TI TL1466I

SLVS262 − FEBRUARY 2000
D High-Speed Output Circuit to Drive PNP
D
D
D
D
D
D
D
D
D
Power Transistor
Precision Reference Voltage . . . 1.5 V ±2%
at TA = 25°C
Oscillator Frequency . . . 50 kHz to 0.8 MHz
Low Supply Voltage Operation VCC = 2.5 V
to 12 V
Output Voltage Limit (Channel 5 and 6)
Low Supply Current
Internal Undervoltage Lockout Protection
Internal Short-Circuit Protection
Shutdown Function
External Sink Current Setting on Output
Stage
description
The TL1466I is a six channel pulse-width-modulation (PWM) control circuit. This device contains reference
voltage with a precision of ±2%, a triangle wave oscillator capable of high frequency oscillation up to 0.8 MHz,
various protection circuitry, and shutdown circuitry. The output regulation voltage for each channel is set by an
external resistor divider. Moreover, the output stage is capable of driving a PNP power transistor with high
speed. The high frequency/efficiency switching operation eliminates switching loss by using internal over-drive
circuitry at the rising edge and with reverse bias connecting external bootstrap capacitor at the falling edge. The
MOSFET can be used in parallel with the output diode at channel 1 and 4. This results in further high efficiency
operation replacing the constant time with this MOSFET when the output diode is turned on. Furthermore, it
operates 2.5 V supply voltage and balances switching current by switching repeatedly at the reverse phase with
two pairs (channel 1, 4, 6, and 2, 3, 5) of the six channels. The oscillator output of channel 1, 4, and 6 is reverse
phase for channel 2, 3, and 5. As a result of these features, this device is well-suited for power supply of portable
systems in battery-powered equipment.
FUNCTION TABLE FOR STANDBY
INPUT
STANDBY
VI ≤ 0.4 V
OUTPUT
STANDBY-3
X†
VI ≥ 2 V
VI ≤ 0.4 V
† X: High-level or low-level
VI ≥ 2 V
VREF
OUTPUT1, 2, 4, 5, 6
OUTPUT3
OFF
OFF
OFF
ON
ON
ON
ON
ON
OFF
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2000, Texas Instruments Incorporated
!"# $"%&! '#(
'"! ! $#!! $# )# # #* "#
'' +,( '"! $!#- '# #!#&, !&"'#
#- && $##(
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SLVS262 − FEBRUARY 2000
pin assignments
1
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
2
47
3
46
4
45
5
44
6
43
7
42
8
41
9
40
10
39
11
38
12
37
13
36
14
35
15
34
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
FEED BACK−5
COMP−4
INV INPUT−4
FEED BACK−4
RT
CT
SCP
MOS DUTY
GND
SOFT START
VREF
VCC
STANDBY−3
STANDBY
DTC−3
FEED BACK−3
BOOT CAP.L−5
BOOT CAP.H−5
OUTPUT BIAS−5
OUTPUT−6
BOOT CAP.L−6
BOOTCAD.H−6
OUTPUT BIAS−6
OVP−5,6
COMP−6
NONINV INPUT−6
INV INPUT−6
FEED BACK−6
COMP
COMP−5
NONINV INPUT−5
INV INPUT−5
OUTPUT−2
BOOT CAP.L−2
OUTPUT−5
OUTPUT V CC −4,5,6
OUTPUT BIAS−4
OUTPUT GND−4,5,6
MOS GATE−4
BOOTCAP.H−4
BOOT CAP.L−4
OUTPUT−4
OUTPUT−3
BOOT CAP.L−3
BOOT CAP.H−3
OUTPUT GND−1,2,3
OUTPUT BIAS−3
OUTPUT V CC −2
PM PACKAGE
(TOP VIEW)
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
BOOT CAP.H−2
OUTPUT BIAS−2
OUTPUT−1
BOOT CAP.L−1
BOOT CAP.H−1
MOS GATE−1
OUTPUT VCC−1,3
OUTPUT BIAS−1
COMP−1
INV INPUT−1
FEED BACK−1
COMP−2
INV INPUT−2
FEED BACK−2
COMP−3
INV INPUT−3
SLVS262 − FEBRUARY 2000
functional block diagram
OUT
CH−1
IN
OUTVCC13
ERR AMP1
FB
COMP1
INV
SCP
MOSG1
COMP
OUT
CH−2
IN
OUTVCC2
ERR AMP1
COMP2
SCP
DTC3
OUT
CH−3
IN
ERR AMP3
COMP3
SCP
OUT
CH−4
IN
ERR AMP4
COMP4
SCP
MOSG4
OUT
CH−5 IN
ERR AMP5
COMP5
SCP
OUT
CH−6 IN
ERR AMP6
COMP6
OVP
SCP
VI
MOS
DUTY
TIMER
and
LATCH
MDUTY
CTR LOGIC
CS
OSC
SCP
COMP
VREF
STANDBY
VCC
STANDBY
LOGIC
VOLTAGE
REF
U.V.L.O
STANDBY3
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SLVS262 − FEBRUARY 2000
Terminal Functions
TERMINAL
NAME
DESCRIPTION
NO.
