INTEGRATED CIRCUITS DATA SHEET TEA1096; TEA1096A Speech and listening-in IC Product Specification File under Integrated Circuits, IC03 Philips Semiconductors November 1994 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A FEATURES APPLICATIONS • Line Interface with: • Line-powered telephone sets with listening-in/line monitoring function. – active set impedance (adjustable) – voltage regulator with adjustable DC voltage DIFFERENCES BETWEEN TEA1096 AND TEA1096A – low voltage circuit for parallel operation • Interface to peripheral circuits with: The TEA1096 offers via input VBA an adjustable stabilized supply voltage VBB, whereas the TEA1096A offers a fixed stabilized voltage VBB. – supply VDD for microcontroller – stabilized supply voltage (VBB) which is: The TEA1096A offers a DC gain control input VCI to set the loudspeaker volume, whereas the TEA1096 offers volume control via a potentiometer. available for peripheral circuits adjustable (TEA1096 only) – Dual-Tone MultiFrequency (DTMF) signal input – power-down function for pulse dialling/flash GENERAL DESCRIPTION – mute function to disable speech during dialling The TEA1096 and TEA1096A are bipolar ICs intended for use in line powered telephone sets. They offer a speech/transmission function, listening-in and line monitoring facilities of the received line signal via the loudspeaker. • Microphone amplifier with: – symmetrical high impedance inputs – externally adjustable gain – AGC; line-loss compensation The devices incorporate a line interface block, a microphone and DTMF amplifier, a receiving amplifier, a supply function, a loudspeaker amplifier, and a dynamic limiter in the transmission channel and the listening-in channel. – dynamic limiter – microphone mute function • Receiving amplifier with: – externally adjustable gain – confidence tone during dialling – double anti-sidetone circuit for long and short lines – AGC; line-loss compensation – earpiece protection by soft clipping. • Listening-in circuit with: – loudspeaker amplifier – dynamic limiter to prevent distortion at any supply condition – volume control via a potentiometer – fixed gain of 35.5 dB – disable function – gain control input (TEA1096A only). ORDERING INFORMATION PACKAGE TYPE NUMBER NAME DESCRIPTION VERSION TEA1096 DIP28 plastic dual in-line package; 28 leads (600 mil) SOT117-1 TEA1096A DIP28 plastic dual in-line package; 28 leads (600 mil) SOT117-1 TEA1096T SO28 plastic small outline package; 28 leads; body width 7.5 mm SOT136-1 TEA1096AT SO28 plastic small outline package; 28 leads; body width 7.5 mm SOT136-1 November 1994 2 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A QUICK REFERENCE DATA SYMBOL Iline PARAMETER line current CONDITIONS MIN. TYP. MAX. UNIT normal condition 15 − 140 mA with reduced performance − − 15 mA IDD current consumption from pin VDD PD = LOW during normal operation − 2.4 2.9 mA IDD(PD) current consumption from capacitor CVDD during power-down PD = HIGH − 100 150 µA IBB(PD) current consumption from capacitor CVBB during power-down PD = HIGH − 350 500 µA VSLPE stabilized voltage (line interface) 4.2 4.45 4.7 V VDD supply voltage for microcontroller RDD = 390 Ω; IP = 0 mA − 3.5 − V RDD = 390 Ω; IP = 1 mA − 3.1 − V 3.4 3.6 3.8 V 51 52 53 dB −19 − 0 dB −3.5 −2.5 −1.5 dB −12 − 8 dB 5 6 7 dB VBB stabilized supply voltage Gvtx voltage gain from pin MICP or MICM to LN ∆Gvtxr voltage gain adjustment with RGAS Gvrx voltage gain from pin LN to QRP or QRM ∆Gvrxr voltage gain adjustment with RGAR ∆Gtrx line-loss compensation RAGC = 100 kΩ Gvlx voltage gain from pin LSI to QLS VLSI = 10 mV (RMS) VLN(p-p) maximum output voltage swing on pin LN (peak-to-peak value) VQLS(p-p) output voltage between pins QLS and VEE (peak-to-peak value) Tamb operating ambient temperature November 1994 VMIC = 2 mV (RMS); RGAS = 90.9 kΩ; Iline = 20 mA Vline = 50 mV (RMS); RGAR = 90.9 kΩ; Iline = 20 mA 34 35.5 37 dB − 3.65 4.3 V 2.9 − mA − +75 °C VLSI = 18 mV; Iline = 20 mA 2.5 −25 3 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A BLOCK DIAGRAMS Fig.1 Block diagram (TEA1096). November 1994 4 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A Fig.2 Block diagram (TEA1096A). November 1994 5 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A PINNING PINS SYMBOL DESCRIPTION TEA1096 TEA1096A DLL/DIL 1 1 dynamic limiter and disable input for loudspeaker amplifier VBA 2 − VBB voltage adjustment VCI − 2 volume control input for loudspeaker amplifier QLS 3 3 loudspeaker amplifier output REG 4 4 decoupling line voltage stabilizer VEE 5 5 negative line terminal (ground reference) SLPE 6 6 stabilized voltage, connection for slope resistor VBB 7 7 stabilized supply voltage for listening-in circuitry AGC 8 8 automatic gain control ILS 