capacitance between XTAL2 and ground, including the external capacitance tied to XTAL1 pin (CL) as well as the total parasitic capacitance between XTAL2 track and ground (this includes application board track capacitance to ground and device pin capacitance): 30/40 STR73xF 3.8 Electrical characteristics PLL electrical characteristics VDD = 5V ± 10%, TA = -40 / +105°C, unless otherwise specified. Table 12. PLL Electrical Characteristics Value Symbol Parameter Conditions Unit Min fPLLIN(1) PLL reference clock FREF_RANGE = ‘0’ FREF_RANGE = ‘1’ fPLLOUT PLL output clock MX = ”00” MX = ”01” MX = ”10” MX = ”11” fMCLK System clock DX = 1..7 fFREE PLL free running frequency tLOCK PLL lock time ∆tPKJIT ∆tLTJIT Typ Max 1.5 3.0 3.0 5.0 20 x fPLLIN 12 x fPLLIN 28 x fPLLIN 16 x fPLLIN fPLLOUT/DX FREF_RANGE = ‘0’, MX0 = ’1’ FREF_RANGE = ‘0’, MX0 = ’0’ FREF_RANGE = ‘1’, MX0 = ’1’ FREF_RANGE = ‘1’, MX0 = ’0’ MHz MHz 36 120 240 240 480 MHz kHz stable oscillator (fPLLIN = 4 MHz), stable VDD 300 µs PLL jitter (pk to pk) fPLLIN = 4 MHz (pulse generator) fPLLIN = 4 MHz (resonator) 1000 500 ps PLL Long term jitter fPLLIN = 4 MHz (pulse generator) 10 ns 1. fPLLIN is obtained from fOSC directly or through an optional divider by 2. 3.9 RC oscillator electrical characteristics VDD = 5V ± 10%, TA = -40 / +105°C, unless otherwise specified. Table 13. RC oscillator electrical characteristics Value Symbol Parameter Conditions Unit Min RC High Frequency fRC RC Low Frequency RC High Frequency Current IDD(RC) RC Low Frequency Current Typ Max 2.34 MHz 29 kHz 90 µA 10 µA 25oC, TA = CMU_RCCTL=0x8 31/40 Electrical characteristics 3.10 STR73xF Flash electrical characteristics VDD = 5V ± 10%, TA = -40 / +105°C, unless otherwise specified. Table 14. Flash electrical characteristics Value Symbol Parameter Typ Max TA = 25 °C TA = 105 °C Conditions Unit 0k1 cycles 0k1 cycles 10k cycles tWP Word Program (32-bit) 35 80 120 µs tDWP Double Word Program (64bit) 60 150 190 µs tBP64 Bank 0 Program (64K) (Double Word Program) 0.5 1.25 1.5 s tBP128 Bank 0 Program (128K) (Double Word Program) 1 2.5 3.1 s tBP256 Bank 0 Program (256K) (Double Word Program) 2 4.9 6.2 s Not preprogrammed 0.6 0.9 1.3 Preprogrammed (all bits programmed to 0) 0.5 0.8 1.1 not preprogrammed 1.1 2.0 3.0 Preprogrammed (all bits programmed to 0) 0.8 1.8 2.3 Not preprogrammed 1.7 3.7 5.3 Preprogrammed (all bits programmed to 0) 1.3 3.3 3.8 tSE8 Sector Erase (8K) tSE32 Sector Erase (32K) s s tSE64 Sector Erase (64K) tRPD Recovery from PowerDown 20 20 µs tPSL Program Suspend Latency 10 10 µs tESL Erase Suspend Latency 30 30 µs tESRR Erase Suspend Request Rate 20 20 20 ms 40 170 170 µs tSP Set Protection Min delay between 2 requests s 1. 0k cycle data applies to new parts, not yet cycled by the customer but after approx. 100 test cycles during manufacture. 32/40 STR73xF 3.11 Electrical characteristics ADC electrical characteristics VDD = 5V ± 10%, TA = -40 / +105°C, unless otherwise specified. Table 15. ADC electrical characteristics Value Symbol Parameter Conditions Unit Min Typ Max VSSA Analog Reference Ground VSS VSS V VDDA Analog Reference Voltage 4.5(1) VDD+0.1 V Analog Input voltage VSSA VDDA V 10 MHz VAINX(2) fADC CAIN ADC Input Capacitance Not sampling Sampling tS(3) Sample time 10 MHz fADC 1 µs tC(4) Conversion time 10 MHz fADC 3 µs RASRC IINJ |ET| 3 6 Internal resistance of analog source Input current Injection Total Unadjusted Error pF 1 kΩ Current injection on one ADC input, different from the converted one -10 10 mA No current injection -2 +2 LSB Current injection on adjacent channel -7 +7 LSB 1. VDDA can be tied to ground when A/D converter is not in use: however extra consumption (around 200 uA) on main VDD will occur due to internal analog circuitry not being completely turned off: so, it is recommended to keep VDDA at VDD level even when not in use. 2. VAINx may exceed VSSA and VDDA limits, remaining within absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF. 3. During the sample time the input capacitance CAIN can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within tS. After the end of the sample time tS, changes to the analog input voltage have no effect on the conversion result. Values for the sample clock tS depend on programming. 4. This parameter includes the sample time tS, the time for determining the digital result and the time for loading the result register with the conversion result. 