BOOT CAP.H−1
44
BOOT CAP.L−1
45
BOOT CAP.H−2
48
BOOT CAP.L−2
49
BOOT CAP.H−3
54
BOOT CAP.L−3
55
BOOT CAP.L−4
58
BOOT CAP.H−4
59
BOOT CAP.L−5
1
BOOT CAP.H−5
2
BOOT CAP.L−6
5
BOOT CAP.H−6
6
COMP
13
Output regulation voltage monitor terminal. When this terminal voltage drops below VREF voltage (1.5 V),
charging to capacitor connected to SCP terminal (pin 23) is initiated.
COMP−1
40
Output regulation voltage monitor terminal (channel 1). When this terminal voltage drops below VREF voltage
(1.5 V) charging to capacitor connected to SCP terminal (pin 23) is initiated.
COMP−2
37
Output regulation voltage monitor terminal (channel 2). When this terminal voltage drops below VREF voltage
(1.5 V) charging to capacitor connected to SCP terminal (pin 23) is initiated.
COMP−3
34
Output regulation voltage monitor terminal (channel 3). When this terminal voltage drops below VREF voltage
(1.5 V), charging to capacitor connected to SCP terminal (pin 23) is initiated.
COMP−4
18
Output regulation voltage monitor terminal (channel 4). When this terminal voltage drops below VREF voltage
(1.5 V) charging to capacitor connected to SCP terminal (pin 23) is initiated.
COMP−5
14
Output regulation voltage monitor terminal (channel 5). When this terminal voltage drops below NONINV
INPUT−5 terminal voltage − 0.55 V, charging to capacitor connected to SCP terminal (pin 23) is initiated.
COMP−6
9
Output regulation voltage monitor terminal (channel 6). When this terminal voltage drops below NONINV
INPUT−6 terminal voltage − 0.55 V, charging to capacitor connected to SCP terminal (pin 23) is initiated.
CT
22
Timing capacitor connection for oscillation frequency setting.
DTC−3
31
Dead-time control input for channel 3. The maximum ON duty cycle for OUTPUT−3 terminal is determined by
comparing the input voltage of this terminal with the oscillator output (triangle wave).
FEEDBACK−1
38
Error amplifier output terminal (channel 1)
FEEDBACK−2
35
Error amplifier output terminal (channel 2)
FEEDBACK−3
32
Error amplifier output terminal (channel 3)
FEEDBACK−4
20
Error amplifier output terminal (channel 4)
FEEDBACK−5
17
Error amplifier output terminal (channel 5)
FEEDBACK−6
12
Error amplifier output terminal (channel 6)
GND
25
Logic ground
INV INPUT−1
39
Error amplifier inverting input terminal (channel 1)
INV INPUT−2
36
Error amplifier inverting input terminal (channel 2)
INV INPUT−3
33
Error amplifier inverting input terminal (channel 3)
INV INPUT−4
19
Error amplifier inverting input terminal (channel 4)
INV INPUT−5
16
Error amplifier inverting input terminal (channel 5)
INV INPUT−6
11
Error amplifier inverting input terminal (channel 6)
MOS DUTY
24
N-channel MOSFET ON duty cycle setting for the synchronous rectification of channel 1 and 4. The MOSFET
ON duty cycle for the synchronous rectification is determined by the resistor value connected between this
terminal and GND.
4
Bootstrap capacitor connection. The connection allows reverse-bias for external PNP transistor of channel 1.
Bootstrap capacitor connection. The connection allows reverse-bias for external PNP transistor of channel 2.
Bootstrap capacitor connection. The connection allows reverse-bias for external PNP transistor of channel 3
Bootstrap capacitor connection. The connection allows reverse-bias for external PNP transistor of channel 4.
Bootstrap capacitor connection. The connection allows reverse-bias for external PNP transistor of channel 5.
Bootstrap capacitor connection. The connection allows reverse-bias for external PNP transistor of channel 6.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS262 − FEBRUARY 2000
Terminal Functions (Continued)
TERMINAL
NAME
DESCRIPTION
NO.
MOS GATE−1
43
N-Channel MOSFET gate drive for the synchronous rectification of channel 1. The ON duty cycle for this terminal
is determined by the resistor value connected to MOS DUTY (pin 24).