9 9 input line signal LN 10 10 positive line terminal Vref 11 11 reference voltage output SIMP 12 12 set impedance input VDD 13 13 supply voltage for speech circuitry/peripherals DLS/MMUTE 14 14 dynamic limiter for sending and microphone mute STAB 15 15 reference current adjustment OSP 16 16 sending preamplifier output GAS 17 17 sending gain adjustment MUTE 18 18 mute input to select speech or DTMF dialling DTMF 19 19 dual-tone multi-frequency (DTMF) input PD 20 20 power-down input MICM 21 21 inverting microphone amplifier input MICP 22 22 non-inverting microphone amplifier input BAL1 23 23 connection for balance network 1 BAL2 24 24 connection for balance network 2 QRP 25 25 non-inverting receiving amplifier output GAR 26 26 receiving gain adjustment QRM 27 27 inverting receiving amplifier output LSI 28 28 loudspeaker amplifier input November 1994 6 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A Fig.4 Pin configuration (TEA1096A). Fig.3 Pin configuration (TEA1096). November 1994 7 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A The remaining current ISUP is available for the listening-in part. The current consumption IBB0 of the listening-in circuitry is 2.5 mA. To power the loudspeaker, the line current has to be more than 10 mA. FUNCTIONAL DESCRIPTION Remark: all data given in this chapter are typical values except when otherwise specified. The voltage at SLPE is stabilized at 4.45 V nominal. The DC line voltage is regulated at: VLN = VSLPE + RSLPE × (Iline − Iln). Supply pins SLPE, LN, VEE, VBB, VDD, REG and PD The supply for the TEA1096/TEA1096A and its peripherals is obtained from the telephone line. The circuits regulate the line voltage and generate their own supply voltages VDD and VBB to power the transmission part and the loudspeaker amplifier respectively. The supply voltage for the transmission part and peripheral circuits (VDD) is generated from VSLPE and is equal to VDD = VSLPE − RDD × (IDD + Ip). VBB supplies the listening-in circuitry and is stabilized at 3.6 V nominal. As can be seen from Fig.5, the line current (Iline) is split between the sending output stage (Iln), the circuitry connected to SLPE (Isl), the transmission circuit (IDD), the peripheral circuits (Ip) and the current switch (ISUP). It can be shown that: A resistor connected between pin REG and VEE can be used to decrease the SLPE voltage while maintaining VBB at its nominal value, whereas a resistor connected between pin REG and pin SLPE will increase the SLPE voltage while maintaining VBB at its nominal value. When adjusting the SLPE voltage to a lower value, care should be taken that the VSLPE is at least 0.4 V higher than VBB (VBB supply efficiency). ISUP = Iline − (Iln + Isl + IDD + IP) With nominal conditions where: Iln = 5 mA, Isl = 0.3 mA and IDD = 2.4 mA it therefore follows that ISUP ≈ Iline − 7.7 mA − IP. Fig.5 Supply arrangement. November 1994 8 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A The function of the current switch TR1-TR2 is to reduce distortion of large line signals. Current ISUP is supplied to VBB via TR1, when VSLPE is higher than VBB + 0.4 V. When VSLPE is lower, this current is shunted to VEE via TR2. All excess line current, not used for internal supply is consumed in the VBB stabilizer or directly shunted to VEE. Sending channel: pins MICP, MICM, DTMF, GAS, OSP, LN, MUTE, DLS and AGC The TEA1096/TEA1096A has symmetrical microphone inputs MICP, MICM with an input resistance of 64 kΩ between MICP and MICM (2 × 32 kΩ). In the speech mode (MUTE = LOW), the overall gain from MICP-MICM to LN can be adjusted from 33 dB to 52 dB to suit specific requirements. The gain is proportional to the value of RGAS and equals 52 dB with RGAS = 90.9 kΩ and Iline = 20 mA. A capacitor CGAS connected in parallel with RGAS can be used to provide a first-order low-pass filter. To reduce the current consumption during pulse dialling, the TEA1096/TEA1096A are provided with a power-down (PD) input. The PD input has a pull-down structure. When the voltage on PD is HIGH, the current consumption from VDD capacitor CVDD is 100 µA and from the VBB supply point 350 µA. The capacitors CVDD (100 µF) and CVBB (470 µF) are sufficient to power theTEA1096/TEA1096A during pulse dialling/flash. Automatic gain control (AGC) is provided for line-loss compensation as well as dynamic limitation for reduction of the distortion of the transmitted signal on the line. The microphone amplifier can be disabled by short-circuiting pin DLS to VEE (secret function) and can be muted into DTMF mode by applying a HIGH level on pin MUTE. VBB voltage adjustment: pin VBA (TEA1096 only) A resistor connected between pins VBA and VEE can be used to increase the VBB voltage, whereas a resistor