PHILIPS TEA1096

INTEGRATED CIRCUITS
DATA SHEET
TEA1096; TEA1096A
Speech and listening-in IC
Product Specification
File under Integrated Circuits, IC03
Philips Semiconductors
November 1994
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
FEATURES
APPLICATIONS
• Line Interface with:
• Line-powered telephone sets with listening-in/line
monitoring function.
– active set impedance (adjustable)
– voltage regulator with adjustable DC voltage
DIFFERENCES BETWEEN TEA1096 AND TEA1096A
– low voltage circuit for parallel operation
• Interface to peripheral circuits with:
The TEA1096 offers via input VBA an adjustable stabilized
supply voltage VBB, whereas the TEA1096A offers a fixed
stabilized voltage VBB.
– supply VDD for microcontroller
– stabilized supply voltage (VBB) which is:
The TEA1096A offers a DC gain control input VCI to set
the loudspeaker volume, whereas the TEA1096 offers
volume control via a potentiometer.
available for peripheral circuits
adjustable (TEA1096 only)
– Dual-Tone MultiFrequency (DTMF) signal input
– power-down function for pulse dialling/flash
GENERAL DESCRIPTION
– mute function to disable speech during dialling
The TEA1096 and TEA1096A are bipolar ICs intended for
use in line powered telephone sets. They offer a
speech/transmission function, listening-in and line
monitoring facilities of the received line signal via the
loudspeaker.
• Microphone amplifier with:
– symmetrical high impedance inputs
– externally adjustable gain
– AGC; line-loss compensation
The devices incorporate a line interface block, a
microphone and DTMF amplifier, a receiving amplifier, a
supply function, a loudspeaker amplifier, and a dynamic
limiter in the transmission channel and the listening-in
channel.
– dynamic limiter
– microphone mute function
• Receiving amplifier with:
– externally adjustable gain
– confidence tone during dialling
– double anti-sidetone circuit for long and short lines
– AGC; line-loss compensation
– earpiece protection by soft clipping.
• Listening-in circuit with:
– loudspeaker amplifier
– dynamic limiter to prevent distortion at any supply
condition
– volume control via a potentiometer
– fixed gain of 35.5 dB
– disable function
– gain control input (TEA1096A only).
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
NAME
DESCRIPTION
VERSION
TEA1096
DIP28
plastic dual in-line package; 28 leads (600 mil)
SOT117-1
TEA1096A
DIP28
plastic dual in-line package; 28 leads (600 mil)
SOT117-1
TEA1096T
SO28
plastic small outline package; 28 leads; body width 7.5 mm
SOT136-1
TEA1096AT
SO28
plastic small outline package; 28 leads; body width 7.5 mm
SOT136-1
November 1994
2
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
QUICK REFERENCE DATA
SYMBOL
Iline
PARAMETER
line current
CONDITIONS
MIN.
TYP.
MAX.
UNIT
normal condition
15
−
140
mA
with reduced performance
−
−
15
mA
IDD
current consumption from pin VDD PD = LOW
during normal operation
−
2.4
2.9
mA
IDD(PD)
current consumption from
capacitor CVDD during
power-down
PD = HIGH
−
100
150
µA
IBB(PD)
current consumption from
capacitor CVBB during
power-down
PD = HIGH
−
350
500
µA
VSLPE
stabilized voltage (line interface)
4.2
4.45
4.7
V
VDD
supply voltage for microcontroller RDD = 390 Ω;
IP = 0 mA
−
3.5
−
V
RDD = 390 Ω;
IP = 1 mA
−
3.1
−
V
3.4
3.6
3.8
V
51
52
53
dB
−19
−
0
dB
−3.5
−2.5
−1.5
dB
−12
−
8
dB
5
6
7
dB
VBB
stabilized supply voltage
Gvtx
voltage gain from pin MICP or
MICM to LN
∆Gvtxr
voltage gain adjustment with
RGAS
Gvrx
voltage gain from pin LN to QRP
or QRM
∆Gvrxr
voltage gain adjustment with
RGAR
∆Gtrx
line-loss compensation
RAGC = 100 kΩ
Gvlx
voltage gain from pin LSI to QLS
VLSI = 10 mV (RMS)
VLN(p-p)
maximum output voltage swing
on pin LN (peak-to-peak value)
VQLS(p-p)
output voltage between pins QLS
and VEE (peak-to-peak value)
Tamb
operating ambient temperature
November 1994
VMIC = 2 mV (RMS);
RGAS = 90.9 kΩ;
Iline = 20 mA
Vline = 50 mV (RMS);
RGAR = 90.9 kΩ;
Iline = 20 mA
34
35.5
37
dB
−
3.65
4.3
V
2.9
−
mA
−
+75
°C
VLSI = 18 mV; Iline = 20 mA 2.5
−25
3
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
BLOCK DIAGRAMS
Fig.1 Block diagram (TEA1096).
November 1994
4
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
Fig.2 Block diagram (TEA1096A).
