STMICROELECTRONICS STTH3L06S

STTH3L06
®
TURBO 2 ULTRAFAST HIGH VOLTAGE RECTIFIER
Table 1: Main Product Characteristics
IF(AV)
3A
VRRM
600 V
IR (max)
100 µA
Tj
175°C
VF (typ)
0.85 V
trr (typ)
60 ns
A
K
K
A
NC
FEATURES AND BENEFITS
■
■
■
■
DO-201AD
STTH3L06
Ultrafast switching
Low forward voltage drop
Low thermal resistance
Low leakage current (platinium doping)
DPAK
STTH3L06B
DESCRIPTION
The STTH3L06, which is using ST Turbo 2 600V
technology, is specially suited as boost diode in
discontinuous or critical mode power factor corrections.
This device is intended for use as a free wheeling
diode in power supplies and other power switching
applications.
SMB
STTH3L06U
SMC
STTH3L06S
Table 2: Order Codes
Part Number
STTH3L06
STTH3L06RL
STTH3L06B
STTH3L06B-TR
STTH3L06U
STTH3L06S
September 2005
Marking
STTH3L06
STTH3L06
STTH3L06B
STTH3L06B
3L6U
S06
REV. 3
1/10
STTH3L06
Table 3: Absolute Ratings (limiting values)
Symbol
VRRM
IF(RMS)
IF(AV)
IFSM
Parameter
Value
Unit
600
V
DO-201AD / SMB / SMC
10
A
DPAK
6
Repetitive peak reverse voltage
RMS forward current
Average forward current
δ = 0.5
Surge non repetitive forward current
DO-201AD
Tl = 100°C
DPAK
Tl = 155°C
SMB
Tl = 80°C
SMC
Tl = 100°C
DO-201AD
tp = 10ms
sinusoidal
SMB / SMC
Tj
A
70
A
60
DPAK
Tstg
3
40
Storage temperature range
-65 to + 175
°C
175
°C
Maximum
Unit
20
°C/W
Maximum operating junction temperature
Table 4: Thermal Parameters
Symbol
Rth(j-l)
Rth(j-a)
Parameter
Junction to lead
DO-201AD
Junction to ambient (see fig. 13)
L = 10 mm
DPAK
5.5
SMB
25
SMC
20
DO-201AD
L = 10 mm
75
°C/W
Table 5: Static Electrical Characteristics
Symbol
IR
Parameter
Reverse leakage current
Test conditions
Tj = 25°C
Min.
VR = VRRM
Tj = 150°C
VF
Forward voltage drop
Tj = 25°C
Typ
15
Max.
Unit
3
µA
100
IF = 3A
1.3
Tj = 150°C
0.85
V
1.05
2
To evaluate the conduction losses use the following equation: P = 0.89 x IF(AV) + 0.055 IF (RMS)
Table 6: Dynamic Characteristics
Symbol
Parameter
trr
Reverse recovery
time
Tj = 25°C
IF = 1A dIF/dt = -50 A/µs VR =30V
tfr
Forward recovery
time
Tj = 25°C
VFP
Forward recovery
voltage
2/10
Test conditions
Min. Typ Max. Unit
85
ns
IF = 3A
dIF/dt = 100 A/µs
VFR = 1.1 x VFmax
100
ns
IF = 3A
7.5
V
dIF/dt = 100 A/µs
60
STTH3L06
Figure 1: Conduction losses versus average
current
Figure 2: Forward voltage drop versus forward
current
IFM(A)
P(W)
100.0
4.5
δ = 0.05
4.0
δ = 0.2
δ = 0.1
δ = 0.5
Tj=150°C
(maximum values)
3.5
Tj=25°C
(maximum values)
δ=1
3.0
10.0
Tj=150°C
(typical values)
2.5
2.0
1.0
1.5
T
1.0
0.5
δ=tp/T
IF(AV)(A)
tp
VFM(V)
0.1
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
0.0
4.0
Figure 3: Relative variation of thermal impedance
junction ambient versus pulse duration (epoxy