connected between pins VBA and VBB will decrease the VBB voltage. When adjusting the VBB voltage to a higher value, care should be taken that VSLPE is at least 0.4 V higher than VBB (VBB supply efficiency). The TEA1096/TEA1096A has an asymmetrical DTMF input with an input resistance of 20 kΩ. In the DTMF mode, the overall gain from DTMF to LN is proportional to RGAS, and is 26.5 dB less than the microphone amplifier gain. Switch-over from one mode to the other is click-free. Fig.6 Sending channel. November 1994 9 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A It can be calculated from Fig.7 that the AC modulator gain can be written: Z line V LN • ------------- = ------------------------------------------------------ = 12 providing ( Z line + Z SET ) × 24 V OSP ZSET = Z line • Gv (LN to OSP) = 21.6 dB. The frequency response for audio frequencies of the sending channel is flat in this case for a complex line termination. Set impedance: pins ILS, SIMP and LN The TEA1096/TEA1096A provides an active set impedance in both the receiving and sending conditions, thus allowing a flat frequency response for a complex line impedance, without the need for any extra compensation network. As can be derived from Fig.8 the set impedance ZSET is 10 times lower than ZSIMP. Fig.7 AC modulator equivalent model. Fig.8 Set impedance. November 1994 10 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A Fig.9 Equivalent AC impedance between LN and VEE. The equivalent impedance connected between LN and VEE is illustrated in Fig.9. Clipping on the microphone channel is prevented by rapidly reducing the gain when the output stage starts to saturate. The time in which the gain reduction is effected (clipping attack time) is approximately a few milliseconds. The microphone channel stays in the reduced gain mode until the peaks of the signal no longer cause saturation. The gain of the microphone channel then returns to its normal value within the clipping release time. Where: • LEQ = REQ × CREG × RSLPE • REQ = 40 kΩ • ZSET = 1⁄10ZSIMP. Remark: a resistor R (REG-VEE) connected between REG and VEE (to lower the regulated voltage) changes REQ into REQ // R (REG-VEE), whereas a resistor RREG-SLPE connected between REG and SLPE (to increase the regulated voltage) has no effect on REQ. Both attack and release time are proportional to the value of the capacitor CDLS. The THD (Total Harmonic Distortion) of the microphone amplifier in the reduced gain mode stays below 2% up to 10 dB of input voltage overdrive [provided that VMICP, VMICM is below 10 mV (RMS)]. Dynamic limiter of the microphone channel: pin DLS The dynamic limiter of the TEA1096/TEA1096A also provides a microphone mute (secret function) when pin DLS is short-circuited to VEE. The microphone gain is then 80 dB lower. The release time after a microphone mute is approximately 10 ms. The dynamic limiter in the microphone channel of the TEA1096/TEA1096A prevents clipping of the microphone signal, and limits the transmitted signal on LN to a maximum value of typically 3.65 V (4.4 dBm). November 1994 11 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A Fig.10 Dynamic limiter of the microphone channel. Receiving amplifier: pins LN, GAR, QRP and QRM Automatic gain control: pin AGC The receiver gain is defined between the line connection LN and the earpiece complementary outputs QRP (non-inverting) and QRM (inverting). With RGAR equal to 90.9 kΩ the gain from LN to QRP is −2.5 dB. The outputs may be used to connect a dynamic, magnetic or piezoelectric earpiece. When the earpiece impedance exceeds 450 Ω, differential drive (BTL connection) can be used. As both outputs are in opposite phase, the gain from LN to QRP or QRM is 3.5 dB. Automatic compensation of line-loss is obtained by connecting a resistor RAGC between pin LN and pin AGC. This automatic gain control changes the gain of the microphone and receiving amplifiers in accordance with the DC line current. The control range is 6 dB; This corresponds to a 5 km line of 0.5 mm diameter copper twisted-pair cable: DC resistance = 176 Ω /km average attenuation = 1.2 dB/km. By means of the RGAR resistor, the gain of the receiving amplifier can be adjusted to suit the sensitivity of the transducer which is used. The permitted range is between −14 dB and +6 dB for single-ended drive (SE), and between −8 dB and +12 dB for bridge-tied load (BTL) drive. The value of RAGC must be chosen with reference to the exchange supply voltage and its feeding bridge resistance and has no influence on the ratio (Istart/Istop) which remains constant. Figure11 illustrates the gain attenuation when RAGC = 100 kΩ. If automatic line-loss compensation is not required, the AGC pin can be left open circuit, the