November 1994
5
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
PINNING
PINS
SYMBOL
DESCRIPTION
TEA1096
TEA1096A
DLL/DIL
1
1
dynamic limiter and disable input for loudspeaker amplifier
VBA
2
−
VBB voltage adjustment
VCI
−
2
volume control input for loudspeaker amplifier
QLS
3
3
loudspeaker amplifier output
REG
4
4
decoupling line voltage stabilizer
VEE
5
5
negative line terminal (ground reference)
SLPE
6
6
stabilized voltage, connection for slope resistor
VBB
7
7
stabilized supply voltage for listening-in circuitry
AGC
8
8
automatic gain control
ILS
9
9
input line signal
LN
10
10
positive line terminal
Vref
11
11
reference voltage output
SIMP
12
12
set impedance input
VDD
13
13
supply voltage for speech circuitry/peripherals
DLS/MMUTE
14
14
dynamic limiter for sending and microphone mute
STAB
15
15
reference current adjustment
OSP
16
16
sending preamplifier output
GAS
17
17
sending gain adjustment
MUTE
18
18
mute input to select speech or DTMF dialling
DTMF
19
19
dual-tone multi-frequency (DTMF) input
PD
20
20
power-down input
MICM
21
21
inverting microphone amplifier input
MICP
22
22
non-inverting microphone amplifier input
BAL1
23
23
connection for balance network 1
BAL2
24
24
connection for balance network 2
QRP
25
25
non-inverting receiving amplifier output
GAR
26
26
receiving gain adjustment
QRM
27
27
inverting receiving amplifier output
LSI
28
28
loudspeaker amplifier input
November 1994
6
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
Fig.4 Pin configuration (TEA1096A).
Fig.3 Pin configuration (TEA1096).
November 1994
7
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
The remaining current ISUP is available for the listening-in
part. The current consumption IBB0 of the listening-in
circuitry is 2.5 mA. To power the loudspeaker, the line
current has to be more than 10 mA.
FUNCTIONAL DESCRIPTION
Remark: all data given in this chapter are typical values
except when otherwise specified.
The voltage at SLPE is stabilized at 4.45 V nominal. The
DC line voltage is regulated at:
VLN = VSLPE + RSLPE × (Iline − Iln).
Supply pins SLPE, LN, VEE, VBB, VDD, REG and PD
The supply for the TEA1096/TEA1096A and its
peripherals is obtained from the telephone line. The
circuits regulate the line voltage and generate their own
supply voltages VDD and VBB to power the transmission
part and the loudspeaker amplifier respectively.
The supply voltage for the transmission part and
peripheral circuits (VDD) is generated from VSLPE and is
equal to VDD = VSLPE − RDD × (IDD + Ip).
VBB supplies the listening-in circuitry and is stabilized at
3.6 V nominal.
As can be seen from Fig.5, the line current (Iline) is split
between the sending output stage (Iln), the circuitry
connected to SLPE (Isl), the transmission circuit (IDD), the
peripheral circuits (Ip) and the current switch (ISUP). It can
be shown that:
A resistor connected between pin REG and VEE can be
used to decrease the SLPE voltage while maintaining VBB
at its nominal value, whereas a resistor connected
between pin REG and pin SLPE will increase the SLPE
voltage while maintaining VBB at its nominal value. When
adjusting the SLPE voltage to a lower value, care should
be taken that the VSLPE is at least 0.4 V higher than VBB
(VBB supply efficiency).
ISUP = Iline − (Iln + Isl + IDD + IP)
With nominal conditions where:
Iln = 5 mA, Isl = 0.3 mA and IDD = 2.4 mA
it therefore follows that ISUP ≈ Iline − 7.7 mA − IP.
Fig.5 Supply arrangement.
November 1994
8
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
The function of the current switch TR1-TR2 is to reduce
distortion of large line signals. Current ISUP is supplied to
VBB via TR1, when VSLPE is higher than VBB + 0.4 V. When
VSLPE is lower, this current is shunted to VEE via TR2. All
excess line current, not used for internal supply is
consumed in the VBB stabilizer or directly shunted to VEE.
Sending channel: pins MICP, MICM, DTMF, GAS, OSP,
LN, MUTE, DLS and AGC
The TEA1096/TEA1096A has symmetrical microphone
inputs MICP, MICM with an input resistance of 64 kΩ
between MICP and MICM (2 × 32 kΩ). In the speech mode
(MUTE = LOW), the overall gain from MICP-MICM to LN
can be adjusted from 33 dB to 52 dB to suit specific
requirements. The gain is proportional to the value of RGAS
and equals 52 dB with RGAS = 90.9 kΩ and Iline = 20 mA. A
capacitor CGAS connected in parallel with RGAS can be
used to provide a first-order low-pass filter.
To reduce the current consumption during pulse dialling,
the TEA1096/TEA1096A are provided with a power-down
(PD) input. The PD input has a pull-down structure. When
the voltage on PD is HIGH, the current consumption from
VDD capacitor CVDD is 100 µA and from the VBB supply
point 350 µA. The capacitors CVDD (100 µF) and CVBB
(470 µF) are sufficient to power theTEA1096/TEA1096A
during pulse dialling/flash.
Automatic gain control (AGC) is provided for line-loss
compensation as well as dynamic limitation for reduction
of the distortion of the transmitted signal on the line. The
microphone amplifier can be disabled by short-circuiting
pin DLS to VEE (secret function) and can be muted into
DTMF mode by applying a HIGH level on pin MUTE.
VBB voltage adjustment: pin VBA (TEA1096 only)
A resistor connected between pins VBA and VEE can be
used to increase the VBB voltage, whereas a resistor
connected between pins VBA and VBB will decrease the
VBB voltage. When adjusting the VBB voltage to a higher
value, care should be taken that VSLPE is at least 0.4 V
higher than VBB (VBB supply efficiency).
The TEA1096/TEA1096A has an asymmetrical DTMF
input with an input resistance of 20 kΩ. In the DTMF mode,
the overall gain from DTMF to LN is proportional to RGAS,
and is 26.5 dB less than the microphone amplifier gain.
Switch-over from one mode to the other is click-free.
Fig.6 Sending channel.
November 1994
9
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
It can be calculated from Fig.7 that the AC modulator gain
can be written:
Z line
V LN
• ------------- = ------------------------------------------------------ = 12 providing
( Z line + Z SET ) × 24
V OSP
ZSET = Z line
• Gv (LN to OSP) = 21.6 dB.