MOS GATE−4
60
N-Channel MOSFET gate drive for the synchronous rectification of channel 4. The ON duty cycle for this terminal
is determined by the resistor value connected to MOS DUTY (pin 24).
NONINV INPUT−5
15
Error amplifier noninverting input terminal (channel 6). By connecting resistor and capacitor to this terminal, soft
start function is accomplished increasing this terminal voltage slowly.
NONINV INPUT−6
10
Error amplifier noninverting input terminal (channel 6). By connecting resistor and capacitor to this terminal, soft
start function is accomplished increasing this terminal voltage slowly.
OUTPUT−1
46
Output terminal to drive base for external PNP transistor of channel 1.
OUTPUT−2
50
Output terminal to drive base for external PNP transistor of channel 2.
OUTPUT−3
56
Output terminal to drive base for external PNP transistor of channel 3.
OUTPUT−4
57
Output terminal to drive base for external PNP transistor of channel 4.
OUTPUT−5
64
Output terminal to drive base for external PNP transistor of channel 5.
OUTPUT−6
4
Output terminal to drive base for external PNP transistor of channel 6.
OUTPUT BIAS−1
41
Resistor connection to set output sink current for OUTPUT−1 terminal (pin 46) of channel 1.
OUTPUT BIAS−2
47
Resistor connection to set output sink current for OUTPUT−2 terminal (pin 50) of channel 2.
OUTPUT BIAS−3
52
Resistor connection to set output sink current for OUTPUT−3 terminal (pin 56) of channel 3.
OUTPUT BIAS−4
62
Resistor connection to set output sink current for OUTPUT−4 terminal (pin 57) of channel 4.
OUTPUT BIAS−5
3
Resistor connection to set output sink current for OUTPUT−5 terminal (pin 64) of channel 5.
OUTPUT BIAS−6
7
Resistor connection to set output sink current for OUTPUT−6 terminal (pin 4) of channel 6.
OUTPUT GND−1,2,3
53
Ground for channel 1, 2, and 3 output.
OUTPUT GND−4,5,6
61
Ground for channel 4, 5, and 6 output.
OUTPUT VCC−1,3
42
Supply voltage for channel 1 and 3 outputs.
OUTPUT VCC−2
51
Supply voltage for channel 2 output.
OUTPUT VCC−4,5,6
63
Supply voltage for channel 4, 5, and 6 outputs.
OVP−5,6
8
Over-voltage threshold voltage setting for output regulation voltage of channel 5 and 6.
RT
21
Timing resistor connection for oscillation frequency setting.
SCP
23
Capacitor connection for short-circuit protection. When voltage across COMP terminal for each channel is
dropped below the specified threshold voltage, the capacitor connected between SCP and GND is charged by
the constant current source (2.5 µA Typ). If the voltage reaches to 1.5 V, the timer latch circuitry is set and all
channel outputs are forced to turn off.
SOFT START
26
Soft start operation for channel 1 to 4. By connecting a capacitor between this terminal connected internally to
error amplifier noninverting input for channel 1 to 4 and GND, soft start operation is enabled charging a capacitor
with the constant current source (3 µA Typ). Moreover, the same soft start operation is also enabled at the
standby release using STANDBY−3 terminal only for channel 3.
STANDBY
30
ON/OFF common control input for all channels. The all channels output is turned off by adding low-level input
voltage (0.4 V Max) to this terminal, and the reference voltage is also shutdown.
STANDBY−3
29
ON/OFF control input for channel 3. The channel 3 output is turned off by adding low-level input voltage (0.4
V Max) to this terminal.
VCC
VREF
28
Supply voltage
27
1.5 V reference voltage output
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SLVS262 − FEBRUARY 2000
absolute maximum ratings over operating free-air temperature (unless otherwise noted)†
Supply voltage, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 V
Input voltage, VI at OVP, COMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 V
Error amplifier input voltage, V(AMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 V
Output voltage, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 V
Peak output sink current, I(SINK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA
Peak output source current, I(SOURCE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 A
Continuous power total dissipation at (or below) 25°C free-air temperature (see Note 2) . . . . . . . . 1785 mW
Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −20°C to 75°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltages are with respect to GND.
