TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 D D D D D D Output Swing includes Both Supply Rails Low Noise . . . 12 nV/√Hz Typ at f = 1 kHz Low Input Bias Current . . . 1 pA Typ Fully Specified for Both Single-Supply and Split-Supply Operation Low Power . . . 500 µA Max Common-Mode Input Voltage Range Includes Negative Rail D D D D Low Input Offset Voltage 950 µV Max at TA = 25°C (TLC2262A) Macromodel Included Performance Upgrade for the TS27M2/M4 and TLC27M2/M4 Available in Q-Temp Automotive HighRel Automotive Applications Configuration Control/Print Support Qualification to Automotive Standards description 60 V n – Equivalent Input Noise Voltage – nV/ VN nv//HzHz The TLC2262 and TLC2264 are dual and quadruple operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. The TLC226x family offers a compromise between the micropower TLC225x and the ac performance of the TLC227x. It has low supply current for battery-powered applications, while still having adequate ac performance for applications that demand it. The noise performance has been dramatically improved over previous generations of CMOS amplifiers. Figure 1 depicts the low level of noise voltage for this CMOS amplifier, which has only 200 µA (typ) of supply current per amplifier. EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 50 VDD = 5 V RS = 20 Ω TA = 25°C 40 30 20 10 The TLC226x, exhibiting high input impedance 0 and low noise, are excellent for small-signal 10 102 103 104 conditioning for high-impedance sources, such as f – Frequency – Hz piezoelectric transducers. Because of the micropower dissipation levels, these devices work well Figure 1 in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLC226xA family is available and has a maximum input offset voltage of 950 µV. This family is fully characterized at 5 V and ± 5 V. The TLC2262/4 also makes great upgrades to the TLC27M2/L4 or TS27M2/L4 in standard designs. They offer increased output dynamic range, lower noise voltage and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV2432 and TLV2442. If your design requires single amplifiers, please see the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Advanced LinCMOS is a trademark of Texas Instruments. Copyright 2001, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2262 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C SMALL OUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (JG) PLASTIC DIP (P) TSSOP (PW) CERAMIC FLATPACK (U) 0°C to 70°C 2.5 mV TLC2262CD — — TLC2262CP TLC2262CPW — – 40°C to 125°C 950 µ µV 2.5 mV TLC2262AID TLC2262ID — — — — TLC2262AIP TLC2262IP TLC2262AIPW — — — – 40°C to 125°C 950 µ µV 2.5 mV TLC2262AQD TLC2262QD — — — — — — — — — — – 55°C to 125°C 950 µV 2.5 mV — — TLC2262AMFK TLC2262MFK TLC2262AMJG TLC2262MJG — — — — TLC2262AMU TLC2262MU The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC2262CDR). The PW package is available only left-end taped and reeled. Chips are tested at 25°C. TLC2264 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C SMALL OUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (J) PLASTIC DIP (N) TSSOP (PW) CERAMIC FLATPACK (W) 0°C to 70°C 2.5 mV TLC2264CD — — TLC2264CN TLC2264CPW — – 40°C to 125°C 950 µ µV 2.5 mV TLC2264AID TLC2264ID — — — — TLC2264AIN TLC2264IN TLC2264AIPW — — — – 40°C to 125°C 950 µ µV 2.5 mV TLC2264AQD TLC2264QD — — — — — — — — — — – 55°C to 125°C 950 µV 2.5 mV — — TLC2264AMFK TLC2264MFK TLC2264AMJ TLC2264MJ — — — — TLC2264AMW TLC2264MW The D packages are available taped and reeled. Add R suffix to device type (e.g., TLC2264CDR). The PW package is available only left-end taped and reeled. Chips are tested at 25°C. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2262C, TLC2262AC TLC2262I, TLC2262AI TLC2262Q, TLC2262AQ D, P, OR PW PACKAGE (TOP VIEW) 1 8 2 7 3 6 4 5 NC 1OUT NC VDD+ NC VDD + 2OUT 2IN – 2IN + NC 1IN – NC 1IN + NC 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC 2OUT NC 2IN – NC NC VDD– /GND NC 2IN+ NC 1OUT 1IN – 1IN + VDD – /GND TLC2262M, TLC2262AM . . . FK PACKAGE (TOP VIEW) NC – No internal connection TLC2262M, TLC2262AM . . . JG PACKAGE (TOP VIEW) 1OUT 1IN – 1IN + VDD – /GND 1 8 2 7 3 6 4 5 TLC2262M, TLC2262AM . . . U PACKAGE (TOP VIEW) VDD + 2OUT 2IN – 2IN + NC 1OUT 1IN – 1IN + VCC – /GND 1 10 2 9 3 8 4 7 5 6 NC VCC + 2OUT 2IN – 2IN + NC – No internal connection 1OUT 1IN – 1IN + VDD + 2IN + 2IN – 2OUT 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN – 4IN + VDD – / GND 3IN + 3IN – 3OUT TLC2264M, TLC2264AM . . . FK PACKAGE (TOP VIEW) 1OUT 1IN – 1IN + VDD + 2IN + 2IN – 2OUT 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN – 4IN + VDD – / GND 3IN + 3IN – 3OUT 1IN – 1OUT NC 4OUT 4IN – TLC2264M, TLC2264AM . . . J OR W PACKAGE (TOP VIEW) 1IN + NC VCC + NC 2IN + 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 4IN + NC VCC – /GND NC 3IN + 2IN – 2OUT NC 3OUT 3IN – TLC2264C, TLC2264AC TLC2264I, TLC2264AI TLC2264Q, TLC2264AQ D, N, OR PW PACKAGE (TOP VIEW) NC – No internal connection POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 