The frequency response for audio frequencies of the
sending channel is flat in this case for a complex line
termination.
Set impedance: pins ILS, SIMP and LN
The TEA1096/TEA1096A provides an active set
impedance in both the receiving and sending conditions,
thus allowing a flat frequency response for a complex line
impedance, without the need for any extra compensation
network.
As can be derived from Fig.8 the set impedance ZSET is
10 times lower than ZSIMP.
Fig.7 AC modulator equivalent model.
Fig.8 Set impedance.
November 1994
10
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
Fig.9 Equivalent AC impedance between LN and VEE.
The equivalent impedance connected between LN and
VEE is illustrated in Fig.9.
Clipping on the microphone channel is prevented by
rapidly reducing the gain when the output stage starts to
saturate. The time in which the gain reduction is effected
(clipping attack time) is approximately a few milliseconds.
The microphone channel stays in the reduced gain mode
until the peaks of the signal no longer cause saturation.
The gain of the microphone channel then returns to its
normal value within the clipping release time.
Where:
• LEQ = REQ × CREG × RSLPE
• REQ = 40 kΩ
• ZSET = 1⁄10ZSIMP.
Remark: a resistor R (REG-VEE) connected between REG
and VEE (to lower the regulated voltage) changes REQ into
REQ // R (REG-VEE), whereas a resistor RREG-SLPE
connected between REG and SLPE (to increase the
regulated voltage) has no effect on REQ.
Both attack and release time are proportional to the value
of the capacitor CDLS. The THD (Total Harmonic
Distortion) of the microphone amplifier in the reduced gain
mode stays below 2% up to 10 dB of input voltage
overdrive [provided that VMICP, VMICM is below 10 mV
(RMS)].
Dynamic limiter of the microphone channel: pin DLS
The dynamic limiter of the TEA1096/TEA1096A also
provides a microphone mute (secret function) when pin
DLS is short-circuited to VEE. The microphone gain is then
80 dB lower. The release time after a microphone mute is
approximately 10 ms.
The dynamic limiter in the microphone channel of the
TEA1096/TEA1096A prevents clipping of the microphone
signal, and limits the transmitted signal on LN to a
maximum value of typically 3.65 V (4.4 dBm).
November 1994
11
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
Fig.10 Dynamic limiter of the microphone channel.
Receiving amplifier: pins LN, GAR, QRP and QRM
Automatic gain control: pin AGC
The receiver gain is defined between the line connection
LN and the earpiece complementary outputs QRP
(non-inverting) and QRM (inverting). With RGAR equal to
90.9 kΩ the gain from LN to QRP is −2.5 dB. The outputs
may be used to connect a dynamic, magnetic or
piezoelectric earpiece. When the earpiece impedance
exceeds 450 Ω, differential drive (BTL connection) can be
used. As both outputs are in opposite phase, the gain from
LN to QRP or QRM is 3.5 dB.
Automatic compensation of line-loss is obtained by
connecting a resistor RAGC between pin LN and pin AGC.
This automatic gain control changes the gain of the
microphone and receiving amplifiers in accordance with
the DC line current.
The control range is 6 dB; This corresponds to a 5 km line
of 0.5 mm diameter copper twisted-pair cable:
DC resistance = 176 Ω /km
average attenuation = 1.2 dB/km.
By means of the RGAR resistor, the gain of the receiving
amplifier can be adjusted to suit the sensitivity of the
transducer which is used. The permitted range is between
−14 dB and +6 dB for single-ended drive (SE), and
between −8 dB and +12 dB for bridge-tied load (BTL)
drive.
The value of RAGC must be chosen with reference to the
exchange supply voltage and its feeding bridge resistance
and has no influence on the ratio (Istart/Istop) which remains
constant. Figure11 illustrates the gain attenuation when
RAGC = 100 kΩ. If automatic line-loss compensation is not
required, the AGC pin can be left open circuit, the
amplifiers then give their maximum gain and the double
sidetone principle is no longer active. Only one network is
used. Pins BAL1 and BAL2 must then be short-circuited
together.
Two external capacitors, CGAR (100 pF) and CGARS (1 nF),
ensure stability. The CGAR capacitor is also used to obtain
a first-order low-pass filter. The cut-off frequency
(corresponding to the time constant RGAR × CGAR) can be
adjusted by the CGAR capacitor, but the relationship
CGARS = CGAR × 10 must be maintained.
During DTMF dialling, the dialling tones can be heard in
the earpiece at a very low level. This is called confidence
tone.
November 1994
12
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
Fig.11 Variation of microphone and receiver gain as a function of the exchange
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
supply voltage with RAGC as a parameter.
Where: RLI' = α × Rline and RBAL = α × RSET;
Sidetone suppression: pins BAL1, BAL2,
OSP and ILS
where α is a scale factor allowing to have RLI' in the order
of 10 kΩ (DC biasing to Vref has to be ensured on BAL1
and BAL2).
Suppression of the microphone signal in the earpiece is
obtained by subtracting a part of this signal to a fraction of
the line signal (see Fig.12). For optimum suppression, the
voltage at the BAL inputs (BAL1 and BAL2) should be
equal to:
Z line
V BAL = 0.5 × ------------------------------- × V SOP
Z SET × Z line
In the event of complex impedances, the equivalent
network Zs, representing Zline, has to be transformed into
Zp in accordance with Fig.14.
The components of Zp, scaled by a factor α, are applied in
anti-sidetone network ZLI'. The complete anti-sidetone
network is shown in Fig.15.
To reach this requirement, an anti-sidetone network using
two impedances ZBAL and ZLI' is needed.
In the event of real impedances, the anti-sidetone network
is composed of resistors connected as shown in Fig.13.
November 1994
13
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
BBB
BBB
Fig.12 Balance networks connection.