2. Device mounted on a 50 mm × 1.6 mm, fFR4 printed-circuit board.
recommended operating conditions
MIN
Supply voltage, VCC
High-level standby input voltage (pin 29, 30), VI(HS)
NOM
12
V
2
VCC
0.4
V
12
V
Output voltage, VO
Channel 1, 4
−30
Channel 2, 3, 5, 6
−45
Feedback capacitance, C(NF)
0.5
5
Bootstrap capacitance, C(BOOT)
100
500
Bias resistor, R(BIAS)
Timing resistor, R(T)
Timing capacitor, C(T)
UNIT
2.5
Low-level standby input voltage (pin 29, 30), VI(LS)
Current into feedback terminal, IOAMP
MAX
100
V
µA
A
nF
pF
3
20
kΩ
12
100
kΩ
68
1000
Oscillator frequency, f(osc)
0.05
0.8
MHz
pF
Operating free-air temperature, TA
−20
75
°C
electrical characteristics over recommended operating free-air temperature range, VCC = 6 V,
f = 0.43 MHz (unless otherwise noted)
reference section
PARAMETER
Vref
R(EGIN)
Output voltage (pin 27)
R(EGL)
Load regulation
TEST CONDITIONS
TA = 25°C,
VCC = 2.5 V to 12 V,
Line regulation
V(RTC1)
V(RTC2)
Output voltage change with temperature
IOS
Short-circuit output current
6
IOR = −1 mA
IOR = −1 mA
MIN
TYP
MAX
UNIT
1.47
1.50
1.53
V
2
12.5
mV
1
7.5
mV
−0.2%
±2%
−0.2%
±2%
IOL = −0.1 mA to −1 mA
TA = −20°C to 25°C
TA = 25°C to 75°C
Vref = 0 V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
−4
−20
mA
SLVS262 − FEBRUARY 2000
electrical characteristics over recommended operating free-air temperature range, VCC = 6 V,
f = 0.43 MHz (unless otherwise noted) (continued)
undervoltage lockout section
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
V(th)
V(tl)
High-level threshold voltage
2.45
V
Low-level threshold voltage
2.35
V
Vhys
V(R)
Hysteresis
0.05
0.1
V
2.1
2.2
V
TA = 25°C
Reset threshold voltage (VCC)
oscillator section
PARAMETER
TEST CONDITIONS
f(OSC)
f(dev)
Oscillator frequency
C(T) = 100 pF,
Standard deviation of frequency
All the values are constant
f(dv)
f(dT1)
Frequency change with voltage
VCC = 2.5 V to 12 V
TA = −20°C to 25°C
f(dT2)
Frequency change with temperature
MIN
R(T) = 47 kΩ
TYP
MAX
0.43
UNIT
MHz
7%
1%
−0.5%
±4%
0.5%
±4%
MIN
TYP
MAX
UNIT
1.45
1.50
1.55
V
TA = 20°C to 75°C
output voltage monitor section
PARAMETER
TEST CONDITIONS
V(tOM)
Input threshold voltage (COMP terminals: pin 13, 18,
34, 37, 40)
TA = 25°C (channel 1, 2, 3, 4)
V(IOOM)
Input offset voltage (pin 9, 14)
VI(10, 15 pin) = 1.5 V,
TA = 25°C (channel 5,6)
0.55
I(ICOMP)
Input bias current
VI = 1 V
VI = 0.5 V,
−0.8
−2
Pin 13, 18, 34, 37, 40
Pin 9, 14
VI(10, 15 pin) = 1.5 V
V
µA
short-circuit protection control section
PARAMETER
V(tPC)
Input threshold voltage (pin 23)
V(STBY) UVLO standby voltage (pin 23)
VI
I(bPC)
TEST CONDITIONS
MIN
TYP
MAX
UNIT
TA = 25°C
1.45
1.53
1.61
V
20
60
100
mV
10
30
mV
−1
−2.5
−3.5
µA
MIN
TYP
MAX
UNIT
−1
−6
Latched input voltage (pin 23)
Input source current (pin 23)
TA = 25°C
dead-time control section (channel 3)
PARAMETER
I(Idt)
V(t)
V(t100)
TEST CONDITIONS
Input current (DTC−3 terminal: pin 31)
Input threshold voltage
POST OFFICE BOX 655303
VI(31 pin) = 0.5 V
Duty cycle = 0%
0.55
0.65
0.75
Duty cycle = 100%
1.25
1.35
1.45
• DALLAS, TEXAS 75265
µA
V
7
SLVS262 − FEBRUARY 2000
electrical characteristics over recommended operating free-air temperature range, VCC = 6 V,
f = 0.43 MHz (unless otherwise noted) (continued)
error-amplifier section
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
1.46
1.50
1.54
5
40