equivalent schematic (each amplifier) VDD + Q3 Q6 Q9 Q12 Q14 Q16 IN + OUT C1 IN – R5 Q1 Q4 Q13 Q15 Q17 D1 Q2 Q5 R3 R4 Q7 Q8 Q10 Q11 R1 VDD – / GND ACTUAL DEVICE COMPONENT COUNT† TLC2262 TLC2264 Transistors COMPONENT 38 76 Resistors 28 56 9 18 Diodes Capacitors 3 6 † Includes both amplifiers and all ESD, bias, and trim circuitry 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 R2 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V Supply voltage, VDD – (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 8 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 16 V Input voltage, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD– – 0.3 V to VDD+ Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current out of VDD – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P, and PW packages . . . . . . . 260°C J, JG, U, and W packages . . . . . . . 300°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD – . 2. Differential voltages are at IN+ with respect to IN –. Excessive current flows if input is brought below VDD – – 0.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING TA = 85°C POWER RATING TA = 125°C POWER RATING D–8 725 mW 5.8 mW/°C 464 mW 377 mW 145 mW D–14 950 mW 7.6 mW/°C 608 mW 494 mW 190 mW FK 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW J 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW 210 mW JG 1050 mW 8.4 mW/°C 672 mW 546 mW N 1150 mW 9.2 mW/°C 736 mW 598 mW 230 mW P 1000 mW 8.0 mW/°C 640 mW 520 mW 200 mW PW–8 525 mW 4.2 mW/°C 336 mW 273 mW 105 mW PW–14 700 mW 5.6 mW/°C 448 mW 364 mW 140 mW U 700 mW 5.5 mW/°C 452 mW 370 mW 150 mW W 700 mW 5.5 mW/°C 452 mW 370 mW 150 mW recommended operating conditions C SUFFIX MIN Supply voltage, VDD ± ± 2.2 Input voltage range, VI Common-mode input voltage, VIC VDD – VDD – Operating free-air temperature, TA 0 MAX ±8 VDD + – 1.5 VDD + – 1.5 70 I SUFFIX MIN ± 2.2 VDD – VDD – – 40 POST OFFICE BOX 655303 MAX ±8 VDD + – 1.5 VDD + – 1.5 125 Q SUFFIX MIN ± 2.2 VDD – VDD – – 40 • DALLAS, TEXAS 75265 MAX ±8 VDD + – 1.5 VDD + – 1.5 125 M SUFFIX MIN ± 2.2 VDD – VDD – – 55 MAX UNIT ±8 V VDD + – 1.5 VDD + – 1.5 V 125 °C V 5 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2262C electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage IIB Input bias current VICR VDD ± = ± 2.5 V, RS = 50 Ω VIC = 0, VO = 0, RS = 50 Ω Ω, Common mode input voltage range Common-mode 25°C 0.003 µV/mo 25°C 0.5 100 1 Low-level output voltage Large-signal g g differential voltage g amplification IOL = 500 µA IOL = 1 mA VIC = 2 2.5 5V V, IOL = 4 mA 2 5 V, V VIC = 2.5 VO = 1 V to 4 V RL = 50 kΩ‡ VIC = 2 2.5 5V V, 100 25°C 0 to 4 Full range 0 to 3.5 25°C IOL = 50 µA RL = 1 MΩ‡ Differential input resistance µV µV/°C |VIO| ≤ 5 mV IOH = – 100 µA High-level output voltage UNIT 2 25°C VIC = 2 2.5 5V V, ri(d) 2500 Full range VIC = 2.5 V, AVD 300 Full range IOH = – 400 µA VOL MAX 3000 25°C to 70°C IOH = – 20 µA VOH TYP Full range Input offset voltage long-term drift (see Note 4) Input offset current TLC2262C MIN 25°C VIO IIO TA† – 0.3 to 4.2 pA pA V 4.99 25°C 4.85 Full range 4.82 25°C 4.70 Full range 4.60 4.94 V 4.85 25°C 0.01 25°C 0.09 Full range 0.15 0.15 25°C 0.2 Full range 0.3 V 0.3 25°C 0.7 Full range 1 1.2 25°C 80 Full range 55 170 V/mV 25°C 550 25°C 1012 Ω Ω ri(c) Common-mode input resistance 25°C 1012 ci(c) Common-mode input capacitance f = 10 kHz, P package 25°C 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 240 Ω CMRR Common mode rejection ratio Common-mode VIC = 0 to 2.7 V,, VO = 2.5 V,, RS = 50 Ω 25°C 70 Full range 70 kSVR Supply voltage rejection ratio (∆VDD/∆VIO) Supply-voltage VDD = 4.4 V to 16 V,, VIC = VDD /2, No load 25°C 80 Full range 80 IDD Supply current VO = 2 2.5 5V V, No load 25°C Full range 83 dB 95 400 dB 500 500 µA † Full range is 0°C to 70°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2262C operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent input noise q voltage In Equivalent input noise current THD + N Total harmonic distortion plus noise BOM ts φm TEST CONDITIONS VO = 1.5 V to 3.5 V,, CL = 100 pF‡ RL = 50 kΩ‡, TYP 25°C 0.35 0.55 Full range 0.3 25°C 40 f = 1 kHz 25°C 12 f = 0.1 Hz to 1 Hz 25°C 0.7 f = 0.1 Hz to 10 Hz 25°C 1.3 25°C 0.6 AV = 1 Gain-bandwidth product f = 10 kHz, CL = 100 pF‡ RL = 50 kΩ‡, Maximum output-swing bandwidth VO(PP) = 2 V, RL = 50 kΩ‡, AV = 1, CL = 100 pF‡ To 0.1% 0 1% Settling time AV = – 1, Step = 0.5 V to 2.5 V,, RL = 50 kΩ‡, CL = 100 pF‡ ‡ RL = 50 kΩ‡, CL = 100 pF‡ Gain margin TLC2262C MIN f = 10 Hz VO = 0.5 V to 2.5 V, f = 20 kHz, kHz RL = 50 kΩ‡ Phase margin at unity gain TA† MAX UNIT V/µs nV/√Hz µV fA√Hz 0.017% 25°C AV = 10 0.03% 25°C 0.71 MHz 25°C 185 kHz 64 6.4 µs 25°C 01% To 0 0.01% 14 1 14.1 25°C 56° 25°C 11 dB † Full range is 0°C to 70°C. ‡ Referenced to 2.5 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2262C electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise specified) PARAMETER TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage IIB Input