(a) Series impedance (Zs).
(b) Parallel impedance (Zp).
Fig.13 Anti-sidetone network.
November 1994
Fig.14 Equivalent network.
14
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
Switching from one network to the other is carried out
continuously with the line current, when the RAGC resistor
is connected. When the RAGC resistor is not connected,
switching from one network to the other is not possible
(see automatic gain control). Only one network has then to
be applied.
It is also possible to use only one anti-sidetone network. In
this event, both inputs BAL1 and BAL2 must be
short-circuited.
Loudspeaker amplifier: pins LSI and QLS
The loudspeaker amplifier has an asymmetrical input LSI
which is referenced to an internal voltage reference of
1.25 V via an internal resistance of 10 kΩ. The input signal
can be taken from one of the earpiece outputs QRP or
QRM via a potentiometer (RPOT). The attenuation has to
be chosen in accordance with the gain Gvrx of the receiving
amplifier.
The input stage can handle up to 200 mV (RMS) at room
temperature for 3% of THD.
Fig.15 Complete anti-sidetone network.
The gain of the loudspeaker amplifier is fixed at 35.5 dB.
The output QLS is referenced to a DC level of 1⁄2VBB to
offer rail-to-rail output swing.
Again, it means that: ZLI' = α × Zline and ZBAL = α × ZSET
Where α is a scale factor allowing ZLI' to be in the order of
10 kΩ (DC biasing to Vref has to be ensured on BAL1 and
BAL2).
The maximum voltage gain from line to loudspeaker has to
be fixed in relation to the side-tone transfer of the
telephone set. An enlarged listening-in gain improves the
listening-in behaviour but can introduce audible
instabilities in the form of howling during normal use of the
set. The loudspeaker can be disabled by short-circuiting
DLL/DIL input to VEE.
As the line impedance Zline varies considerably with the
line length, two anti-sidetone networks can be used. One
of them ZLl', connected to BAL2 is optimized for long lines,
the other one ZLs', connected to BAL1 is optimized for
short lines:
Where:
ZLl' = α × Zline (long)
ZLs' = α × Zline (short)
ZBAL1 = α × ZSET
ZBAL2 = α × ZSET.
November 1994
15
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
Fig.16 Loudspeaker amplifier channel.
When the supply conditions drop below the required level,
the gain of the loudspeaker amplifier is reduced in order to
prevent the device from malfunctioning. When the supply
current drops below the required level, the supply voltage
VBB decreases. In this condition, the gain of the
loudspeaker amplifier is reduced slowly (approximately a
few seconds). When the supply voltage continues to
decrease and drops below an internal threshold of 2.8 V,
the gain of the loudspeaker amplifier is rapidly reduced
(approximately 1 ms). After returning to normal supply
conditions, the gain of the loudspeaker amplifier is raised
again.
Dynamic limiter/loudspeaker amplifier disabling;
pin DLL/DIL
The dynamic limiter in the loudspeaker channel of the
TEA1096/TEA1096A prevents clipping of the loudspeaker
output stage and protects the functioning of the circuit
when low supply conditions are detected.
Hard clipping of the loudspeaker output stage is prevented
by rapidly reducing the gain when the output stage starts
to saturate. The time in which the gain reduction is effected
(clipping attack time) is approximately a few milliseconds.
The loudspeaker amplifier stays in the reduced gain mode
until the peaks of the loudspeaker signals no longer start
to cause saturation. The gain of the loudspeaker amplifier
then returns to its normal value within the clipping release
time. Both attack and release time are proportional to the
value of the capacitor CDLL. The THD of the loudspeaker
amplifier in the reduced gain mode stays below 5% up to
10 dB of input voltage overdrive.
November 1994
The dynamic limiter also provides a loudspeaker disable
when pin DLL/DIL is short-circuited to VEE. The
loudspeaker gain is then typically 80 dB lower. The
release time is approximately 10 ms.
16
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
Fig.17 Dynamic limiter of the listening-in part.
δ × K × V BB
Where V VCI = -------------------------------------1 – δ × ( 1 – K)
Volume control: pin VCI (TEA1096A only)
The TEA1096A is provided with a volume control input
VCI, to adjust the gain of the loudspeaker channel by
means of a controlled DC voltage. A typical application is
illustrated in Fig.18. A pulse width modulation on a
microcontroller open drain output imposes a DC voltage
on the VCI capacitor:
R1
with δ = duty cycle and K = ---------------------R1 + R2
A typical response is given in Fig.19.
Fig.18 Digital volume control application.
November 1994
17
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
Fig.19 Change of loudspeaker gain as a function of the voltage at VCI.
November 1994
18
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOLS
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VLN
voltage on pin LN
VEE − 0.4
12.0
V
VDD
voltage on pin VDD
VEE − 0.4
12.0
V
VBB
voltage on pin VBB
VEE − 0.4
12.0
V
Vn1
voltage on pins:
REG, SLPE, AGC and ILS
VEE − 0.4
VLN + 0.4
V
Vn2
voltage on pins:
DLL, VBA or VCI, QLS, LSI
VEE − 0.4
VBB + 0.4
V
Vn3
voltage on pins: Vref, SIMP, STAB,
DLS, OSP, GAS, MUTE, DTMF, PD,
MICM, MICP, BAL1, BAL2, QRP,
QRM, GAR
VEE − 0.4
VDD + 0.4
V
Iline
line current
see also Figs 20
and 21
−
140
mA
Ptot
total power dissipation:
Tamb = +75 °C;
see Figs 20 and 21
−
0.91
W
TEA1096/TEA1096A
−
0.66
W
Tstg
storage temperature
−40
+125
°C
Tamb
operating ambient temperature
−25
+75
°C
TEA1096T/TEA1096AT
THERMAL CHARACTERISTICS
SYMBOLS
Rth j-a
PARAMETER
VALUE
UNIT
TEA1096; TEA1096A
55
K/W
TEA1096T; TEA1096AT (note 1)
75
K/W
thermal resistance from junction to ambient in free air:
Note
1. Mounted on epoxy board 40.1 × 19.1 × 1.5 mm.
November 1994
19
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
(1) Tamb = 55 °C; Ptot = 1272 mW.