printed circuit FR4, Lleads = 10mm, SCU=1cm2)
0.5
1.0
2.0
2.5
3.0
3.5
Figure 4: Peak reverse recovery current
versus dI F /dt (typical values)
IRM(A)
Zth(j-a)/Rth(j-a)
1.0
20
0.9
18
0.8
16
0.7
VR=400V
Tj=125°C
IF=2 x IF(AV)
14
DPAK
SCu = 1cm2
IF=IF(AV)
12
0.6
SMC
SCu = 1cm2
0.5
1.5
IF=0.5 x IF(AV)
10
IF=0.25 x IF(AV)
0.4
8
SMB
SCu = 1cm2
0.3
6
DO-201AD
Lleads = 10mm
Single pulse
0.2
4
0.1
2
tp(s)
0.0
dIF/dt(A/µs)
0
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
Figure 5: Reverse recovery time versus dIF/dt
(typical values)
0
50
100
150
200
250
300
350
400
450
500
Figure 6: Reverse recovery charges versus dIF/
dt (typical values)
Qrr(nC)
trr(ns)
500
700
VR=400V
Tj=125°C
VR=400V
Tj=125°C
450
600
IF=2 x IF(AV)
400
500
350
IF=IF(AV)
300
400
IF=2 x IF(AV)
250
IF=IF(AV)
300
IF=0.5 x IF(AV)
IF=0.5 x IF(AV)
200
150
200
100
100
50
dIF/dt(A/µs)
0
dIF/dt(A/µs)
0
0
20
40
60
80
100
120
140
160
180
200
0
20
40
60
80
100
120
140
160
180
200
3/10
STTH3L06
Figure 7: Softness factor versus dIF/dt (typical
values)
S factor
Figure 8: Relative variations of dynamic
parameters versus junction temperature
1.25
2.0
S factor
IF=IF(AV)
VR=400V
Tj=125°C
1.8
1.00
1.6
IRM
1.4
0.75
1.2
QRR
1.0
0.50
0.8
0.6
IF=IF(AV)
VR=400V
Reference: Tj=125°C
0.25
0.4
Tj(°C)
0.2
0.00
dIF/dt(A/µs)
25
0.0
0
20
40
60
80
100
120
140
160
180
50
75
100
125
200
Figure 9: Transient peak forward voltage
versus dIF/dt (typical values)
Figure 10: Forward recovery time versus dIF/dt
(typical values)
tfr(ns)
VFP(V)
200
10
IF=IF(AV)
Tj=125°C
9
IF=IF(AV)
VFR=1.1 x VF max.
Tj=125°C
180
8
160
7
140
6
120
5
100
4
80
3
60
2
40
1
20
dIF/dt(A/µs)
0
dIF/dt(A/µs)
0
0
20
40
60
80
100
120
140
160
180
200
Figure 11: Junction capacitance versus
reverse voltage applied (typical values)
0
20
40
60
80
100
120
140
160
180
200
Figure 12: Thermal resistance junction to
ambient versus copper surface under lead
(epoxy FR4, eCU=35µm) (DO-201AD)
Rth(j-a)(°C/W)
C(pF)
80
100
F=1MHz
VOSC=30mVRMS
Tj=25°C
70
60
DO-201AD
50
40
10
30
20
10
SCU(cm²)
VR(V)
1
0
1
4/10
10
100
1000
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
STTH3L06
Figure 13: Thermal resistance junction to
ambient versus copper surface under lead
(epoxy FR4, eCU=35µm) (SMB / SMC)
Figure 14: Thermal resistance junction to
ambient versus copper surface under tab
(epoxy FR4, eCU=35µm) (DPAK)
Rth(j-a)(°C/W)
Rth(j-a)(°C/W)
100
100
90
90
80
80
SMB
70
60
70
60
SMC
50
50
40
40
30
30
20
20
DPAK
10
10
SCU(cm²)
SCU(cm²)
0
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
0
5
10
15
20
25
30
35
40
Figure 15: Thermal resistance versus lead length
Rth(°C/W)
100
DO-201AD
90
80
Rth(j-a)
70
60
50
40
Rth(j-l)
30
20
10
Llead(mm)
0
5
10
15
20
25
5/10
STTH3L06
Figure 16: DPAK Package Mechanical Data
REF.