bias current VICR VIC = 0, RS = 50 Ω VO = 0, 2500 |VIO| ≤ 5 mV mV, 25°C 0.003 µV/mo 25°C 0.5 100 1 Maximum negative peak output voltage Large-signal differential voltage amplification IO = 50 µA VIC = 0 0, IO = 500 µA VIC = 0 0, IO = 1 mA IO = 4 mA VO = ± 4 V –5 to 4 Full range g –5 to 3.5 25°C VIC = 0, VIC = 0 0, 100 25°C RS = 50 Ω IO = – 100 µA RL = 50 kΩ RL = 1 MΩ Differential input resistance µV µV/°C Full range Common mode input voltage range Common-mode UNIT 2 25°C IO = – 400 µA ri(d) 300 Full range VOM + Maximum positive peak output voltage AVD MAX 3000 25°C to 70°C IO = – 20 µA VOM – TYP Full range Input offset voltage long-term drift (see Note 4) Input offset current TLC2262C MIN 25°C VIO IIO TA† 25°C 4.85 4.82 25°C 4.7 Full range 4.6 25°C V 4.94 V 4.85 – 4.99 25°C – 4.85 Full range – 4.85 25°C – 4.7 Full range – 4.7 Full range pA 4.99 Full range 25°C – 5.3 to 4.2 pA –4 – 4.91 V – 4.8 – 4.3 – 3.8 25°C 80 Full range 55 200 V/mV 25°C 1000 25°C 1012 Ω 25°C 1012 Ω ri(c) Common-mode input resistance ci(c) Common-mode input capacitance f = 10 kHz, P package 25°C 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 220 Ω Common mode rejection ratio CMRR Common-mode VIC = – 5 V to 2.7 V,, VO = 0 V, RS = 50 Ω 25°C 75 Full range 75 25°C 80 Full range 80 kSVR Supply voltage rejection ratio (∆VDD ± /∆VIO) Supply-voltage VDD ± = 2.2 V to ± 8 V,, VIC = 0, No load IDD Supply current VO = 0 V V, No load 25°C Full range 88 dB 95 425 dB 500 500 µA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2262C operating characteristics at specified free-air temperature, VDD ± = ±5 V PARAMETER TEST CONDITIONS VO = ± 1 1.9 9V V, CL = 100 pF F SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent q input noise voltage In Equivalent input noise current THD + N Total harmonic distortion pulse duration RL = 50 kΩ TA† TLC2262C MIN TYP 25°C 0.35 0.55 Full range 03 0.3 MAX UNIT V/µs f = 10 Hz 25°C 43 f = 1 kHz 25°C 12 f = 0.1 Hz to 1 Hz 25°C 0.8 f = 0.1 Hz to 10 Hz 25°C 1.3 25°C 0.6 nV/√Hz µV fA√Hz VO = ± 2.3 V, f = 20 kHz, kHz RL = 50 kΩ AV = 1 Gain bandwidth product Gain-bandwidth f = 10 kHz,, CL = 100 pF RL = 50 kΩ 25°C 0 73 0.73 MHz BOM Maximum output-swing output swing bandwidth VO(PP) = 4.6 V, RL = 50 kΩ, AV = 1, CL = 100 pF 25°C 85 kHz Settling time AV = – 1, Step = – 2.3 V to 2.3 V,, RL = 50 kΩ, CL = 100 pF To 0.1% 0 1% ts RL = 50 kΩ, kΩ CL = 100 pF φm Phase margin at unity gain Gain margin 0.014% 25°C AV = 10 0.024% 71 7.1 µs 25°C To 0.01% 0 01% 16 5 16.5 25°C 57° 25°C 11 dB † Full range is 0°C to 70°C. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2264C electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage IIB Input bias current VICR VDD ± = ± 2.5 V, RS = 50 Ω VIC = 0, VO = 0, 2500 RS = 50 Ω Ω, 25°C 0.003 µV/mo 25°C 0.5 100 1 High-level output voltage Low-level output voltage Large-signal g g differential voltage g amplification 0 to 4 Full range 0 to 3.5 25°C IOL = 50 µA IOL = 500 µA VIC = 2 2.5 5V V, 100 25°C |VIO| ≤ 5 mV IOH = – 100 µA – 0.3 to 4.2 4.85 Full range 4.82 25°C 4.70 Full range 4.60 V 0.01 0.09 Full range Full range VIC = 2 2.5 5V V, IOL = 4 mA Full range VIC = 2.5 2 5 V, V VO = 1 V to 4 V RL = 50 kΩ‡ V 4.85 25°C mA pA 4.94 25°C IOL = 1 pA 4.99 25°C VIC = 2 2.5 5V V, RL = 1 MΩ‡ µV µV/°C Full range Common mode input voltage range Common-mode UNIT 2 25°C VIC = 2.5 V, AVD 300 Full range IOH = – 400 µA VOL MAX 3000 25°C to 70°C IOH = – 20 µA VOH TYP Full range Input offset voltage long-term drift (see Note 4) Input offset current TLC2264C MIN 25°C VIO IIO TA† 0.15 0.15 25°C 0.2 0.3 V 0.3 25°C 0.7 1 1.2 25°C 80 Full range 55 170 V/mV 25°C 550 ri(d) Differential input resistance 25°C 1012 Ω ri(c) Common-mode input resistance 25°C 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 240 Ω CMRR Common mode rejection ratio Common-mode VIC = 0 to 2.7 V,, RS = 50 Ω VO = 2.5 V,, kSVR Supply voltage rejection ratio (∆VDD /∆VIO) Supply-voltage VDD = 4.4 V to 16 V, VIC = VDD /2, No load IDD Supply current (four amplifiers) VO = 2 2.5 5V V, No load 25°C 70 Full range 70 25°C 80 Full range 80 25°C Full range 83 dB 95 0.8 dB 1 1 mA † Full range is 0°C to 70°C. ‡ Referenced to 2.5 V NOTE 4. Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2264C operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent q input noise voltage In Equivalent input noise current THD + N ts φm VO = 1 1.4 4 V to 2 2.6 6V V, CL = 100 pF F‡ RL = 50 kΩ‡, 25°C 0.35 0.55 Full range 03 0.3 40 12 f = 0.1 Hz to 1 Hz 25°C 0.7 f = 0.1 Hz to 10 Hz 25°C 1.3 25°C 0.6 AV = 1, CL = 100 pF‡ To 0.1% 0 1% Settling time AV = – 1, Step = 0.5 V to 2.5 V,, RL = 50 kΩ‡, CL = 100 pF‡ RL = 50 kΩ‡, CL = 100 pF‡ POST OFFICE BOX 655303 nV/√Hz µV fA /√Hz 25°C 0.03% 25°C 0.71 MHz 25°C 185 kHz 64 6.4 µs 25°C To 0.01% 0 01% • DALLAS, TEXAS 75265 UNIT 0.017% AV = 10 RL = 50 kΩ‡, MAX V/µs 25°C VO(PP) = 2 V, RL = 50 kΩ‡, Gain margin † Full range is 0°C to 70°C. ‡ Referenced to 2.5 V TYP 25°C Maximum output-swing bandwidth Phase margin at unity gain MIN f = 1 kHz AV = 1 Total harmonic distortion plus noise TLC2264C TA† f = 10 Hz VO = 0.5 V to 2.5 V, f = 20 kHz, kHz RL = 50 kΩ‡ f = 10 kHz, CL = 100 pF‡ Gain-bandwidth product BOM TEST CONDITIONS 14 1 14.1 25°C 56° 25°C 11 dB 11 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2264C electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise specified) PARAMETER TEST CONDITIONS Input offset voltage αVIO Temperature coefficient of input offset voltage IIB Input bias current VICR 300 2500 VIC = 0, RS = 50 Ω VO = 0, 25°C 0.003 µV/mo 25°C 0.5 100 25°C |VIO| ≤ 5 mV mV, 1 IO = 50 µA IO = 500 µA VIC = 0 0, Maximum negative peak output voltage Large-signal differential voltage amplification –5 to 4 Full range g –5 to 3.5 25°C IO = – 400 µA VIC = 0, 4.85 Full range 4.82 25°C 4.7 Full range 4.6 25°C – 4.85 Full range – 4.85 25°C – 4.7 – 4.7 mA Full range VIC = 0 0, IO = 4 mA Full range RL = 50 kΩ RL = 1 MΩ 25°C pA V 4.94 V 4.85 – 4.99 25°C IO = 1 – 5.3 to 4.2 pA 4.99 25°C VIC = 0 0, VO = ± 4 V 100 25°C RS = 50 Ω IO = – 100 µA µV µV/°C Full range Common mode input voltage range Common-mode UNIT 2 Full range VOM + Maximum positive peak output voltage AVD MAX 3000 25°C to 70°C IO = – 20 µA VOM – TYP Full range Input offset voltage long-term drift (see Note 4) Input offset current TLC2264C MIN 25°C VIO IIO TA† –4 – 4.91 V – 4.8 – 4.3 – 3.8 25°C 80 Full range 55 200 V/mV 25°C 1000 ri(d) Differential input resistance 25°C 1012 Ω ri(c) Common-mode input resistance 25°C 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, 25°C 8 pF zo Closed-loop output impedance f = 100 kHz, 25°C 220 Ω N package AV = 10 VIC = – 5 V to 2.7 V, Common mode rejection ratio CMRR Common-mode kSVR Supply voltage rejection ratio (∆VDD ± /∆VIO) Supply-voltage IDD Supply current (four amplifiers) 25°C 75 VO = 0, RS = 50 Ω VDD ± = ± 2.2 V to ± 8 V, Full range 75 25°C 80 VIC = 0, No load Full range 80 VO = 0 0, No load 25°C Full range 88 dB 95 0.85 dB 1 1 mA † Full range is 0°C to 70°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2264C operating characteristics at specified free-air temperature, VDD ± = ±5 V PARAMETER SR Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak-to-peak equivalent q input noise voltage In Equivalent input noise current THD + N Total harmonic distortion plus noise BOM ts φm TEST CONDITIONS VO = ± 1 1.9 9V V, CL = 100 pF F RL = 50 kΩ, kΩ TLC2264C TA† MIN TYP 25°C 0.35 0.55 Full range 03 0.3 MAX UNIT V/µs f = 10 Hz 25°C 43 f = 1 kHz 25°C 12 f = 0.1 Hz to 1 Hz 25°C 0.8 f = 0.1 Hz to 10 Hz 25°C 1.3 25°C 0.6 nV/√Hz µV fA /√Hz VO = ± 2.3 V, f = 20 kHz, kHz RL = 50 kΩ AV = 1 Gain bandwidth product Gain-bandwidth f = 10 kHz,, CL = 100 pF RL = 50 kΩ,, 25°C 0 73 0.73 MHz Maximum output-swing output swing bandwidth VO(PP) = 4.6 V,, RL = 50 kΩ, AV = 1,, CL = 100 pF 25°C 70 kHz 0 1% To 0.1% Settling time AV = – 1, Step = – 2.3 V to 2.3 V,, RL = 50 kΩ, CL = 100 pF kΩ RL = 50 kΩ, CL = 100 pF Phase margin at unity gain Gain margin † Full range is 0°C to 70°C. POST OFFICE BOX 655303 0.014% 25°C AV = 10 0.024% 71 7.1 µs 25°C To 0 0.01% 01% • DALLAS, TEXAS 75265 16 5 16.5 25°C 57° 25°C 11 dB 13 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2262I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO TEST CONDITIONS TA† TLC2262I MIN 25°C MAX 300 2500 Full range VIC = 0, RS = 50 Ω Input offset current VICR RS = 50 Ω Ω, VOH High level output High-level voltage 0.003 0.003 µV/mo 25°C 0.5 IOH = – 400 µA VIC = 2.5 V, VOL Low-level Low level output voltage VIC = 2 2.5 5V V, VIC = 2 2.5 5V V, AVD Large signal Large-signal differential voltage amplification VIC = 2 2.5 5V V, VO = 1 V to 4 V IOL = 50 µA IOL = 500 µA IOL = 4 mA 0.5 150 150 800 800 1 1 pA pA pA 85°C 150 150 pA Full range 800 800 pA 25°C 0 to 4 Full range g 0 to 3.5 25°C IOH = – 100 µA µV 25°C |VIO| ≤ 5 mV IOH = – 20 µA 950 1500 UNIT µV/°C 25°C Common-mode input voltage range 300 MAX 2 85°C Input bias current TYP 2 Full range IIB MIN 3000 25°C to 85°C VDD ± = ± 2.5 V, VO = 0,, TLC2262AI TYP – 0.3 to 4.2 0 to 4 4.85 Full range 4.82 25°C 4.7 Full range 4.5 V 0 to 3.5 4.99 25°C – 0.3 to 4.2 4.99 4.94 4.85 4.94 V 4.82 4.85 4.7 4.85 4.5 25°C 0.01 25°C 0.09 Full range 0.01 0.15 0.09 0.15 25°C 0.8 Full range 0.15 1 0.7 1.2 100 0.15 V 1 1.2 RL = 50 kΩ‡ 25°C 80 80 170 Full range 50 RL = 1 MΩ‡ 25°C 550 550 50 V/mV ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, P package 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 240 240 Ω CMRR Common-mode rejection ratio VIC = 0 to 2.7 V,, VO = 2.5 V,, RS = 50 Ω 25°C 70 Full range 70 83 70 70 83 dB † Full range is – 40°C to 125°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2262I operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS TA† TLC2262I MIN 25°C 80 Full range 80 TYP TLC2262AI MAX 95 MIN 80 TYP MAX UNIT 95 kSVR Supply-voltage y g rejection ratio (∆VDD /∆VIO) VDD = 4 4.4 4 V to 16 V, V VIC = VDD /2, No load IDD Supply current VO = 2.5 V, No load SR Slew rate at unity gain VO = 1 1.5 5 V to 3 3.5 5V V, CL = 100 pF F‡ RL = 50 kΩ‡, Vn