(2) Tamb = 65 °C; Ptot = 1091 mW.
(3) Tamb = 75 °C; Ptot = 910 mW.
Fig.20 TEA1096; TEA1096A safe operating area.
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
(1) Tamb = 35 °C; Ptot = 1199 mW.
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
(2) Tamb = 45 °C; Ptot = 1066 mW.
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
(3) Tamb = 55 °C; Ptot = 933 mW.
(4) Tamb = 65 °C; Ptot = 800 mW.
(5) Tamb = 75 °C; Ptot = 667 mW.
Fig.21 TEA1096T; TEA1096AT safe operating area.
November 1994
20
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
CHARACTERISTICS
Iline = 20 mA; IP = 0 mA; VEE = 0 V; PD = LOW; MUTE = LOW; Zline = 600 Ω; ZSIMP = 6 kΩ; ZBAL1 = 18 kΩ; ZLI' = 6 kΩ;
RSLPE = 20 Ω; RDD = 390 Ω; RGAS = 90.9 kΩ; RGAR = 0.9 kΩ; RQLS = 50 Ω; f = 1 kHz; Tamb = 25 °C; measured in test
circuit of Fig.22; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Line interface/supply (LN, SLPE, REG, VEE, VDD, VBB and Vref)
VSLPE
stabilized voltage (line interface)
4.2
4.45
4.7
V
∆VSLPE(Iline)
VSLPE variation with Iline
Iline = 20 to 140 mA
−
30
−
mV
∆VSLPE(T)
VSLPE variation with
temperature referenced
to 25 °C
Tamb = −25 to +75 °C
−150
±60
+150
mV
VBB
stabilized supply voltage
3.4
3.6
3.8
V
∆VBB(Iline)
VBB variation with Iline
Iline = 20 to 140 mA
−
30
−
mV
∆VBB(T)
VBB variation with temperature
referenced to 25 °C
Tamb = −25 to +75 °C
−150
±50
+150
mV
Isink
current sunk by VBB shunt
regulator when a line current
equal to 20 mA is available
IP = 0 mA; note 1
−
9.0
−
mA
IDD
internal current consumption
from pin VDD
IP = 0 mA;
RDD = 390 Ω
−
2.4
2.9
mA
VDD
supply voltage for speech and
microcontroller
RDD = 390 Ω;
IP = 0 mA
−
3.5
−
V
RDD = 390 Ω;
IP = 1 mA
−
3.1
−
V
Vref
reference output voltage
−
0.5VDD
−
V
IDD(PD)
current consumption from CVDD
during power-down condition
PD = HIGH;
VDD = 4.3 V
−
100
150
µA
IBB(PD)
current consumption from CVBB
during power-down condition
PD = HIGH;
VBB = 3.5 V
−
350
500
µA
VLN
DC line voltage
4.4
4.7
5.0
V
VLN
DC line voltage in low current
conditions
RDD = 390 Ω;
IP = 0 mA; Iline = 4 mA
−
2.5
−
V
RDD = 390 Ω;
IP = 0 mA; Iline = 6 mA
−
3.3
−
V
Microphone amplifier (MICP, MICM, GAS, LN, and MUTE)
|Zi1|
input impedance between pins
MICP or MICM and VEE
25.5
32
38.5
kΩ
|Zi2|
input impedance between pins
MICP and MICM
51
64
77
kΩ
Gvtx
voltage gain from pin MICP or
MICM to LN
VMIC = 2 mV (RMS);
RGAS = 90.9 kΩ
51
52
53
dB
∆GvtxT
voltage gain variation with
temperature referenced
to 25 °C.
VMIC = 2 mV (RMS);
Tamb = −25 to +75 °C
−
±0.5
−
dB
November 1994
21
Philips Semiconductors
Product Specification
Speech and listening-in IC
SYMBOL
PARAMETER
TEA1096; TEA1096A
CONDITIONS
MIN.
TYP.
MAX.
UNIT
∆Gvtxf
voltage gain variation with
frequency referenced to 1 kHz
VMIC = 2 mV (RMS);
f = 300 to 3400 Hz
−
±0.5
−
dB
∆Gvtxr
voltage gain adjustment
with RGAS
note 2
−19
−
0
dB
∆Gtxm
gain reduction with
MUTE = HIGH
60
80
−
dB
∆Gtxd
gain reduction when
DLS/MMUTE is short-circuited
to VEE
60
80
−
dB
VLN(p-p)
maximum output voltage swing
at pin LN (peak-to-peak value)
RGAS = 90.9 kΩ
−
3.65
4.3
V
Vnotx
noise output voltage at pin LN
pins MICP and MICM
−
short-circuited through
200 Ω; Psophometrically
weighted (P53 curve)
−72
−
dBmp
CMRR
common mode rejection ratio
80
−
dB
−
Dynamic limiter for sending (DLS/MMUTE); related to the microphone amplifier clipping detector
tatt
attack time when VMIC jumps
from 3.2 mV to 3.2 mV + 10 dB
RGAS = 90.9 kΩ;
CDLS = 470 nF
−
1.5
5
ms
trel
release time when VMIC drops
from 3.2 mV + 10 dB to 3.2 mV
RGAS = 90.9 kΩ;
CDLS = 470 nF
40
120
−
ms
THD
total harmonic distortion
VMIC = 3.2 mV + 10 dB;
RGAS = 90.9 kΩ;
CDLS = 470 nF
−
2
3
%
VMIC = 3.2 mV + 15 dB;
RGAS = 90.9 kΩ;
CDLS = 470 nF
−
3
10
%
−3.5
−2.5
−1.5
dB
RGAR = 90.9 kΩ;
Vline = 50 mV (RMS);
bridge tied load;
RQRM = 450 Ω
2.5
3.5
4.5
dB
Receiving amplifier (ILS, BAL1, BAL2, OSP, GAR, QRP, QRM and MUTE)
Gvrx
voltage gain from pin LN to QRP RGAR = 90.9 kΩ;
or QRM
Vline = 50 mV (RMS);
single-ended load;
RQRP = 150 Ω
∆GvrxT
voltage gain variation with
temperature referenced
to 25 °C.