INV INPUT (pin 11, 16, 19, 33, 36, 39)
−200
−500
nA
INV INPUT (pin 10, 15)
−0.9
−2.5
µA
V(t)
VIO
Input threshold voltage
Input offset current
VO = 1 V (channel 1, 2, 3, 4)
VO = 1 V (channel 5, 6)
IIB
Input bias current
VO = 1 V
VICR
Common-mode input voltage range
VCC = 2.5 V to 12 V
A(v)
Open-loop voltage amplification
B1
Unity-gain bandwidth
VOM+
VOM−
Positive output voltage swing
IOM+
Output sink current
IOM−
0 to
VCC−1
70
dB
6
MHz
V
Negative output voltage swing
Output source current
0.2
VO = 1 V
V
mV
V
Vref−0.1
VO = 1 V
UNIT
0.5
2
Channel 1, 4
−30
−80
Channel 2, 3, 5, 6
−45
−100
MIN
TYP
MAX
V
mA
µA
output voltage limit section (channel 5, 6)
PARAMETER
V(tOV)
V(BOV)
TEST CONDITIONS
Input threshold voltage
VI(10, 15 pin) = 1 V
VI(8 pin) = 1.5 V,
VI(10, 15 pin) = 1 V
Input bias current
0.95
UNIT
1
1.05
V
−0.7
−2
µA
MIN
TYP
MAX
−1
−2.5
−4
TYP
MAX
UNIT
UNIT
soft start section
PARAMETER
I(bss)
TEST CONDITIONS
STANDBY−3 terminal = 2 V
SOFT START terminal = 1 V
Input source current (pin 26)
UNIT
µA
MOSFET DUTY setting section (channel 1, 4)
PARAMETER
D(MOS)
TEST CONDITIONS
ON DUTY
V(FB) = 1 V
MIN
RDUTY = 5 kΩ
20%
RDUTY = 25 kΩ
40%
output section
PARAMETER
TEST CONDITIONS
I(SINK)
Output sink current
I(GSOURCE)
I(GSINK)
MOS gate source current
I(GOH)
I(GOL)
MOS gate high-level output voltage
MIN
TYP
MAX
R(BIAS) = 6.8 kΩ
6.3
8.5
10.7
R(BIAS) = 10 kΩ
4.5
6
7.5
VO(43, 60 pin) = 1 V,
VO(43, 60 pin) = 2 V,
MOS gate sink current
TA = 25°C
TA = 25°C
3.5
MOS gate low-level output voltage
mA
−50
mA
50
mA
4
0.1
0.3
TYP
MAX
V
total device
PARAMETER
I(ccs)
I(cca)
8
TEST CONDITIONS
MIN
UNIT
Standby supply current
STANDBY terminal = 0 V
1
10
µA
Average supply current
R(T) = 47 kΩ
6
9
mA
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS262 − FEBRUARY 2000
PARAMETER MEASUREMENT INFORMATION
Oscillator Triangle
Waveform (Note A)
Error Amplifier Output
(FEED BACK1, 4)
1.35 V
0.65 V
H
PWM Comparator
Output Voltage
L
Dead Time 100%
Output Waveform
(OUTPUT1, 4)
H
Synchronous Rectification
Output Waveform
(MOS GATE1, 4) (Note B)
H
L
L
Output Regulation Voltage
Monitor Waveform
(COMP1, 4)
1.5 V
1.5 V
1.5 V
0V
Vref
+0.7
1.5 V
SCP Terminal Waveform
tpe
H
SCP Comparator Output
L
Power Supply Voltage
VCC
2.45 V TYP
0V
† Protection enable time, tpe = (588 × 103 × Cpe) in seconds
NOTES: A. The oscillator output of channel 1, 4, and 6 is reverse phase for channel 2, 3, and 5.
B. The ON (high-level output state) time for the synchronous rectification output (MOS GATE1, 4) is determined by the resistor value
connected to MOS DUTY terminal (pin 24) and this time is controlled internally without exceeding OFF (high-level output state) of
output (OUTPUT1,4).
Figure 1. Timing Diagram (channel 1, 4)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
SLVS262 − FEBRUARY 2000
PARAMETER MEASUREMENT INFORMATION
Oscillator Triangle
Waveform (Note A)
Error Amplifier Output
(FEED BACK)
1.35 V
0.65 V
H
PWM Comparator
Output Voltage
L
Dead Time 100%
H
Output Waveform
(OUTPUT2)
L
Output Regulation Voltage
Monitor Waveform
(COMP2)
1.5 V
1.5 V
1.5 V
0V
Vref
+0.7
1.5 V
SCP Terminal Waveform
tpe
H
SCP Comparator Output
L
Power Supply Voltage
VCC
2.45 V TYP
0V
† Protection enable time, tpe = (588 × 103 × Cpe) in seconds
NOTE A: The oscillator output of channel 1, 4, and 6 is reverse phase for channel 2, 3, and 5.
