STTH3L06 ® TURBO 2 ULTRAFAST HIGH VOLTAGE RECTIFIER Table 1: Main Product Characteristics IF(AV) 3A VRRM 600 V IR (max) 100 µA Tj 175°C VF (typ) 0.85 V trr (typ) 60 ns A K K A NC FEATURES AND BENEFITS ■ ■ ■ ■ DO-201AD STTH3L06 Ultrafast switching Low forward voltage drop Low thermal resistance Low leakage current (platinium doping) DPAK STTH3L06B DESCRIPTION The STTH3L06, which is using ST Turbo 2 600V technology, is specially suited as boost diode in discontinuous or critical mode power factor corrections. This device is intended for use as a free wheeling diode in power supplies and other power switching applications. SMB STTH3L06U SMC STTH3L06S Table 2: Order Codes Part Number STTH3L06 STTH3L06RL STTH3L06B STTH3L06B-TR STTH3L06U STTH3L06S September 2005 Marking STTH3L06 STTH3L06 STTH3L06B STTH3L06B 3L6U S06 REV. 3 1/10 STTH3L06 Table 3: Absolute Ratings (limiting values) Symbol VRRM IF(RMS) IF(AV) IFSM Parameter Value Unit 600 V DO-201AD / SMB / SMC 10 A DPAK 6 Repetitive peak reverse voltage RMS forward current Average forward current δ = 0.5 Surge non repetitive forward current DO-201AD Tl = 100°C DPAK Tl = 155°C SMB Tl = 80°C SMC Tl = 100°C DO-201AD tp = 10ms sinusoidal SMB / SMC Tj A 70 A 60 DPAK Tstg 3 40 Storage temperature range -65 to + 175 °C 175 °C Maximum Unit 20 °C/W Maximum operating junction temperature Table 4: Thermal Parameters Symbol Rth(j-l) Rth(j-a) Parameter Junction to lead DO-201AD Junction to ambient (see fig. 13) L = 10 mm DPAK 5.5 SMB 25 SMC 20 DO-201AD L = 10 mm 75 °C/W Table 5: Static Electrical Characteristics Symbol IR Parameter Reverse leakage current Test conditions Tj = 25°C Min. VR = VRRM Tj = 150°C VF Forward voltage drop Tj = 25°C Typ 15 Max. Unit 3 µA 100 IF = 3A 1.3 Tj = 150°C 0.85 V 1.05 2 To evaluate the conduction losses use the following equation: P = 0.89 x IF(AV) + 0.055 IF (RMS) Table 6: Dynamic Characteristics Symbol Parameter trr Reverse recovery time Tj = 25°C IF = 1A dIF/dt = -50 A/µs VR =30V tfr Forward recovery time Tj = 25°C VFP Forward recovery voltage 2/10 Test conditions Min. Typ Max. Unit 85 ns IF = 3A dIF/dt = 100 A/µs VFR = 1.1 x VFmax 100 ns IF = 3A 7.5 V dIF/dt = 100 A/µs 60 STTH3L06 Figure 1: Conduction losses versus average current Figure 2: Forward voltage drop versus forward current IFM(A) P(W) 100.0 4.5 δ = 0.05 4.0 δ = 0.2 δ = 0.1 δ = 0.5 Tj=150°C (maximum values) 3.5 Tj=25°C (maximum values) δ=1 3.0 10.0 Tj=150°C (typical values) 2.5 2.0 1.0 1.5 T 1.0 0.5 δ=tp/T IF(AV)(A) tp VFM(V) 0.1 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 4.0 Figure 3: Relative variation of thermal impedance junction ambient versus pulse duration (epoxy printed circuit FR4, Lleads = 10mm, SCU=1cm2) 0.5 1.0 2.0 2.5 3.0 3.5 Figure 4: Peak reverse recovery current versus dI F /dt (typical values) IRM(A) Zth(j-a)/Rth(j-a) 1.0 20 0.9 18 0.8 16 0.7 VR=400V Tj=125°C IF=2 x IF(AV) 14 DPAK SCu = 1cm2 IF=IF(AV) 12 0.6 SMC SCu = 1cm2 0.5 1.5 IF=0.5 x IF(AV) 10 IF=0.25 x IF(AV) 0.4 8 SMB SCu = 1cm2 0.3 6 DO-201AD Lleads = 10mm Single pulse 0.2 4 0.1 2 tp(s) 0.0 dIF/dt(A/µs) 0 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 Figure 5: Reverse recovery time versus dIF/dt (typical values) 0 50 100 150 200 250 300 350 400 450 500 Figure 6: Reverse recovery charges versus dIF/ dt (typical values) Qrr(nC) trr(ns) 500 700 VR=400V Tj=125°C VR=400V Tj=125°C 450 600 IF=2 x IF(AV) 400 500 350 IF=IF(AV) 300 400 IF=2 x IF(AV) 250 IF=IF(AV) 300 IF=0.5 x IF(AV) IF=0.5 x IF(AV) 200 150 200 100 100 50 dIF/dt(A/µs) 0 dIF/dt(A/µs) 0 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 3/10 STTH3L06 Figure 7: Softness factor versus dIF/dt (typical values) S factor Figure 8: Relative variations of dynamic parameters versus junction temperature 1.25 2.0 S factor IF=IF(AV) VR=400V Tj=125°C 1.8 1.00 1.6 IRM 1.4 0.75 1.2 QRR 1.0 0.50 0.8 0.6 IF=IF(AV) VR=400V Reference: Tj=125°C 0.25 0.4 Tj(°C) 0.2 0.00 dIF/dt(A/µs) 25 0.0 0 20 40 60 80 100 