amplifiers then give their maximum gain and the double sidetone principle is no longer active. Only one network is used. Pins BAL1 and BAL2 must then be short-circuited together. Two external capacitors, CGAR (100 pF) and CGARS (1 nF), ensure stability. The CGAR capacitor is also used to obtain a first-order low-pass filter. The cut-off frequency (corresponding to the time constant RGAR × CGAR) can be adjusted by the CGAR capacitor, but the relationship CGARS = CGAR × 10 must be maintained. During DTMF dialling, the dialling tones can be heard in the earpiece at a very low level. This is called confidence tone. November 1994 12 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB Fig.11 Variation of microphone and receiver gain as a function of the exchange BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB supply voltage with RAGC as a parameter. Where: RLI' = α × Rline and RBAL = α × RSET; Sidetone suppression: pins BAL1, BAL2, OSP and ILS where α is a scale factor allowing to have RLI' in the order of 10 kΩ (DC biasing to Vref has to be ensured on BAL1 and BAL2). Suppression of the microphone signal in the earpiece is obtained by subtracting a part of this signal to a fraction of the line signal (see Fig.12). For optimum suppression, the voltage at the BAL inputs (BAL1 and BAL2) should be equal to: Z line V BAL = 0.5 × ------------------------------- × V SOP Z SET × Z line In the event of complex impedances, the equivalent network Zs, representing Zline, has to be transformed into Zp in accordance with Fig.14. The components of Zp, scaled by a factor α, are applied in anti-sidetone network ZLI'. The complete anti-sidetone network is shown in Fig.15. To reach this requirement, an anti-sidetone network using two impedances ZBAL and ZLI' is needed. In the event of real impedances, the anti-sidetone network is composed of resistors connected as shown in Fig.13. November 1994 13 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A BBB BBB Fig.12 Balance networks connection. (a) Series impedance (Zs). (b) Parallel impedance (Zp). Fig.13 Anti-sidetone network. November 1994 Fig.14 Equivalent network. 14 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A Switching from one network to the other is carried out continuously with the line current, when the RAGC resistor is connected. When the RAGC resistor is not connected, switching from one network to the other is not possible (see automatic gain control). Only one network has then to be applied. It is also possible to use only one anti-sidetone network. In this event, both inputs BAL1 and BAL2 must be short-circuited. Loudspeaker amplifier: pins LSI and QLS The loudspeaker amplifier has an asymmetrical input LSI which is referenced to an internal voltage reference of 1.25 V via an internal resistance of 10 kΩ. The input signal can be taken from one of the earpiece outputs QRP or QRM via a potentiometer (RPOT). The attenuation has to be chosen in accordance with the gain Gvrx of the receiving amplifier. The input stage can handle up to 200 mV (RMS) at room temperature for 3% of THD. Fig.15 Complete anti-sidetone network. The gain of the loudspeaker amplifier is fixed at 35.5 dB. The output QLS is referenced to a DC level of 1⁄2VBB to offer rail-to-rail output swing. Again, it means that: ZLI' = α × Zline and ZBAL = α × ZSET Where α is a scale factor allowing ZLI' to be in the order of 10 kΩ (DC biasing to Vref has to be ensured on BAL1 and BAL2). The maximum voltage gain from line to loudspeaker has to be fixed in relation to the side-tone transfer of the telephone set. An enlarged listening-in gain improves the listening-in behaviour but can introduce audible instabilities in the form of howling during normal use of the set. The loudspeaker can be disabled by short-circuiting DLL/DIL input to VEE. As the line impedance Zline varies considerably with the line length, two anti-sidetone networks can be used. One of them ZLl', connected to BAL2 is optimized for long lines, the other one ZLs', connected to BAL1 is optimized for short lines: Where: ZLl' = α × Zline (long) ZLs' = α × Zline (short) ZBAL1 = α × ZSET ZBAL2 = α × ZSET. November 1994 15 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A Fig.16 Loudspeaker amplifier channel. When the supply conditions drop below the required level, the gain of the loudspeaker amplifier is reduced in order to prevent the device from malfunctioning. When the supply current drops below the required level, the supply voltage VBB decreases. In this condition, the gain of the loudspeaker amplifier is reduced slowly (approximately a few seconds). When the supply voltage continues to decrease and drops below an internal threshold of 2.8 V, the gain of the loudspeaker