Equivalent q input noise voltage f = 10 Hz 25°C 40 40 f = 1 kHz 25°C 12 12 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.3 1.3 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz, kHz RL = 50 kΩ‡ AV = 1 0.017% 0.017% THD + N 0.03% 0.03% Gain-bandwidth product f = 50 kHz, CL = 100 pF‡ RL = 50 kΩ‡, 25°C 0 82 0.82 0 82 0.82 MHz BOM Maximum outputswing bandwidth VO(PP) = 2 V,, RL = 50 kΩ‡, AV = 1,, CL = 100 pF‡ 25°C 185 185 kHz 64 6.4 64 6.4 Settling time AV = – 1, Step = 0.5 V to 2.5 V,, RL = 50 kΩ‡, CL = 100 pF‡ To 0.1% 0 1% ts 14 1 14.1 14 1 14.1 RL = 50 kΩ‡, CL = 100 pF‡ 25°C 56° 56° 25°C 11 11 25°C φm Phase margin at unity gain dB 80 400 Full range 500 400 500 25°C 0.35 Full range 0 25 0.25 0.55 500 0.35 0.55 V/µs 0 25 0.25 nV/√Hz µV fA√Hz µs 25°C 01% To 0 0.01% POST OFFICE BOX 655303 µA 25°C AV = 10 Gain margin † Full range is – 40°C to 125°C. ‡ Referenced to 2.5 V 500 • DALLAS, TEXAS 75265 dB 15 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2262I electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO TA† TEST CONDITIONS TLC2262I MIN 25°C 25°C to 85°C 25°C 0.003 0.003 µV/mo 25°C 0.5 VOM – VIC = 0 0, IO = 4 mA RL = 50 kΩ pA pA Full range 800 800 pA 1 1 pA 85°C 150 150 pA Full range 800 800 pA –5 to 4 4.85 4.82 25°C 4.7 Full range 4.5 25°C – 4.85 Full range – 4.85 –4 4.94 80 Full range 50 V 4.99 4.85 4.94 V 4.82 4.85 4.7 4.85 4.5 – 4.91 – 4.99 – 4.85 – 4.91 V – 4.85 – 4.3 – 3.8 25°C – 5.3 to 4.2 –5 to 3.5 – 4.99 25°C Full range –5 to 4 4.99 25°C 25°C – 5.3 to 4.2 –5 to 3.5 Full range IO = 50 µA IO = 500 µA 0.5 150 25°C IO = – 100 µA VIC = 0 0, µV µV/°C |VIO| ≤ 5 mV IO = – 400 µA Maximum M i negative ti peak k out ut voltage output 1500 2 Full range VIC = 0, 950 150 IO = – 20 µA M i Maximum positive iti peak k VOM + out ut voltage output 300 UNIT 85°C Input bias current RS = 50 Ω Ω, MAX 2 25°C VICR 2500 TYP VO = 0 Input offset current Common-mode input voltage range 300 MIN 3000 25°C IIB MAX Full range VIC = 0, RS = 50 Ω TLC2262AI TYP –4 – 4.3 – 3.8 200 80 200 AVD L i l diff ti l Large-signal differential voltage am lification amplification 25°C 1000 1000 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, P package 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 220 220 Ω CMRR Common-mode rejection ratio VIC = – 5 V to 2.7 V,, VO = 0, RS = 50 Ω 25°C 75 Full range 75 kSVR Supply-voltage y g rejection j ratio (∆VDD ± /∆VIO) VDD = 4.4 V to 16 V,, VIC = VDD /2, No load 25°C 80 Full range 80 VO = ± 4 V RL = 1 MΩ V/mV 50 88 75 88 75 95 80 80 95 dB dB † Full range is – 40°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2262I operating characteristics at specified free-air temperature, VDD ± = ±5 V PARAMETER TEST CONDITIONS TA† TLC2262I MIN 25°C TLC2262AI TYP MAX 425 500 MIN TYP MAX 425 500 UNIT IDD Supply Current VO = 2.5 V, No load SR Slew rate at unity gain 9V VO = ± 1 1.9 V, CL = 100 pF F kΩ RL = 50 kΩ, Vn Equivalent q input noise voltage f = 10 Hz 25°C 43 43 f = 1 kHz 25°C 12 12 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.8 0.8 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.3 1.3 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = ± 2.3 V, RL = 50 kΩ, kΩ f = 20 kHz AV = 1 0.014% 0.014% THD + N 0.024% 0.024% Gain-bandwidth product f =10 kHz,, CL = 100 pF RL = 50 kΩ,, 25°C 0 73 0.73 0 73 0.73 MHz Maximum output swing output-swing bandwidth VO(PP) = 4.6 V,, RL = 50 kΩ, AV = 1,, CL = 100 pF 25°C 85 85 kHz 0 1% To 0.1% 71 7.1 71 7.1 Settling time AV = – 1, Step = – 2.3 V to 2.3 V,, RL = 50 kΩ, CL = 100 pF 16 5 16.5 16 5 16.5 RL = 50 kΩ, CL = 100 pF 25°C 57° 57° 25°C 11 11 BOM ts φm Phase margin at unity gain Full range 500 25°C 0.35 Full range 0 25 0.25 0.55 500 0.35 0.55 V/µs 0 25 0.25 fA√Hz µs 25°C To 0 0.01% 01% POST OFFICE BOX 655303 µV 25°C AV = 10 Gain margin † Full range is – 40°C to 125°C. nV/√Hz • DALLAS, TEXAS 75265 dB 17 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2264I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO TA† TEST CONDITIONS TLC2264I MIN 25°C VICR 25°C to 125°C VIC = 0, RS = 50 Ω Input offset current Input bias current Common-mode input voltage range RS = 50 Ω Ω, High-level High level output voltage IOH = – 100 µA VIC = 2.5 V, Low-level Low level output voltage VIC = 2 2.5 5V V, VIC = 2 2.5 5V V, AVD Large-signal Large signal differential amplification voltage am lification VIC = 2 2.5 5V V, VO = 1 V to 4 V IOL = 50 µA IOL = 500 µA IOL = 4 mA 300 MAX 950 1500 UNIT µV 2 µV/°C 25°C 0.003 0.003 µV/mo 25°C 0.5 0.5 85°C 150 150 Full range 800 800 1 150 150 Full range 800 800 25°C 0 to 4 Full range 0 to 3.5 – 0.3 to 4.2 0 to 4 4.85 Full range 4.82 25°C 4.7 Full range 4.5 – 0.3 to 4.2 4.99 4.94 4.85 4.94 V 4.82 4.85 4.7 4.85 4.5 25°C 0.01 25°C 0.09 Full range 0.01 0.15 0.09 0.15 25°C pA V 0 to 3.5 4.99 25°C pA 1 85°C 25°C IOH = – 400 µA VOL 2500 TYP 2 |VIO| ≤ 5 mV IOH = – 20 µA VOH 300 MIN 3000 25°C IIB MAX Full range VDD ± =± ± 2.5 V, VO = 0, TLC2264AI TYP 0.8 Full range 0.15 1 0.7 1.2 100 0.15 V 1 1.2 RL = 50 kΩ‡ 25°C 80 80 170 Full range 