120 140 160 180 50 75 100 125 200 Figure 9: Transient peak forward voltage versus dIF/dt (typical values) Figure 10: Forward recovery time versus dIF/dt (typical values) tfr(ns) VFP(V) 200 10 IF=IF(AV) Tj=125°C 9 IF=IF(AV) VFR=1.1 x VF max. Tj=125°C 180 8 160 7 140 6 120 5 100 4 80 3 60 2 40 1 20 dIF/dt(A/µs) 0 dIF/dt(A/µs) 0 0 20 40 60 80 100 120 140 160 180 200 Figure 11: Junction capacitance versus reverse voltage applied (typical values) 0 20 40 60 80 100 120 140 160 180 200 Figure 12: Thermal resistance junction to ambient versus copper surface under lead (epoxy FR4, eCU=35µm) (DO-201AD) Rth(j-a)(°C/W) C(pF) 80 100 F=1MHz VOSC=30mVRMS Tj=25°C 70 60 DO-201AD 50 40 10 30 20 10 SCU(cm²) VR(V) 1 0 1 4/10 10 100 1000 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 STTH3L06 Figure 13: Thermal resistance junction to ambient versus copper surface under lead (epoxy FR4, eCU=35µm) (SMB / SMC) Figure 14: Thermal resistance junction to ambient versus copper surface under tab (epoxy FR4, eCU=35µm) (DPAK) Rth(j-a)(°C/W) Rth(j-a)(°C/W) 100 100 90 90 80 80 SMB 70 60 70 60 SMC 50 50 40 40 30 30 20 20 DPAK 10 10 SCU(cm²) SCU(cm²) 0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 5 10 15 20 25 30 35 40 Figure 15: Thermal resistance versus lead length Rth(°C/W) 100 DO-201AD 90 80 Rth(j-a) 70 60 50 40 Rth(j-l) 30 20 10 Llead(mm) 0 5 10 15 20 25 5/10 STTH3L06 Figure 16: DPAK Package Mechanical Data REF. A A1 A2 B B2 C C2 D E G H L2 L4 V2 Figure 17: DPAK Foot Print Dimensions (in millimeters) 6.7 6.7 3 3 1.6 1.6 2.3 6/10 2.3 DIMENSIONS Millimeters Inches Min. Max Min. Max. 2.20 2.40 0.086 0.094 0.90 1.10 0.035 0.043 0.03 0.23 0.001 0.009 0.64 0.90 0.025 0.035 5.20 5.40 0.204 0.212 0.45 0.60 0.017 0.023 0.48 0.60 0.018 0.023 6.00 6.20 0.236 0.244 6.40 6.60 0.251 0.259 4.40 4.60 0.173 0.181 9.35 10.10 0.368 0.397 0.80 typ. 0.031 typ. 0.60 1.00 0.023 0.039 0° 8° 0° 8° STTH3L06 Figure 18: SMB Package Mechanical Data DIMENSIONS REF. E1 D E A1 A2 C L b Millimeters Inches Min. Max. Min. Max. A1 1.90 2.45 0.075 0.096 A2 0.05 0.20 0.002 0.008 b 1.95 2.20 0.077 0.087 c 0.15 0.41 0.006 0.016 E 5.10 5.60 0.201 0.220 E1 4.05 4.60 0.159 0.181 D 3.30 3.95 0.130 0.156 L 0.75 1.60 0.030 0.063 Figure 19: SMB Foot Print Dimensions (in millimeters) 2.3 1.52 2.75 1.52 7/10 STTH3L06 Figure 20: SMC Package Mechanical Data DIMENSIONS REF. E Inches Min. Max. Min. Max. A1 1.90 2.45 0.075 0.096 A2 0.05 0.20 0.002 0.008 b 2.90 3.2 0.114 0.126 c 0.15 0.41 0.006 0.016 E 7.75 8.15 0.305 0.321 E1 6.60 7.15 0.260 0.281 E2 4.40 4.70 0.173 0.185 D 5.55 6.25 0.218 0.246 L 0.75 1.60 0.030 0.063 E1 D Millimeters A1 A2 C L b Figure 21: SMC Foot Print Dimensions (in millimeters) 3.3 2.0 8/10 4.2 2.0 STTH3L06 Figure 22: DO-201AD Package Mechanical Data DIMENSIONS B note 1 A E B E ØD ØC REF. Millimeters Min. note 1 A B C D E ØD Inches Max. Min. 9.50 Max. 0.374 25.40 1.000 5.30 1.30 1.25 0.209 0.051 0.049 1 - The lead diameter ø D is not controlled over zone E note 2 - The minimum axial length within which the device NOTES 2may be placed with its leads bent at right angles is 0.59"(15 mm) In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. Table 7: Ordering Information ■ ■ ■ Ordering type Marking Package Weight Base qty STTH3L06 STTH3L06-RL STTH3L06B STTH3L06B-TR STTH3L06U STTH3L06S STTH3L06 STTH3L06 STTH3L06B STTH3L06B 3L6U S06 DO-201AD DO-201AD DPAK DPAK SMB SMC 1.12 g 1.12 g 0.3 g 0.3 g 0.11 g 0.243 g 600 1900 75 2500 2500 2500 Delivery mode Ammopack Tape & reel Tubel Tape & reel Tape & reel Tape & reel Epoxy meets UL94, V0 Band indicated cathode (DO-201AD) Bending method: see application note AN1471 (DO-201AD) Table 8: Revision History Date Revision Description of Changes October-2001 1 First issue 07-Sep-2004 2 SMB, SMC and DPAK packages added 14-Oct-2005 3 Changed marking of STTH3L06U from 3L06U to 3L6U. Added ECOPACK statement 9/10 STTH3L06 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 10/10