amplifier is rapidly reduced (approximately 1 ms). After returning to normal supply conditions, the gain of the loudspeaker amplifier is raised again. Dynamic limiter/loudspeaker amplifier disabling; pin DLL/DIL The dynamic limiter in the loudspeaker channel of the TEA1096/TEA1096A prevents clipping of the loudspeaker output stage and protects the functioning of the circuit when low supply conditions are detected. Hard clipping of the loudspeaker output stage is prevented by rapidly reducing the gain when the output stage starts to saturate. The time in which the gain reduction is effected (clipping attack time) is approximately a few milliseconds. The loudspeaker amplifier stays in the reduced gain mode until the peaks of the loudspeaker signals no longer start to cause saturation. The gain of the loudspeaker amplifier then returns to its normal value within the clipping release time. Both attack and release time are proportional to the value of the capacitor CDLL. The THD of the loudspeaker amplifier in the reduced gain mode stays below 5% up to 10 dB of input voltage overdrive. November 1994 The dynamic limiter also provides a loudspeaker disable when pin DLL/DIL is short-circuited to VEE. The loudspeaker gain is then typically 80 dB lower. The release time is approximately 10 ms. 16 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A Fig.17 Dynamic limiter of the listening-in part. δ × K × V BB Where V VCI = -------------------------------------1 – δ × ( 1 – K) Volume control: pin VCI (TEA1096A only) The TEA1096A is provided with a volume control input VCI, to adjust the gain of the loudspeaker channel by means of a controlled DC voltage. A typical application is illustrated in Fig.18. A pulse width modulation on a microcontroller open drain output imposes a DC voltage on the VCI capacitor: R1 with δ = duty cycle and K = ---------------------R1 + R2 A typical response is given in Fig.19. Fig.18 Digital volume control application. November 1994 17 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A Fig.19 Change of loudspeaker gain as a function of the voltage at VCI. November 1994 18 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134). SYMBOLS PARAMETER CONDITIONS MIN. MAX. UNIT VLN voltage on pin LN VEE − 0.4 12.0 V VDD voltage on pin VDD VEE − 0.4 12.0 V VBB voltage on pin VBB VEE − 0.4 12.0 V Vn1 voltage on pins: REG, SLPE, AGC and ILS VEE − 0.4 VLN + 0.4 V Vn2 voltage on pins: DLL, VBA or VCI, QLS, LSI VEE − 0.4 VBB + 0.4 V Vn3 voltage on pins: Vref, SIMP, STAB, DLS, OSP, GAS, MUTE, DTMF, PD, MICM, MICP, BAL1, BAL2, QRP, QRM, GAR VEE − 0.4 VDD + 0.4 V Iline line current see also Figs 20 and 21 − 140 mA Ptot total power dissipation: Tamb = +75 °C; see Figs 20 and 21 − 0.91 W TEA1096/TEA1096A − 0.66 W Tstg storage temperature −40 +125 °C Tamb operating ambient temperature −25 +75 °C TEA1096T/TEA1096AT THERMAL CHARACTERISTICS SYMBOLS Rth j-a PARAMETER VALUE UNIT TEA1096; TEA1096A 55 K/W TEA1096T; TEA1096AT (note 1) 75 K/W thermal resistance from junction to ambient in free air: Note 1. Mounted on epoxy board 40.1 × 19.1 × 1.5 mm. November 1994 19 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A (1) Tamb = 55 °C; Ptot = 1272 mW. (2) Tamb = 65 °C; Ptot = 1091 mW. (3) Tamb = 75 °C; Ptot = 910 mW. Fig.20 TEA1096; TEA1096A safe operating area. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB (1) Tamb = 35 °C; Ptot = 1199 mW. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB (2) Tamb = 45 °C; Ptot = 1066 mW. BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB (3) Tamb = 55 °C; Ptot = 933 mW. (4) Tamb = 65 °C; Ptot = 800 mW. (5) Tamb = 75 °C; Ptot = 667 mW. Fig.21 TEA1096T; TEA1096AT safe operating area. November 1994 20 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A CHARACTERISTICS Iline = 20 mA; IP = 0 mA; VEE = 0 V; PD = LOW; MUTE = LOW; Zline = 600 Ω; ZSIMP = 6 kΩ; ZBAL1 = 18 kΩ; ZLI' = 6 kΩ; RSLPE = 20 Ω; RDD = 390 Ω; RGAS = 90.9 kΩ; RGAR = 0.9 kΩ; RQLS = 50 Ω; f = 1 kHz; Tamb = 25 °C; measured in test circuit of Fig.22; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Line interface/supply (LN, SLPE, REG, VEE, VDD, VBB and Vref) VSLPE stabilized voltage (line interface) 4.2 4.45 4.7 V ∆VSLPE(Iline) VSLPE variation with Iline Iline = 20 to 140 mA − 30 − mV ∆VSLPE(T) VSLPE variation with temperature referenced to 25 °C Tamb = −25 to +75 °C −150 ±60 +150 mV VBB stabilized supply voltage 3.4 3.6 3.8 V ∆VBB(Iline) VBB variation with Iline Iline = 20 to 140 mA − 30 − mV ∆VBB(T) VBB variation with temperature referenced to 25 °C Tamb = −25 to +75 °C −150 ±50 +150 mV Isink current sunk by VBB shunt regulator when a line current equal to 20 mA is available IP = 0 mA; note 1 − 9.0 − mA IDD internal current consumption from pin