50 RL = 1 MΩ‡ 25°C 550 550 50 V/mV ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 240 240 Ω CMRR Common-mode rejection ratio VIC = 0 to 2.7 V, RS = 50 Ω VO = 2.5 V, kSVR Supply-voltage rejection ratio (∆VDD /∆VIO) VDD = 4.4 V to 16 V, VIC = VDD /2, No load 25°C 70 Full range 70 25°C 80 Full range 80 83 70 83 70 95 80 dB 95 dB 80 † Full range is – 40°C to 125°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2264I operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS TA† TLC2264I MIN 25°C TLC2264AI TYP MAX 0.8 1 MIN TYP MAX 0.8 1 UNIT IDD Supply current (four amplifiers) VO = 2.5 V, No load SR Slew rate at unity gain 4 V to 2 6V VO = 1 1.4 2.6 V, CL = 100 pF F‡ RL = 50 kΩ‡, Vn Equivalent q input noise voltage f = 10 Hz 25°C 40 40 f = 1 kHz 25°C 12 12 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.3 1.3 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz, kHz RL = 50 kΩ‡ AV = 1 0.017% 0.017% THD + N 0.03% 0.03% Gain-bandwidth product f = 50 kHz, CL = 100 pF‡ RL = 50 kΩ‡, 25°C 0 71 0.71 0 71 0.71 MHz Maximum outputswing bandwidth VO(PP) = 2 V,, RL = 50 kΩ‡, AV = 1,, CL = 100 pF‡ 25°C 185 185 kHz To 0.1% 0 1% 64 6.4 64 6.4 Settling time AV = – 1, Step = 0.5 V to 2.5 V,, RL = 50 kΩ‡, CL = 100 pF‡ 14 1 14.1 14 1 14.1 RL = 50 kΩ‡, CL = 100 pF‡ 25°C 56° 56° 25°C 11 11 BOM ts φm Phase margin at unity gain Full range 1 25°C 0.35 Full range 0 25 0.25 0.55 1 0.35 0.55 V/µs 0 25 0.25 µV fA /√Hz µs 25°C To 0 0.01% 01% POST OFFICE BOX 655303 nV/√Hz 25°C AV = 10 Gain margin † Full range is – 40°C to 125°C. ‡ Referenced to 2.5 V V/µs • DALLAS, TEXAS 75265 dB 19 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2264I electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO TA† TEST CONDITIONS TLC2264I MIN 25°C VICR 25°C to 125°C VO = 0, Input offset current RS = 50 Ω Ω, µV/°C 25°C 0.003 0.003 µV/mo 25°C 0.5 VOM – Maximum negative peak out ut voltage output IO = 500 µA VIC = 0 0, VIC = 0 0, AVD Large signal differential Large-signal voltage am lification amplification IO = 4 VO = ± 4 V mA RL = 50 kΩ 0.5 150 Full range 800 800 1 1 pA pA 85°C 150 150 pA Full range 800 800 pA 25°C –5 to 4 Full range g –5 to 3.5 4.85 Full range 4.82 25°C 4.7 Full range 4.5 25°C – 4.85 Full range – 4.85 Full range –4 80 Full range 50 – 5.3 to 4.2 V –5 to 3.5 4.94 4.99 4.85 4.94 V 4.82 4.85 4.7 4.85 4.5 – 4.91 – 4.99 – 4.85 – 4.91 V – 4.85 – 4.3 – 3.8 25°C RL = 1 MΩ –5 to 4 – 4.99 25°C 25°C – 5.3 to 4.2 4.99 25°C IO = 50 µA VIC = 0, µV 2 25°C IO = – 400 µA 950 1500 UNIT 2 |VIO| ≤ 5 mV IO = – 100 µA 300 MAX 150 IO = – 20 µA Maximum positive peak VOM + out ut voltage output 2500 TYP 85°C Input bias current Common-mode input voltage range 300 MIN 3000 25°C IIB MAX Full range VIC = 0, RS = 50 Ω TLC2264AI TYP –4 – 4.3 – 3.8 200 80 200 V/mV 50 25°C 1000 1000 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 220 220 Ω CMRR Common-mode rejection ratio VIC = – 5 V to 2.7 V, RS = 50 Ω VO = 0, 25°C 75 Full range 75 kSVR Supply-voltage y g rejection j ratio (∆VDD ± /∆VIO) VDD± = ± 2.2 V to ± 8 V, VIC = VDD /2, No load 25°C 80 Full range 80 88 75 88 75 95 80 80 95 dB dB † Full range is – 40°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2264I operating characteristics at specified free-air temperature, VDD ± = ±5 V PARAMETER TEST CONDITIONS TA† TLC2264I MIN 25°C TLC2264AI TYP MAX 0.85 1 MIN TYP MAX 0.85 1 UNIT IDD Supply current (four amplifiers) VO = 0, No load SR Slew rate at unity gain 9V VO = ± 1 1.9 V, CL = 100 pF F kΩ RL = 50 kΩ, Vn Equivalent q input noise voltage f = 10 Hz 25°C 43 43 f = 1 kHz 25°C 12 12 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.8 0.8 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.3 1.3 In Equivalent input noise current 25°C 0.6 0.6 THD + N Total harmonic distortion plus noise VO = ± 2.3 V, RL = 50 kΩ, kΩ f = 20 kHz AV = 1 Gain-bandwidth product f =10 kHz,, CL = 100 pF RL = 50 kΩ,, 25°C 0 73 0.73 0 73 0.73 MHz Maximum outputswing bandwidth VO(PP) = 4.6 V,, RL = 50 kΩ, AV = 1,, CL = 100 pF 25°C 70 70 kHz To 0.1% 0 1% 71 7.1 71 7.1 Settling time AV = – 1, Step = – 2.3 V to 2.3 V,, RL = 50 kΩ, CL = 100 pF 16 5 16.5 16 5 16.5 RL = 50 kΩ, CL = 100 pF 25°C 57° 57° 25°C 11 11 BOM ts φm Phase margin at unity gain Full range 1 25°C 0.35 Full range 0 25 0.25 0.55 1 0.35 0.55 V/µs 0 25 0.25 0.014% 0.014% 0.024% 0.024% fA /√Hz µs 25°C To 0 0.01% 01% POST OFFICE BOX 655303 µV 25°C AV = 10 Gain margin † Full range is – 40°C to 125°C. nV/√Hz • DALLAS, TEXAS 75265 dB 21 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2262Q/M electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS TLC2262Q, TLC2262M MIN VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common-mode input voltage g range g 25°C VIC = 0, RS = 50 Ω Low level output Low-level voltage IOL = 50 µA 5V VIC = 2 2.5 V, IOL = 500 µA Large signal differential Large-signal voltage am lification amplification 5V VIC = 2 2.5 V, VO = 1 V to 4 V IOL = 4 mA 950 1500 µV 25°C 0.003 0.003 µV/mo 25°C 0.5 0.5 800 800 1 1 800 0 to 4 – 0.3 to 4.2 800 