Tamb = −25 to +75 °C
−
±0.5
−
dB
∆Gvrxf
voltage gain variation with
frequency referenced to 1 kHz
f = 300 to 3400 Hz
−
±0.5
−
dB
∆Gvrxr
voltage gain adjustment with
RGAR
−12
−
8
dB
November 1994
22
Philips Semiconductors
Product Specification
Speech and listening-in IC
SYMBOL
VQR(rms)
Vnorx(rms)
PARAMETER
maximum output voltage for
THD = 2% (RMS value)
noise output voltage
(RMS value)
TEA1096; TEA1096A
CONDITIONS
MIN.
TYP.
MAX.
UNIT
RGAR = 90.9 kΩ;
single-ended load;
RQRP = 150 Ω
0.3
0.375
−
V
RGAR = 90.9 kΩ;
bridge-tied load;
RQRM = 450 Ω
0.6
0.72
−
V
RGAR = 90.9 kΩ;
bridge-tied load with
300 Ω series resistor;
CQRM = 60 nF;
f = 3400 Hz
0.75
0.95
−
V
Psophometrically
weighted (P53 curve);
single-ended load;
RQRP = 150 Ω
−
90
−
µV
Psophometrically
weighted (P53 curve);
bridge-tied load;
RQRM = 450 Ω
−
180
−
µV
16
20
24
kΩ
DTMF amplifier (DTMF, LN, MUTE)
|Zi|
input impedance between pins
DTMF and VEE
Gvtx
voltage gain from pin DTMF
to LN
VDTMF = 4 mV (RMS);
RGAS = 90.9 kΩ
24.5
25.5
26.5
dB
∆GvtxT
voltage gain variation with
temperature referenced
to 25 °C
VDTMF = 4 mV (RMS);
Tamb = −25 to +75 °C
−
±0.5
−
dB
∆Gvtxf
voltage gain variation with
frequency referenced to 1 kHz
VDTMF = 4 mV (RMS);
f = 300 to 3400 Hz
−
±0.5
−
dB
Gvtx
voltage gain from pin DTMF to
QRP
MUTE = HIGH;
Vline = 80 mV (RMS);
RGAR = 90.9 kΩ;
RQRP = 150 Ω
−
−19
−
dB
Automatic gain control (AGC); controlling the gain from LN to QRP, QRM and the gain from MICP, MICM to LN
∆Gtrx
gain control range for
microphone and receiving
amplifiers with respect to
Iline = 20 mA
Iline = 85 mA;
RAGC = 100 kΩ
5
6
7
dB
Iline(h)
highest line current for
maximum gain
RAGC = 100 kΩ
−
28
−
mA
Iline(l)
lowest line current for minimum
gain
RAGC = 100 kΩ
−
66
−
mA
∆Gtrx
change of gain when varying
Iline from 20 mA to 40 mA
RAGC = 100 kΩ
1
1.5
2
dB
November 1994
23
Philips Semiconductors
Product Specification
Speech and listening-in IC
SYMBOL
PARAMETER
TEA1096; TEA1096A
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Loudspeaker amplifier (LSI and QLS)
|Zi|
input impedance between pins
LSI and VEE
8
10
12
kΩ
Gvlx
voltage gain from pin LSI
to QLS
VLSI = 10 mV (RMS)
34
35.5
37
dB
∆GvlxT
voltage gain variation with
temperature referenced
to 25 °C
Tamb = −25 to +75 °C
−
±0.5
−
dB
∆Gvlxf
voltage gain variation with
frequency referenced to 1 kHz
f = 300 to 3400 Hz
−
±0.5
−
dB
VQLS(p-p)
output voltage between pins
QLS and VEE (peak-to-peak
value)
VLSI = 18 mV;
Iline = 16 mA
1.2
1.45
−
V
VLSI = 18 mV;
Iline = 20 mA
2.5
2.9
−
V
pin LSI open-circuit;
Psophometrically
weighted (P53 curve)
−
200
−
µV
Vnolx(rms)
noise output voltage at pin LN
(RMS value)
Dynamic limiter for the loudspeaker amplifier (DLL/DIL); related to the loudspeaker amplifier clipping detector
THD
total harmonic distortion
VLSI = 18 mV + 0 dB;
Iline = 30 mA
−
2
5
%
tatt
attack time when VLSI jumps
from 18 mV to 18 mV + 0 dB
Iline = 30 mA;
CDLL = 470 nF
−
1.5
5
ms
trel
release time when VLSI drops
from 18 mV + 0 dB to 18 mV
Iline = 30 mA;
CDLL = 470 nF
30
60
−
ms
Dynamic limiter for the loudspeaker amplifier (DLL/DIL); related to the VBB threshold detector
VBB(th)
VBB limiter threshold detector
level
tatt
attack time when VBB jumps
below VBB(th)
CDLL = 470 nF
−
2.8
−
V
−
1
−
ms
Volume control for the loudspeaker amplifier (VCI) (TEA1096A only); related to the loudspeaker amplifier
volume control
−
1
−
MΩ
Iline = 30 mA;
VLSI = 10 mV (RMS)
−
2.8
−
V
DC level on pin VCI for −6 dB
Iline = 30 mA;
control on loudspeaker amplifier vLSI = 10 mV (RMS)
−
1.63
−
V
|Zi|
input impedance
VVCImin
minimum DC level on pin VCI
for 0 dB control on loudspeaker
amplifier
VVCI
November 1994
24
Philips Semiconductors
Product Specification
Speech and listening-in IC
SYMBOL
TEA1096; TEA1096A
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Power-down input (PD)
VIL
LOW level input voltage
−
−
0.5
VIH
HIGH level input voltage
1.5
−
VDD +0.4 V
IPD
input current in power-down
condition
−
6
10
µA
V
PD = HIGH
V
Mute input (MUTE)
VIL
LOW level input voltage
−
−
0.3
VIH
HIGH level input voltage
1.5
−
VDD +0.4 V
IMUTE
input current
−
15
20
µA
−
−
0.3
V
MUTE = HIGH
Microphone mute input (DLS/MMUTE)
VIL
LOW level input voltage
Isink(DLS)
sink current
DLS/MMUTE = LOW
−
60
100
µA
trel
release time after a LOW level