VDD IP = 0 mA; RDD = 390 Ω − 2.4 2.9 mA VDD supply voltage for speech and microcontroller RDD = 390 Ω; IP = 0 mA − 3.5 − V RDD = 390 Ω; IP = 1 mA − 3.1 − V Vref reference output voltage − 0.5VDD − V IDD(PD) current consumption from CVDD during power-down condition PD = HIGH; VDD = 4.3 V − 100 150 µA IBB(PD) current consumption from CVBB during power-down condition PD = HIGH; VBB = 3.5 V − 350 500 µA VLN DC line voltage 4.4 4.7 5.0 V VLN DC line voltage in low current conditions RDD = 390 Ω; IP = 0 mA; Iline = 4 mA − 2.5 − V RDD = 390 Ω; IP = 0 mA; Iline = 6 mA − 3.3 − V Microphone amplifier (MICP, MICM, GAS, LN, and MUTE) |Zi1| input impedance between pins MICP or MICM and VEE 25.5 32 38.5 kΩ |Zi2| input impedance between pins MICP and MICM 51 64 77 kΩ Gvtx voltage gain from pin MICP or MICM to LN VMIC = 2 mV (RMS); RGAS = 90.9 kΩ 51 52 53 dB ∆GvtxT voltage gain variation with temperature referenced to 25 °C. VMIC = 2 mV (RMS); Tamb = −25 to +75 °C − ±0.5 − dB November 1994 21 Philips Semiconductors Product Specification Speech and listening-in IC SYMBOL PARAMETER TEA1096; TEA1096A CONDITIONS MIN. TYP. MAX. UNIT ∆Gvtxf voltage gain variation with frequency referenced to 1 kHz VMIC = 2 mV (RMS); f = 300 to 3400 Hz − ±0.5 − dB ∆Gvtxr voltage gain adjustment with RGAS note 2 −19 − 0 dB ∆Gtxm gain reduction with MUTE = HIGH 60 80 − dB ∆Gtxd gain reduction when DLS/MMUTE is short-circuited to VEE 60 80 − dB VLN(p-p) maximum output voltage swing at pin LN (peak-to-peak value) RGAS = 90.9 kΩ − 3.65 4.3 V Vnotx noise output voltage at pin LN pins MICP and MICM − short-circuited through 200 Ω; Psophometrically weighted (P53 curve) −72 − dBmp CMRR common mode rejection ratio 80 − dB − Dynamic limiter for sending (DLS/MMUTE); related to the microphone amplifier clipping detector tatt attack time when VMIC jumps from 3.2 mV to 3.2 mV + 10 dB RGAS = 90.9 kΩ; CDLS = 470 nF − 1.5 5 ms trel release time when VMIC drops from 3.2 mV + 10 dB to 3.2 mV RGAS = 90.9 kΩ; CDLS = 470 nF 40 120 − ms THD total harmonic distortion VMIC = 3.2 mV + 10 dB; RGAS = 90.9 kΩ; CDLS = 470 nF − 2 3 % VMIC = 3.2 mV + 15 dB; RGAS = 90.9 kΩ; CDLS = 470 nF − 3 10 % −3.5 −2.5 −1.5 dB RGAR = 90.9 kΩ; Vline = 50 mV (RMS); bridge tied load; RQRM = 450 Ω 2.5 3.5 4.5 dB Receiving amplifier (ILS, BAL1, BAL2, OSP, GAR, QRP, QRM and MUTE) Gvrx voltage gain from pin LN to QRP RGAR = 90.9 kΩ; or QRM Vline = 50 mV (RMS); single-ended load; RQRP = 150 Ω ∆GvrxT voltage gain variation with temperature referenced to 25 °C. Tamb = −25 to +75 °C − ±0.5 − dB ∆Gvrxf voltage gain variation with frequency referenced to 1 kHz f = 300 to 3400 Hz − ±0.5 − dB ∆Gvrxr voltage gain adjustment with RGAR −12 − 8 dB November 1994 22 Philips Semiconductors Product Specification Speech and listening-in IC SYMBOL VQR(rms) Vnorx(rms) PARAMETER maximum output voltage for THD = 2% (RMS value) noise output voltage (RMS value) TEA1096; TEA1096A CONDITIONS MIN. TYP. MAX. UNIT RGAR = 90.9 kΩ; single-ended load; RQRP = 150 Ω 0.3 0.375 − V RGAR = 90.9 kΩ; bridge-tied load; RQRM = 450 Ω 0.6 0.72 − V RGAR = 90.9 kΩ; bridge-tied load with 300 Ω series resistor; CQRM = 60 nF; f = 3400 Hz 0.75 0.95 − V Psophometrically weighted (P53 curve); single-ended load; RQRP = 150 Ω − 90 − µV Psophometrically weighted (P53 curve); bridge-tied load; RQRM = 450 Ω − 180 − µV 16 20 24 kΩ DTMF amplifier (DTMF, LN, MUTE) |Zi| input impedance between pins DTMF and VEE Gvtx voltage gain from pin DTMF to LN VDTMF = 4 mV (RMS); RGAS = 90.9 kΩ 24.5 25.5 26.5 dB ∆GvtxT voltage gain variation with temperature referenced to 25 °C VDTMF = 4 mV (RMS); Tamb = −25 to +75 °C − ±0.5 − dB ∆Gvtxf voltage gain variation with frequency referenced to 1 kHz VDTMF = 4 mV (RMS); f = 300 to 3400 Hz − ±0.5 − dB Gvtx voltage gain from pin DTMF to QRP MUTE = HIGH; Vline = 80 mV (RMS); RGAR = 90.9 kΩ; RQRP = 150 Ω − −19 − dB Automatic gain control (AGC); controlling the gain from LN to QRP, QRM and the gain from MICP, MICM to LN ∆Gtrx gain control range for microphone and receiving amplifiers with respect to Iline = 20 mA Iline = 85 mA; RAGC = 100 kΩ 5 6 7 dB Iline(h) highest line current for maximum gain RAGC = 100 kΩ − 28 − mA Iline(l) lowest line current for minimum gain RAGC = 100 kΩ − 66 − mA ∆Gtrx change of gain when varying Iline from 20 mA to 40 mA RAGC = 100 kΩ 1 1.5 2 dB November 1994 23 Philips Semiconductors Product Specification Speech and listening-in IC SYMBOL PARAMETER TEA1096; TEA1096A CONDITIONS MIN. TYP. MAX. UNIT Loudspeaker amplifier (LSI and QLS) |Zi| input impedance between pins LSI and VEE 8 10 12 kΩ Gvlx voltage gain from pin LSI to QLS VLSI = 10 mV (RMS) 34 35.5 37 dB ∆GvlxT voltage gain variation with temperature referenced to 25 °C Tamb = −25 to +75 °C − ±0.5 − dB ∆Gvlxf