A
A1
A2
B
B2
C
C2
D
E
G
H
L2
L4
V2
Figure 17: DPAK Foot Print Dimensions
(in millimeters)
6.7
6.7
3
3
1.6
1.6
2.3
6/10
2.3
DIMENSIONS
Millimeters
Inches
Min.
Max
Min.
Max.
2.20
2.40
0.086
0.094
0.90
1.10
0.035
0.043
0.03
0.23
0.001
0.009
0.64
0.90
0.025
0.035
5.20
5.40
0.204
0.212
0.45
0.60
0.017
0.023
0.48
0.60
0.018
0.023
6.00
6.20
0.236
0.244
6.40
6.60
0.251
0.259
4.40
4.60
0.173
0.181
9.35
10.10
0.368
0.397
0.80 typ.
0.031 typ.
0.60
1.00
0.023
0.039
0°
8°
0°
8°
STTH3L06
Figure 18: SMB Package Mechanical Data
DIMENSIONS
REF.
E1
D
E
A1
A2
C
L
b
Millimeters
Inches
Min.
Max.
Min.
Max.
A1
1.90
2.45
0.075
0.096
A2
0.05
0.20
0.002
0.008
b
1.95
2.20
0.077
0.087
c
0.15
0.41
0.006
0.016
E
5.10
5.60
0.201
0.220
E1
4.05
4.60
0.159
0.181
D
3.30
3.95
0.130
0.156
L
0.75
1.60
0.030
0.063
Figure 19: SMB Foot Print Dimensions
(in millimeters)
2.3
1.52
2.75
1.52
7/10
STTH3L06
Figure 20: SMC Package Mechanical Data
DIMENSIONS
REF.
E
Inches
Min.
Max.
Min.
Max.
A1
1.90
2.45
0.075
0.096
A2
0.05
0.20
0.002
0.008
b
2.90
3.2
0.114
0.126
c
0.15
0.41
0.006
0.016
E
7.75
8.15
0.305
0.321
E1
6.60
7.15
0.260
0.281
E2
4.40
4.70
0.173
0.185
D
5.55
6.25
0.218
0.246
L
0.75
1.60
0.030
0.063
E1
D
Millimeters
A1
A2
C
L
b
Figure 21: SMC Foot Print Dimensions
(in millimeters)
3.3
2.0
8/10
4.2
2.0
STTH3L06
Figure 22: DO-201AD Package Mechanical Data
DIMENSIONS
B
note 1
A
E
B
E
ØD
ØC
REF.
Millimeters
Min.
note 1
A
B
C
D
E
ØD
Inches
Max.
Min.
9.50
Max.
0.374
25.40
1.000
5.30
1.30
1.25
0.209
0.051
0.049
1 - The lead diameter ø D is not controlled over zone E
note 2
- The minimum axial length within which the device
NOTES 2may
be placed with its leads bent at right angles is
0.59"(15 mm)
In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These
packages have a Lead-free second level interconnect . The category of second level interconnect is
marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The
maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an
ST trademark. ECOPACK specifications are available at: www.st.com.
Table 7: Ordering Information
■
■
■
Ordering type
Marking
Package
Weight
Base qty
STTH3L06
STTH3L06-RL
STTH3L06B
STTH3L06B-TR
STTH3L06U
STTH3L06S
STTH3L06
STTH3L06
STTH3L06B
STTH3L06B
3L6U
S06
DO-201AD
DO-201AD
DPAK
DPAK
SMB
SMC
1.12 g
1.12 g
0.3 g
0.3 g
0.11 g
0.243 g
600
1900
75
2500
2500
2500
Delivery
mode
Ammopack
Tape & reel
Tubel
Tape & reel
Tape & reel
Tape & reel
Epoxy meets UL94, V0
Band indicated cathode (DO-201AD)
Bending method: see application note AN1471 (DO-201AD)
Table 8: Revision History
Date
Revision
Description of Changes
October-2001
1
First issue
07-Sep-2004
2
SMB, SMC and DPAK packages added
14-Oct-2005
3
Changed marking of STTH3L06U from 3L06U to 3L6U.
Added ECOPACK statement
9/10
STTH3L06
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
10/10