0 to 4 0 to 3.5 35 25°C VIC = 2.5 V, 300 UNIT MAX µV/°C |VIO| ≤ 5 mV IOH = – 100 µA TYP 5 25°C RS = 50 Ω Ω, MIN 5 25°C VIC = 2 2.5 5V V, AVD 2500 125°C IOH = – 400 µA VOL 300 125°C IOH = – 20 µA High-level High level output voltage MAX 3000 Full range Full range VOH TYP Full range VDD ± = ± 2.5 V, VO = 0, TLC2262AQ, TLC2262AM 4.85 Full range 4.82 25°C 4.7 Full range 4.5 4.99 4.94 4.85 4.94 V 4.82 4.85 4.7 4.85 4.5 25°C 0.01 25°C 0.09 Full range 0.01 0.15 0.09 0.15 25°C pA V 0 to 3.5 35 4.99 25°C – 0.3 to 4.2 pA 0.8 Full range 0.15 1 0.7 1.2 100 0.15 V 1 1.2 RL = 50 kΩ‡ 25°C 80 80 170 Full range 50 RL = 1 MΩ‡ 25°C 550 550 50 V/mV ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, P package 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 240 240 Ω CMRR Common-mode rejection ratio VIC = 0 to 2.7 V, VO = 2.5 V, RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VDD /∆VIO) VDD = 4.4 V to 16 V, VIC = VDD /2, No load IDD Supply current VO = 2 2.5 5V V, No load 25°C 70 Full range 70 25°C 80 Full range 80 25°C Full range 83 70 83 dB 70 95 80 95 dB 80 400 500 500 400 500 500 µA † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2262Q/M operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TLC2262Q, TLC2262M TA† TEST CONDITIONS RL = 50 kΩ‡, MIN TYP 25°C 0.35 0.55 Full range 0 25 0.25 TLC2262AQ, TLC2262AM MAX MIN TYP 0.35 0.55 Slew rate at unity gain VO = 0 0.5 5 V to 3 3.5 5V V, CL = 100 pF F‡ Vn Equivalent q input noise voltage f = 10 Hz 25°C 40 40 f = 1 kHz 25°C 12 12 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.3 1.3 In Equivalent input noise current 25°C 0.6 0.6 THD + N Total harmonic distortion plus noise SR BOM ts φm VO = 0.5 V to 2.5 V, f = 20 kHz, kHz RL = 50 kΩ‡ AV = 1 Gain-bandwidth product f = 50 kHz, CL = 100 pF‡ RL = 50 kΩ‡, Maximum outputswing bandwidth VO(PP) = 2 V,, RL = 50 kΩ‡, AV = 1,, CL = 100 pF‡ 0 1% To 0.1% Settling time AV = – 1, Step = 0.5 V to 2.5 V,, RL = 50 kΩ‡, CL = 100 pF‡ RL = 50 kΩ‡, CL = 100 pF‡ Phase margin at unity gain V/µs 0 25 0.25 nV/√Hz µV fA√Hz 0.017% 0.017% 0.03% 0.03% 25°C 0 82 0.82 0 82 0.82 MHz 25°C 185 185 kHz 64 6.4 64 6.4 14 1 14.1 14 1 14.1 25°C 56° 56° 25°C 11 11 25°C AV = 10 µs 25°C To 0 0.01% 01% Gain margin † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. ‡ Referenced to 2.5 V POST OFFICE BOX 655303 UNIT MAX • DALLAS, TEXAS 75265 dB 23 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2262Q/M electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS TLC2262Q, TLC2262M MIN VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage longterm drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common-mode input voltage range 25°C VO = 0, Large-signal Large signal differential amplification voltage am lification IO = 4 VO = ± 4 V mA RL = 50 kΩ 0.003 µV/mo 25°C 0.5 0.5 800 –5 to 4 – 5.3 to 4 800 –5 to 4 –5 to 3.5 4.82 25°C 4.7 Full range 4.5 25°C – 4.85 Full range – 4.85 –4 4.85 80 Full range 50 pA V 4.94 V 4.82 4.85 4.7 4.85 4.5 – 4.99 – 4.91 – 4.85 – 4.91 V – 4.85 – 4.3 –4 – 3.8 25°C pA 4.99 4.94 – 4.99 25°C – 5.3 to 4.2 –5 to 3.5 4.99 Full range Full range 1 800 4.85 25°C 800 1 25°C RL = 1 MΩ µV 0.003 25°C IO = 500 µA VIC = 0 0, 950 1500 25°C Full range IO = 50 µA 300 UNIT MAX µV/°C |VIO| ≤ 5 mV IO = – 100 µA TYP 5 25°C RS = 50 Ω Ω, MIN 5 25°C VIC = 0 0, AVD 2500 125°C VIC = 0, Maximum negative peak output out ut voltage 300 125°C IO = – 400 µA VOM – MAX 3000 Full range IO = – 20 µA Maximum positive peak VOM + out ut voltage output TYP Full range VIC = 0, RS = 50 Ω TLC2262AQ, TLC2262AM – 4.3 – 3.8 200 80 200 V/mV 50 25°C 1000 1000 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, P package 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 220 220 Ω CMRR Common-mode rejection ratio VIC = – 5 V to 2.7 V, VO = 0, RS = 50 Ω 25°C 75 Full range 75 kSVR Supply-voltage y g rejection j ratio (∆VDD ± /∆VIO) VDD = 4.4 V to 16 V, VIC = VDD /2, No load 25°C 80 Full range 80 IDD Supply current VO = 0 0, No load 25°C Full range 88 75 88 dB 75 95 80 95 dB 80 425 500 500 425 500 500 µA † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2262Q/M operating characteristics at specified free-air temperature, VDD ± = ±5 V PARAMETER TLC2262Q, TLC2262M TA† TEST CONDITIONS MIN TYP 25°C 0.35 0.55 Full range 0 25 0.25 TLC2262AQ, TLC2262AM MAX MIN TYP 0.35 0.55 UNIT MAX SR Slew rate at unity gain VO = ± 2 V V, CL = 100 pF F Vn Equivalent q input noise voltage f = 10 Hz 25°C 43 43 f = 1 kHz 25°C 12 12 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.8 0.8 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.3 1.3 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = ± 2.3 V, RL = 50 kΩ, kΩ f = 20 kHz AV = 1 0.014% 0.014% THD + N 0.024% 0.024% Gain-bandwidth product f =10 kHz,, CL = 100 pF RL = 50 kΩ,, 25°C 0 73 0.73 0 73 0.73 MHz Maximum outputswing bandwidth VO(PP) = 4.6 V,, RL = 50 kΩ, AV = 1,, CL = 100 pF 25°C 85 85 kHz To 0.1% 0 1% 71 7.1 71 7.1 Settling time AV = – 1, Step = – 2.3 V to 2.3 V,, RL = 50 kΩ, CL = 100 pF 16 5 16.5 16 5 16.5 RL = 50 