Figure 2. Timing Diagram (channel 2)
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS262 − FEBRUARY 2000
PARAMETER MEASUREMENT INFORMATION
Oscillator Triangle
Waveform (Note A)
Dead−Time Input Voltage
(DTC−3)
Error Amplifier Output
(FEED BACK3)
1.35 V
0.65 V
H
PWM Comparator
Output Voltage
L
Dead Time 100%
H
Output Waveform
(OUTPUT3)
L
Output Regulation Voltage
Monitor Waveform
(COMP3)
1.5 V
1.5 V
1.5 V
0V
Vref
+0.7
1.5 V
SCP Terminal Waveform
tpe
H
SCP Comparator Output
L
Power Supply Voltage
VCC
2.45 V TYP
0V
† Protection enable time, tpe = (588 × 103 × Cpe) in seconds
NOTE A: The oscillator output of channel 1, 4, and 6 is reverse phase for channel 2, 3, and 5.
Figure 3. Timing Diagram (channel 3)
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
SLVS262 − FEBRUARY 2000
PARAMETER MEASUREMENT INFORMATION
Oscillator Triangle
Waveform (Note A)
Error Amplifier Output
(FEED BACK5, 6)
1.35 V
0.65 V
H
PWM Comparator
Output Voltage
L
Dead Time 100%
H
Output Waveform
(OUTPUT5, 6)
L
Output Regulation Voltage
Monitor Waveform
(COMP5, 6) (Note B)
1.5 V
1.5 V
1.5 V
0V
Vref
+0.7
1.5 V
SCP Terminal Waveform
tpe
H
SCP Comparator Output
L
Power Supply Voltage
VCC
2.45 V TYP
0V
† Protection enable time, tpe = (588 × 103 × Cpe) in seconds
NOTES: A. The oscillator output of channel 1, 4, and 6 is reverse phase for channel 2, 3, and 5.
B. The threshold voltage at V(A) is set by following the formula below:
V(A) Input voltage of NONINV INPUT terminal (pin 10, 15) −0.55 V
Figure 4. Timing Diagram (channel 5, 6)
12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS262 − FEBRUARY 2000
TYPICAL CHARACTERISTICS
OSCILLATOR FREQUENCY
vs
TIMING RESISTANCE
OSCILLATOR FREQUENCY
vs
FREE-AIR TEMPERATURE
450
VCC=6 V
TA = 25°C
CT = 150 pF
1M
f (osc) −− Oscillator Frequency − kHz
f (osc) −− Oscillator Frequency − Hz
10M
CT = 220 pF
CT = 68 pF
100k
CT = 330 pF
CT = 470 pF
10k
CT = 1000 pF
1k
1k
10k
100k
VCC = 6V
RT = 47 kΩ
CT = 100 pF
440
430
420
410
400
−50
1M
RT − Timing Resistance − Ω
AVERAGE SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
100
AVERAGE SUPPLY CURRENT
vs
SUPPLY VOLTAGE
6.0
10.0
VCC = 6V
RT = 47 kΩ
f (cca) −− Average Supply Current − mA
f (cca) −− Average Supply Current − mA
50
Figure 6
Figure 5
5.5
5.0
4.5
−50
0
TA − Free-Air Temperature − °C
RT = 47 kΩ
TA = 25°C
7.5
5.0
2.5
0.0
0
50
100
TA − Free-Air Temperature − °C
0
3
6
9
12
TA − Free-Air Temperature −°C
Figure 8
Figure 7
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
SLVS262 − FEBRUARY 2000
TYPICAL CHARACTERISTICS
VOLTAGE REFERENCE
vs
FREE-AIR TEMPERATURE
VOLTAGE REFERENCE
vs
SUPPLY VOLTAGE − 1
1.51
2.0
Vref −− Voltage Reference − V
Vref −− Voltage Reference − V
TA = 65 °C
1.50
1.49
VCC = 6 V
IOR = 1 mA
1.48
−50
1.5
1.0
0.5
0.0
0
50
100
0
1
TA − Free-Air Temperature −°C
Figure 10
Figure 9
VOLTAGE REFERENCE
vs
SUPPLY VOLTAGE − 2
2.0
Vref −− Voltage Reference − V
TA = 65 °C
1.5
1.0
0.5
0.0
0
3
6
9
VCC − Supply Voltage − V
Figure 11
14
2
VCC − Supply Voltage − V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
12
3
SLVS262 − FEBRUARY 2000
TYPICAL CHARACTERISTICS
OUTPUT SINK CURRENT
vs
BIAS RESISTANCE
OUTPUT SINK CURRENT
vs
FREE-AIR TEMPERATURE
30
12
TA = 65 °C
10
I (SINK) − Output Sink Current − mA
25
I (SINK) − Output Sink Current − mA
VCC = 6 V