voltage gain variation with frequency referenced to 1 kHz f = 300 to 3400 Hz − ±0.5 − dB VQLS(p-p) output voltage between pins QLS and VEE (peak-to-peak value) VLSI = 18 mV; Iline = 16 mA 1.2 1.45 − V VLSI = 18 mV; Iline = 20 mA 2.5 2.9 − V pin LSI open-circuit; Psophometrically weighted (P53 curve) − 200 − µV Vnolx(rms) noise output voltage at pin LN (RMS value) Dynamic limiter for the loudspeaker amplifier (DLL/DIL); related to the loudspeaker amplifier clipping detector THD total harmonic distortion VLSI = 18 mV + 0 dB; Iline = 30 mA − 2 5 % tatt attack time when VLSI jumps from 18 mV to 18 mV + 0 dB Iline = 30 mA; CDLL = 470 nF − 1.5 5 ms trel release time when VLSI drops from 18 mV + 0 dB to 18 mV Iline = 30 mA; CDLL = 470 nF 30 60 − ms Dynamic limiter for the loudspeaker amplifier (DLL/DIL); related to the VBB threshold detector VBB(th) VBB limiter threshold detector level tatt attack time when VBB jumps below VBB(th) CDLL = 470 nF − 2.8 − V − 1 − ms Volume control for the loudspeaker amplifier (VCI) (TEA1096A only); related to the loudspeaker amplifier volume control − 1 − MΩ Iline = 30 mA; VLSI = 10 mV (RMS) − 2.8 − V DC level on pin VCI for −6 dB Iline = 30 mA; control on loudspeaker amplifier vLSI = 10 mV (RMS) − 1.63 − V |Zi| input impedance VVCImin minimum DC level on pin VCI for 0 dB control on loudspeaker amplifier VVCI November 1994 24 Philips Semiconductors Product Specification Speech and listening-in IC SYMBOL TEA1096; TEA1096A PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Power-down input (PD) VIL LOW level input voltage − − 0.5 VIH HIGH level input voltage 1.5 − VDD +0.4 V IPD input current in power-down condition − 6 10 µA V PD = HIGH V Mute input (MUTE) VIL LOW level input voltage − − 0.3 VIH HIGH level input voltage 1.5 − VDD +0.4 V IMUTE input current − 15 20 µA − − 0.3 V MUTE = HIGH Microphone mute input (DLS/MMUTE) VIL LOW level input voltage Isink(DLS) sink current DLS/MMUTE = LOW − 60 100 µA trel release time after a LOW level on pin DLS/MMUTE CDLS = 470 nF − 15 − ms ∆Gtxm gain reduction when DLS/MMUTE is short-circuited to VEE DLS/MMUTE = LOW 60 80 − dB − − 0.25 V Disable input for loudspeaker amplifier (DLL/DIL) VIL LOW level input voltage Isink(DLL/DIL) sink current DLL/DIL = LOW − 75 120 µA trel release time after a LOW level on pin DLL/DIL Iline = 30 mA; CDDL = 470 nF − 10 − ms ∆Glm gain reduction when DLL is short-circuited to VEE DLL/DIL = LOW 60 80 − dB Notes 1. This gives the current available for receiving, listening-in and peripherals at this line current. 2. Both gains, microphone and sending DTMF, are determined in the same way by the resistor RGAS. HANDLING Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices. November 1994 25 Philips Semiconductors Speech and listening-in IC November 1994 26 Product Specification TEA1096; TEA1096A Fig.22 Test diagram. 27 BBBBBBBB BBBB Philips Semiconductors Speech and listening-in IC APPLICATION INFORMATION November 1994 Product Specification TEA1096; TEA1096A Fig.23 Basic application with a complex line impedance. Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A PACKAGE OUTLINES 15.80 15.24 seating plane 36.0 35.0 handbook, full pagewidth 4.0 5.1 max max 3.9 3.4 0.51 min 1.7 max 0.53 max 2.54 (13x) 0.254 M 0.32 max 15.24 1.7 max 17.15 15.90 28 15 14.1 13.7 1 14 Dimensions in mm. Fig.24 Plastic dual in-line package; 28 leads (600 mil); DIP28; SOT117-1. November 1994 28 MSA264 Philips Semiconductors Product Specification Speech and listening-in IC handbook, full pagewidth TEA1096; TEA1096A 18.1 17.7 7.6 7.4 A 10.65 10.00 0.1 S S 0.9 (4x) 0.4 28 15 2.45 2.25 1.1 1.0 0.3 0.1 2.65 2.35 0.32 0.23 pin 1 index 1 1.1 0.5 14 detail A 1.27 0.49 0.36 0.25 M (28x) Dimensions in mm. Fig.25 Plastic small outline package; 28 leads; body width 7.5 mm (SO28; SOT136-1). November 1994 29 0 to 8o MBC236 - 1 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications. SOLDERING Plastic dual in-line packages BY DIP OR WAVE The maximum permissible temperature of the solder is 260 °C; this temperature must not be in contact with the joint for more than 5 s. The total contact time of successive solder waves must not exceed 5 s. BY SOLDER PASTE REFLOW Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement. The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit. Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 °C. REPAIRING SOLDERED JOINTS Apply a low voltage soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below 300 °C, it must not be in contact for more than 10 s; if between 300 and 400 °C, for not more than 5 s. Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 °C. REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING IRON OR PULSE-HEATED SOLDER TOOL) Plastic small outline packages During placement and before soldering, the component must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to 300 °C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 °C. (Pulse-heated soldering is not recommended for SO packages.) Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 °C within 6 s. Typical dwell time is 4 s at 250 °C. For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement. BY WAVE November 1994 30 Philips Semiconductors Product Specification Speech and listening-in IC TEA1096; TEA1096A DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. November 1994 31 Philips Semiconductors – a worldwide company Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428) BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367 Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. (02)805 4455, Fax. (02)805 4466 Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213, Tel. (01)60 101-1236, Fax. (01)60 101-1211 Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands, Tel. (31)40 783 749, Fax. (31)40 788 399 Brazil: Rua do Rocio 220 - 5th floor, Suite 51, CEP: 04552-903-SÃO PAULO-SP, Brazil. P.O. Box 7383 (01064-970). Tel. (011)821-2333, Fax. (011)829-1849 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS: Tel. (800) 234-7381, Fax. (708) 296-8556 Chile: Av. Santa Maria 0760, SANTIAGO, Tel. (02)773 816, Fax. (02)777 6730 Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17, 77621 BOGOTA, Tel. (571)249 7624/(571)217 4609, Fax. (571)217 4549 Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. (032)88 2636, Fax. (031)57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. (9)0-50261, Fax. (9)0-520971 France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427 Germany: P.O. Box 10 63 23, 20043 HAMBURG, Tel. (040)3296-0, Fax. (040)3296 213. Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. (01)4894 339/4894 911, Fax. (01)4814 240 Hong Kong: PHILIPS HONG KONG Ltd., 6/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, N.T., Tel. (852)424 5121, Fax. (852)428 6729 India: Philips INDIA Ltd, Shivsagar Estate, A Block , Dr. Annie Besant Rd. Worli, Bombay 400 018 Tel. (022)4938 541, Fax. (022)4938 722 Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4, P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. (01)640 000, Fax. (01)640 200 Italy: PHILIPS SEMICONDUCTORS S.r.l., Piazza IV Novembre 3, 20124 MILANO, Tel. (0039)2 6752 2531, Fax. (0039)2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2 -chome, Minato-ku, TOKYO 108, Tel. (03)3740 5028, Fax. (03)3740 0580 Korea: (Republic of) Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556 Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB Tel. (040)783749, Fax. (040)788399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. (09)849-4160, Fax. (09)849-7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. (022)74 8000, Fax. (022)74 8341 Philips Semiconductors Pakistan: Philips Electrical Industries of Pakistan Ltd., Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton, KARACHI 75600, Tel. (021)587 4641-49, Fax. (021)577035/5874546. Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc, 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474 Portugal: PHILIPS PORTUGUESA, S.A., Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores, Apartado 300, 2795 LINDA-A-VELHA, Tel. (01)4163160/4163333, Fax. (01)4163174/4163366. Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. (65)350 2000, Fax. (65)251 6500 South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. (011)470-5911, Fax. (011)470-5494. Spain: Balmes 22, 08007 BARCELONA, Tel. (03)301 6312, Fax. (03)301 42 43 Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM, Tel. (0)8-632 2000, Fax. (0)8-632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. (01)488 2211, Fax. (01)481 77 30 Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978, TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382. Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, Bangkok 10260, THAILAND, Tel. (662)398-0141, Fax. (662)398-3319. Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. (0 212)279 2770, Fax. (0212)269 3094 United Kingdom: Philips Semiconductors LTD., 276 Bath road, Hayes, MIDDLESEX UB3 5BX, Tel. (081)73050000, Fax. (081)7548421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556 Uruguay: Coronel Mora 433, MONTEVIDEO, Tel. (02)70-4044, Fax. (02)92 0601 For all other countries apply to: Philips Semiconductors, International Marketing and Sales, Building BE-p, P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-724825 SCD35 © Philips Electronics N.V. 1994 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 413061/1500/01/pp32 Document order number: Date of release: November 1994 9397 743 10011