on pin DLS/MMUTE
CDLS = 470 nF
−
15
−
ms
∆Gtxm
gain reduction when
DLS/MMUTE is short-circuited
to VEE
DLS/MMUTE = LOW
60
80
−
dB
−
−
0.25
V
Disable input for loudspeaker amplifier (DLL/DIL)
VIL
LOW level input voltage
Isink(DLL/DIL)
sink current
DLL/DIL = LOW
−
75
120
µA
trel
release time after a LOW level
on pin DLL/DIL
Iline = 30 mA;
CDDL = 470 nF
−
10
−
ms
∆Glm
gain reduction when DLL is
short-circuited to VEE
DLL/DIL = LOW
60
80
−
dB
Notes
1. This gives the current available for receiving, listening-in and peripherals at this line current.
2. Both gains, microphone and sending DTMF, are determined in the same way by the resistor RGAS.
HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling MOS devices.
November 1994
25
Philips Semiconductors
Speech and listening-in IC
November 1994
26
Product Specification
TEA1096; TEA1096A
Fig.22 Test diagram.
27
BBBBBBBB
BBBB
Philips Semiconductors
Speech and listening-in IC
APPLICATION INFORMATION
November 1994
Product Specification
TEA1096; TEA1096A
Fig.23 Basic application with a complex line impedance.
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
PACKAGE OUTLINES
15.80
15.24
seating plane
36.0
35.0
handbook, full pagewidth
4.0 5.1
max max
3.9
3.4
0.51
min
1.7
max
0.53
max
2.54
(13x)
0.254 M
0.32 max
15.24
1.7 max
17.15
15.90
28
15
14.1
13.7
1
14
Dimensions in mm.
Fig.24 Plastic dual in-line package; 28 leads (600 mil); DIP28; SOT117-1.
November 1994
28
MSA264
Philips Semiconductors
Product Specification
Speech and listening-in IC
handbook, full pagewidth
TEA1096; TEA1096A
18.1
17.7
7.6
7.4
A
10.65
10.00
0.1 S
S
0.9 (4x)
0.4
28
15
2.45
2.25
1.1
1.0
0.3
0.1
2.65
2.35
0.32
0.23
pin 1
index
1
1.1
0.5
14
detail A
1.27
0.49
0.36
0.25 M
(28x)
Dimensions in mm.
Fig.25 Plastic small outline package; 28 leads; body width 7.5 mm (SO28; SOT136-1).
November 1994
29
0 to 8o
MBC236 - 1
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
A modified wave soldering technique is recommended
using two solder waves (dual-wave), in which a turbulent
wave with high upward pressure is followed by a smooth
laminar wave. Using a mildly-activated flux eliminates the
need for removal of corrosive residues in most
applications.
SOLDERING
Plastic dual in-line packages
BY DIP OR WAVE
The maximum permissible temperature of the solder is
260 °C; this temperature must not be in contact with the
joint for more than 5 s. The total contact time of successive
solder waves must not exceed 5 s.
BY SOLDER PASTE REFLOW
Reflow soldering requires the solder paste (a suspension
of fine solder particles, flux and binding agent) to be
applied to the substrate by screen printing, stencilling or
pressure-syringe dispensing before device placement.
The device may be mounted up to the seating plane, but
the temperature of the plastic body must not exceed the
specified storage maximum. If the printed-circuit board has
been pre-heated, forced cooling may be necessary
immediately after soldering to keep the temperature within
the permissible limit.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt, infrared, and
vapour-phase reflow. Dwell times vary between 50 and
300 s according to method. Typical reflow temperatures
range from 215 to 250 °C.
REPAIRING SOLDERED JOINTS
Apply a low voltage soldering iron below the seating plane
(or not more than 2 mm above it). If its temperature is
below 300 °C, it must not be in contact for more than 10 s;
if between 300 and 400 °C, for not more than 5 s.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 min at 45 °C.
REPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING
IRON OR PULSE-HEATED SOLDER TOOL)
Plastic small outline packages
During placement and before soldering, the component
must be fixed with a droplet of adhesive. After curing the
adhesive, the component can be soldered. The adhesive
can be applied by screen printing, pin transfer or syringe
dispensing.
Fix the component by first soldering two, diagonally
opposite, end pins. Apply the heating tool to the flat part of
the pin only. Contact time must be limited to 10 s at up to
300 °C. When using proper tools, all other pins can be
soldered in one operation within 2 to 5 s at between 270
and 320 °C. (Pulse-heated soldering is not recommended
for SO packages.)