VCC = 10 V
20
15
10
VCC = 6 V
5
VCC = 3 V
0
0
5
10
15
20
25
8
R(BIAS) = 6.8 kΩ
6
R(BIAS) = 10 kΩ
4
2
0
−50
30
0
R(BIAS) − Bias Resistance − kΩ
OUTPUT ON DUTY CYCLE
vs
DEAD-TIME INPUT VOLTAGE
150
MOSFET ON DUTY CYCLE
vs
RESISTANCE
125
75
D(MOS) − MOSFET ”ON” Dity Cycle − %
VCC = 6 V
TA = 65 °C
Duty − Output”On” Dity Cycle − %
100
Figure 13
Figure 12
100
75
50
25
0
0.0
50
TA − Free-Air Temperature −°C
PNP Transistor
Collector
Waveform
(Assuming duty
cycle = 50%)
50
T
This Graph
is Simulation
Data
ton(MOS)
D(MOS)(%)=ton(MOS)/T
25
0
0.5
1.0
1.5
0
Dead-Time Input Voltage − V
25
50
75
R(DUTY) − Resistance − kΩ
Figure 15
Figure 14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
SLVS262 − FEBRUARY 2000
TYPICAL CHARACTERISTICS
MOSFET ON DUTY CYCLE
vs
FREE-AIR TEMPERATURE
MOSFET GATE HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
4.4
VCC = 6V
Ct = 100 pF/Rt =47 kΩ
VFB = 1 V
CH1
40
R(DUTY) = 25 kΩ
20
R(DUTY) = 5 kΩ
0
−50
0
50
V(GOH) − MOSFET Gate High-Level Voltage − V
D(MOS) − MOSFET Gate ”ON” Dity Cycle −%
60
100
VCC = 6V
CH1
4.2
4.0
3.8
−50
TA − Free-Air Temperature − °C
V(GOL) − MOSFET Gate High-Level Voltage − V
0.15
VCC = 6V
CH1
0.10
0.05
50
100
TA − Free-Air Temperature − °C
I (GSOURCE) − MOSFET Gate Output Source Current − mA
MOSFET GATE HIGH-LEVEL OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
0
100
MOSFET GATE OUTPUT SOURCE CURRENT
vs
FREE-AIR TEMPERATURE
− 150
VCC = 6V
CH1
− 100
− 50
− 0
−50
0
50
TA − Free-Air Temperature − °C
Figure 19
Figure 18
16
50
Figure 17
Figure 16
0.00
−50
0
TA − Free-Air Temperature − °C
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
100
SLVS262 − FEBRUARY 2000
TYPICAL CHARACTERISTICS
U.V.L.O THRESHOLD VOLTAGE
vs
FREE-AIR TEMPERATURE
150
2.5
VCC = 6V
CH1
VCC = 6V
V(th/thl) − U.V.L.O Threshold Voltage −V
I (GSINK) − MOSFET Gate Output Sink Current − mA
MOSFET GATE OUTPUT SINK CURRENT
vs
FREE-AIR TEMPERATURE
100
50
0
−50
0
50
V(th)
2.4
V(tl)
2.3
2.2
−50
100
TA − Free-Air Temperature − °C
1.5
VCC = 6V
V(t100)
1.0
V(t0)
0
100
ERROR AMPLIFIER INPUT
THRESHOLD VOLTAGE
vs
FREE-AIR TEMPERATURE
VT − Error Amplifier Input Threshold Voltage − V
V(t0) /V(t100) − Dead-Time Input Threshold Voltage − V
PWM COMPARATOR THRESHOLD
VOLTAGE
vs
FREE-AIR TEMPERATURE
0.0
−50
50
Figure 21
Figure 20
0.5
0
TA − Free-Air Temperature − °C
50
100
1.51
VCC = 6V
VO = 1 V
CH1
1.50
1.49
1.48
−50
TA − Free-Air Temperature − °C
0
50
100
TA − Free-Air Temperature − °C
Figure 23
Figure 22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
SLVS262 − FEBRUARY 2000
TYPICAL CHARACTERISTICS
ERROR AMPLIFIER OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
1.51
VCC = 6V
CH1
1.50
1.49
1.48
−50
0
50
100
VOM− − Error Amplifier Low-evel Output Voltage − V
VOM+ − Error Amplifier High-Level Output Voltage − V
ERROR AMPLIFIER OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
0.06
VCC = 6V
CH1
0.04
0.02
0.00
−50
0
TA − Free-Air Temperature − °C
2.0
VCC = 6V
CH4
TA = 25°C
1.5
1.0
0.5
0.0
− 50
− 75
− 100
ERROR AMPLIFIER OUTPUT VOLTAGE
vs
OUTPUT SINK CURRENT
VOM− − Error Amplifier Low-Level Output Voltage − V
VOM+ − Error Amplifier High-Level Output Voltage − V
ERROR AMPLIFIER OUTPUT VOLTAGE
vs
OUTPUT SOURCE CURRENT
− 25
2.0
VCC = 6V
CH4
TA = 25°C
1.5
1.0
0.5
0.0
0
IOM− − Output Source Current − µA
1
2