33/40 Package characteristics STR73xF 4 Package characteristics 4.1 Package mechanical data Figure 7. 100-pin thin quad flat package A D D1 Dim. A2 mm Min Typ A A1 inches Max Min Typ Max 1.60 0.063 0.15 0.002 0.006 A1 0.05 A2 1.35 1.40 1.45 0.053 0.055 0.057 b 0.17 0.22 0.27 0.007 0.009 0.011 C 0.09 b e E E1 c L1 0.20 0.004 16.00 0.630 D1 14.00 0.551 E 16.00 0.630 E1 14.00 0.551 e 0.50 0.020 θ 0° 3.5° L 0.45 0.60 L1 7° 0° 3.5° 0.039 Number of Pins h N 100 144-pin thin quad flat package Dim. D A A2 D3 A1 108 109 mm Min 73 72 0.10mm .004 in. b Seating Plane b E3 E1 E 37 36 c e L1 L h inches Max Min Typ Max 1.60 0.063 A1 0.05 0.15 0.002 0.006 A2 1.35 1.40 1.45 0.053 0.057 b 0.17 0.22 0.27 0.007 0.011 c 0.09 0.20 0.004 0.008 D 21.80 22.00 22.20 0.858 0.867 0.874 D1 19.80 20.00 20.20 0.780 0.787 0.795 D3 144 1 Typ A D1 17.50 0.699 E 21.80 22.00 22.20 0.858 0.867 0.874 E1 19.80 20.00 20.20 0.780 0.787 0.795 E3 17.50 0.699 e 0.50 0.020 K 0° 3.5° L 0.45 0.60 L1 7° 0° 3.5° N 7° 0.75 0.018 0.024 0.030 1.00 0.039 Number of Pins 34/40 7° 0.75 0.018 0.024 0.030 1.00 L Figure 8. 0.008 D 144 STR73xF Package characteristics Figure 9. 144-ball low profile fine pitch ball grid array package Dim. mm Min A 1.21 A1 0.21 A2 Typ inches Max Min Typ 1.70 0.048 Max 0.067 0.008 1.12 0.35 D 9.85 10.00 10.15 0.388 0.394 0.400 D1 E 0.40 0.044 b 0.45 0.014 0.016 0.018 8.80 0.346 9.85 10.00 10.15 0.388 0.394 0.400 E1 8.80 0.346 e 0.80 0.031 F 0.60 0.024 ddd 0.10 0.004 eee 0.15 0.006 fff 0.08 0.003 Number of Pins N 144 35/40 Package characteristics 4.1.1 STR73xF Power considerations The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using the following equation: TJ = TA + (PD x ΘJA) (1) Where: – TA is the Ambient Temperature in °C, – ΘJA is the Package Junction-to-Ambient Thermal Resistance, in °C/W, – PD is the sum of PINT and PI/O (PD = PINT + PI/O), – PINT is the product of IDD and VDD, expressed in Watt. This is the Chip Internal Power, – PI/O represents the Power Dissipation on Input and Output Pins; User Determined. Most of the time for the applications PI/O < PINT and may be neglected. On the other hand, PI/O may be significant if the device is configured to drive continuously external modules and/or memories. An approximate relationship between PD and TJ (if PI/O is neglected) is given by: PD = K / (TJ + 273°C) (2) Therefore (solving equations 1 and 2): K = PD x (TA + 273°C) + ΘJA x PD2 (3) Where: – K is a constant for the particular part, which may be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equations (1) and (2) iteratively for any value of TA Table 16. Symbol ΘJA 36/40 Thermal Characteristics Description Thermal Resistance Junction-Ambient Package Value (typical) LFBGA144 TBD TQFP144 40 TQFP100 55 Unit °C/W STR73xF Order codes 5 Order codes Table 17. Order Codes Partnumber FLASH Kbytes STR730FZ1T7 128 STR730FZ2T7 256 STR730FZ1H7 128 STR730FZ2H7 256 STR735FZ1T7 128 STR735FZ2T7 256 STR735FZ1H7 128 STR735FZ2H7 256 STR731FV0T7 64 STR731FV1T7 128 STR731FV2T7 256 STR736FV0T7 64 STR736FV1T7 128 STR736FV2T7 256 Package TIM 6x PWM CAN A/D Wake-up I/O RAM Lines Ports Kbytes Timers Module Periph Chan. Temp. Range TQFP144 20x20 3 LFBGA144 10x10 10 16 32 112 TQFP144 20x20 0 LFBGA144 10x10 16 -40 to +105°C 1 TQFP100 14x14 3 6 TQFP100 14x14 12 18 72 0 37/40 Known limitations 6 Known limitations 6.1 Low Power Wait For Interrupt mode STR73xF When the STR73x device is put in Low Power Wait For Interrupt mode (LPWFI), the Flash goes into Low Power mode or Power Down mode, depending on the setting of the PWD bit in the Flash Control Register 0 (default is ‘0’, Low Power mode). This default mode can create excessive voltage conditions on the transistor gates and may affect the long term behavior of the Low Power mode circuitry. Workaround There is no workaround. If Low Power Wait For Interrupt mode is used, it is strongly suggested to configure the Flash to enter Power Down mode (bit PWD = ‘1’). 38/40 STR73xF 7 Revision history Revision history Table 18. Revision history Date Revision Description of Changes 19-Sep-2005 1 First release 2-Nov-2005 2 Removed Table 8 power consumption in LP modes Updated PLL frequency in Section 1.1 and Table 12 8-Mar-2006 3 Section 3.4: Preliminary power consumption data updated Section 3.5: DC electrical characteristics updated Section 6: Known limitations added. 39/40 STR73xF Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 40/40