Maximum permissible solder temperature is 260 °C, and
maximum duration of package immersion in solder bath is
10 s, if allowed to cool to less than 150 °C within 6 s.
Typical dwell time is 4 s at 250 °C.
For pulse-heated solder tool (resistance) soldering of VSO
packages, solder is applied to the substrate by dipping or
by an extra thick tin/lead plating before package
placement.
BY WAVE
November 1994
30
Philips Semiconductors
Product Specification
Speech and listening-in IC
TEA1096; TEA1096A
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
November 1994
31
Philips Semiconductors – a worldwide company
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. (02)805 4455, Fax. (02)805 4466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,
Tel. (01)60 101-1236, Fax. (01)60 101-1211
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,
Tel. (31)40 783 749, Fax. (31)40 788 399
Brazil: Rua do Rocio 220 - 5th floor, Suite 51,
CEP: 04552-903-SÃO PAULO-SP, Brazil.
P.O. Box 7383 (01064-970).
Tel. (011)821-2333, Fax. (011)829-1849
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:
Tel. (800) 234-7381, Fax. (708) 296-8556
Chile: Av. Santa Maria 0760, SANTIAGO,
Tel. (02)773 816, Fax. (02)777 6730
Colombia: IPRELENSO LTDA, Carrera 21 No. 56-17,
77621 BOGOTA, Tel. (571)249 7624/(571)217 4609,
Fax. (571)217 4549
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. (032)88 2636, Fax. (031)57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. (9)0-50261, Fax. (9)0-520971
France: 4 Rue du Port-aux-Vins, BP317,
92156 SURESNES Cedex,
Tel. (01)4099 6161, Fax. (01)4099 6427
Germany: P.O. Box 10 63 23, 20043 HAMBURG,
Tel. (040)3296-0, Fax. (040)3296 213.
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. (01)4894 339/4894 911, Fax. (01)4814 240
Hong Kong: PHILIPS HONG KONG Ltd., 6/F Philips Ind. Bldg.,
24-28 Kung Yip St., KWAI CHUNG, N.T.,
Tel. (852)424 5121, Fax. (852)428 6729
India: Philips INDIA Ltd, Shivsagar Estate, A Block ,
Dr. Annie Besant Rd. Worli, Bombay 400 018
Tel. (022)4938 541, Fax. (022)4938 722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,
P.O. Box 4252, JAKARTA 12950,
Tel. (021)5201 122, Fax. (021)5205 189
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. (01)640 000, Fax. (01)640 200
Italy: PHILIPS SEMICONDUCTORS S.r.l.,
Piazza IV Novembre 3, 20124 MILANO,
Tel. (0039)2 6752 2531, Fax. (0039)2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2 -chome, Minato-ku, TOKYO 108,
Tel. (03)3740 5028, Fax. (03)3740 0580
Korea: (Republic of) Philips House, 260-199 Itaewon-dong,
Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TX 79905,
Tel. 9-5(800)234-7381, Fax. (708)296-8556
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB
Tel. (040)783749, Fax. (040)788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. (09)849-4160, Fax. (09)849-7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. (022)74 8000, Fax. (022)74 8341
Philips Semiconductors
Pakistan: Philips Electrical Industries of Pakistan Ltd.,
Exchange Bldg. ST-2/A, Block 9, KDA Scheme 5, Clifton,
KARACHI 75600, Tel. (021)587 4641-49,
Fax. (021)577035/5874546.
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474
Portugal: PHILIPS PORTUGUESA, S.A.,
Rua dr. António Loureiro Borges 5, Arquiparque - Miraflores,
Apartado 300, 2795 LINDA-A-VELHA,
Tel. (01)4163160/4163333, Fax. (01)4163174/4163366.
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. (65)350 2000, Fax. (65)251 6500
South Africa: S.A. PHILIPS Pty Ltd.,
195-215 Main Road Martindale, 2092 JOHANNESBURG,
P.O. Box 7430 Johannesburg 2000,
Tel. (011)470-5911, Fax. (011)470-5494.
Spain: Balmes 22, 08007 BARCELONA,
Tel. (03)301 6312, Fax. (03)301 42 43
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,
Tel. (0)8-632 2000, Fax. (0)8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. (01)488 2211, Fax. (01)481 77 30
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West
Road, Sec. 1. Taipeh, Taiwan ROC, P.O. Box 22978,
TAIPEI 100, Tel. (02)388 7666, Fax. (02)382 4382.
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong,
Bangkok 10260, THAILAND,
Tel. (662)398-0141, Fax. (662)398-3319.
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. (0 212)279 2770, Fax. (0212)269 3094
United Kingdom: Philips Semiconductors LTD.,
276 Bath road, Hayes, MIDDLESEX UB3 5BX,
Tel. (081)73050000, Fax. (081)7548421
United States: 811 East Arques Avenue, SUNNYVALE,
CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556
Uruguay: Coronel Mora 433, MONTEVIDEO,
Tel. (02)70-4044, Fax. (02)92 0601
For all other countries apply to: Philips Semiconductors,
International Marketing and Sales, Building BE-p,
P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands,
Telex 35000 phtcnl, Fax. +31-40-724825
SCD35
© Philips Electronics N.V. 1994
All rights are reserved. Reproduction in whole or in part is prohibited without the
prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation
or contract, is believed to be accurate and reliable and may be changed without
notice. No liability will be accepted by the publisher for any consequence of its
use. Publication thereof does not convey nor imply any license under patent- or
other industrial or intellectual property rights.
Printed in The Netherlands
413061/1500/01/pp32
Document order number:
Date of release: November 1994
9397 743 10011