IOM− − Output Sink Current − µA
Figure 27
Figure 26
18
100
Figure 25
Figure 24
0
50
TA − Free-Air Temperature − °C
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SLVS262 − FEBRUARY 2000
TYPICAL CHARACTERISTICS
80
ERROR AMPLIFIER OPEN-LOOP GAIN AND
PHASE SHIFT
vs
FREE-AIR TEMPERATURE
S.C.P INPUT SOURCE CURRENT
vs
FREE-AIR TEMPERATURE
−2.0
0
VCC = 6 V
−36
Phase Shift
(Right Scale)
40
−72
20
−108
0
−144
VCC = 5 V
TA = 25°C
−20
100
1k
10k
100k
1M
I (bpc) − S.C.P Input Source Current − µ A
60
Phase Shift − °
AV − Open-Loop Gain − dB
AV = (Left Scale)
−2.2
−2.4
−2.6
−50
−180
10M
Figure 28
100
SOFT START TIME
vs
SOFT START CAPACITANCE
100
100
VCC = 6 V
TA = 25°C
VCC = 6 V
TA = 25°C
80
80
t (ss) − Soft Start Time − mS
t (PE) − Protection Enable Time − µ A
50
Figure 29
PROTECTION ENABLE TIME
vs
S.C.P CAPACITANCE
60
40
20
0
0.00
0
TA − Free-Air Temperature − °C
f − Frequency − MHz
0.05
0.10
0.15
60
40
20
0
0.00
C(SCP) − S.C.P Capacitance − µF
0.05
0.10
0.15
C(SS) − Soft Start Capacitance − µF
Figure 30
Figure 31
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
SLVS262 − FEBRUARY 2000
APPLICATION INFORMATION
bias resistance connection for output sink current setting
The bias resistance connection to set output sink current for each output of channel 1 through 6 (OUTPUT−1
to 6) should be connected as follows (refer to Figure 32):
D For channel 1 and 3, connect OUTPUT BIAS to OUTPUT VCC−1,3 across bias resistance.
D For channel 2, connect OUTPUT BIAS−2 to OUTPUT VCC−2 across bias resistance
D For channel 4, 5, and 6, connect OUTPUT BIAS to OUTPUT VCC−4,5,6 across bias resistance.
OUTPUT VCC−1,3
R−BIAS1
OUTPUT BIAS−1
R−BIAS3
OUTPUT BIAS−3
OUTPUT VCC−2
R−BIAS2
OUTPUT BIAS−2
OUTPUT VCC−4,5,6
R−BIAS4
OUTPUT BIAS−4
R−BIAS5
OUTPUT BIAS−5
R−BIAS6
OUTPUT BIAS−6
TL1466IPM
Figure 32. Bias Resistance Connection for Output Sink Current Setting
20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLVS262 − FEBRUARY 2000
MECHANICAL DATA
PM (S-PQFP-G64)
PLASTIC QUAD FLATPACK
0,27
0,17
0,50
0,08 M
33
48
49
32
64
17
0,13 NOM
1
16
7,50 TYP
Gage Plane
10,20
SQ
9,80
12,20
SQ
11,80
0,25
0,05 MIN
0°−ā 7°
0,75
0,45
1,45
1,35
Seating Plane
0,08
1,60 MAX
4040152 / C 11/96
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Falls within JEDEC MS-026
May also be thermally enhanced plastic with leads connected to the die pads.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
PACKAGE OPTION ADDENDUM
www.ti.com
27-Feb-2006
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TL1466IPMR
ACTIVE
LQFP
PM
64
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
TL1466IPMRG4
ACTIVE
LQFP
PM
64
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
MECHANICAL DATA
MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996
PM (S-PQFP-G64)
PLASTIC QUAD FLATPACK
0,27
0,17
0,50
0,08 M
33
48
49
32
64
17
0,13 NOM
1
16
7,50 TYP
Gage Plane
10,20
SQ
9,80
12,20
SQ
11,80
0,25
0,05 MIN
0°– 7°
0,75
0,45
1,45
1,35
Seating Plane
0,08
1,60 MAX
4040152 / C 11/96
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Falls within JEDEC MS-026
May also be thermally enhanced plastic with leads connected to the die pads.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Mailing Address:
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2006, Texas Instruments Incorporated