kΩ, CL = 100 pF 25°C 57° 57° 25°C 11 11 BOM ts φm Phase margin at unity gain RL = 50 kΩ, kΩ V/µs 0 25 0.25 µV fA√Hz 25°C AV = 10 µs 25°C To 0 0.01% 01% Gain margin † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. POST OFFICE BOX 655303 nV/√Hz • DALLAS, TEXAS 75265 dB 25 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2264Q/M electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TA† TEST CONDITIONS TLC2264Q, TLC2264M MIN VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common-mode input voltage range 25°C High-level output voltage VIC = 0, RS = 50 Ω VIC = 2 2.5 5V V, Large-signal Large signal differential voltage am lification amplification VIC = 2 2.5 5V V, VO = 1 V to 4 V IOL = 4 mA µV 0.003 0.003 µV/mo 25°C 0.5 0.5 800 800 1 1 800 0 to 4 – 0.3 to 4.2 800 0 to 4 0 to 3.5 25°C IOL = 500 µA 950 1500 25°C Full range IOL = 50 µA 300 UNIT MAX µV/°C |VIO| ≤ 5 mV IOH = – 100 µA TYP 2 25°C RS = 50 Ω Ω, MIN 2 25°C VIC = 2 2.5 5V V, AVD 2500 125°C VIC = 2.5 V, Low-level output voltage 300 125°C IOH = – 400 µA VOL MAX 3000 Full range IOH = – 20 µA VOH TYP Full range VDD ± = ± 2.5 V, VO = 0, TLC2264AQ, TLC2264AM 4.85 Full range 4.82 25°C 4.7 Full range 4.5 4.99 4.94 4.85 4.94 V 4.82 4.85 4.7 4.85 4.5 25°C 0.01 25°C 0.09 Full range 0.01 0.15 0.09 0.15 25°C pA V 0 to 3.5 4.99 25°C – 0.3 to 4.2 pA 0.8 Full range 0.15 1 0.7 1.2 100 0.15 V 1 1.2 RL = 50 kΩ‡ 25°C 80 80 170 Full range 50 RL = 1 MΩ‡ 25°C 550 550 50 V/mV ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 240 240 Ω CMRR Common-mode rejection j ratio VIC = 0 to 2.7 V, RS = 50 Ω VO = 2.5 V, kSVR Supply-voltage rejection ratio (∆VDD /∆VIO) VDD = 4.4 V to 16 V, IDD Supplyy current (four amplifiers) VO = 2 2.5 5V V, No load 25°C 70 Full range 70 25°C 80 25°C Full range 83 70 83 dB 70 95 0.8 80 1 1 95 0.8 dB 1 1 mA † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2264Q/M operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS RL = 50 kΩ‡, TLC2264Q, TLC2264M TA† MIN TYP 25°C 0.35 0.55 Full range 0 25 0.25 TLC2264AQ, TLC2264AM MAX MIN TYP 0.35 0.55 UNIT MAX SR Slew rate at unity gain VO = 0 0.5 5 V to 3 3.5 5V V, CL = 100 pF F‡ Vn Equivalent q input noise voltage f = 10 Hz 25°C 40 40 f = 1 kHz 25°C 12 12 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.3 1.3 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz, kHz RL = 50 kΩ‡ AV = 1 0.017% 0.017% THD + N 0.03% 0.03% Gain-bandwidth product f = 50 kHz, CL = 100 pF‡ RL = 50 kΩ‡, 25°C 0 71 0.71 0 71 0.71 MHz Maximum outputswing bandwidth VO(PP) = 2 V,, RL = 50 kΩ‡, AV = 1,, CL = 100 pF‡ 25°C 185 185 kHz To 0.1% 0 1% 64 6.4 64 6.4 Settling time AV = – 1, Step = 0.5 V to 2.5 V,, RL = 50 kΩ‡, CL = 100 pF‡ 14 1 14.1 14 1 14.1 RL = 50 kΩ‡, CL = 100 pF‡ 25°C 56° 56° Gain margin 25°C † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. ‡ Referenced to 2.5 V 11 11 BOM ts φm Phase margin at unity gain V/µs 0 25 0.25 µV fA /√Hz 25°C AV = 10 µs 25°C To 0 0.01% 01% POST OFFICE BOX 655303 nV/√Hz • DALLAS, TEXAS 75265 dB 27 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2264Q/M electrical characteristics at specified free-air temperature, VDD± = ±5 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA† TLC2264Q, TLC2264M MIN VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common-mode input voltage range 25°C VO = 0, 2500 950 1500 µV 25°C 0.003 0.003 µV/mo 25°C 0.5 0.5 800 800 1 1 800 –5 to 4 –5 5.3 3 to 4 2 4.2 800 –5 to 4 pA pA –5 5.3 3 to 4 2 4.2 V Full range –5 to 3.5 35 25°C IO = 50 µA IO = 500 µA VIC = 0 0, 300 UNIT MAX µV/°C 25°C 25 C IO = – 100 µA VIC = 0 0, TYP 2 25°C RS = 50 Ω,, |VIO| ≤ 5 mV MIN 2 125°C VIC = 0, VOM – 300 125°C IO = – 400 µA Maximum M i negative ti peak k out ut voltage output MAX 3000 Full range IO = – 20 µA M i Maximum positive iti peak k VOM + out ut voltage output TYP Full range VIC = 0, RS = 50 Ω TLC2264AQ, TLC2264AM IO = 4 mA RL = 50 kΩ 4.99 25°C 4.85 Full range 4.82 25°C 4.7 Full range 4.5 25°C – 4.85 Full range – 4.85 Full range 4.99 4.94 4.85 –4 4.85 4.7 80 Full range 50 V 4.85 4.5 – 4.99 – 4.91 – 4.85 – 4.91 V – 4.85 – 4.3 –4 – 3.8 25°C 4.94 4.82 – 4.99 25°C 25°C –5 to 3.5 35 – 4.3 – 3.8 200 80 200 AVD Large-signal L i l diff differential ti l voltage am lification amplification 25°C 1000 1000 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 220 220 Ω CMRR Common-mode rejection ratio VIC = – 5 V to 2.7 V, VO = 0, RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VDD ± /∆VIO) VDD± = ± 2.2 V to ± 8 V, VIC = VDD /2, No load IDD Supply y current (four amplifiers) VO = 0 0, VO = ± 4 V RL = 1 MΩ No load 25°C 75 Full range 75 25°C 80 Full range 80 25°C Full range V/mV 50 88 75 88 dB 75 95 80 95 dB 80 0.85 1 1 0.85 1 1 mA † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TLC2264Q/M operating characteristics at specified free-air temperature, VDD ± = ±5 V PARAMETER TEST CONDITIONS TLC2264Q, TLC2264M TA† MIN TYP 25°C 0.35 0.55 Full range 0 25 0.25 TLC2264AQ, TLC2264AM MAX MIN TYP 0.35 0.55 UNIT MAX SR Slew rate at unity gain VO = ± 2 V V, CL = 100 pF F Vn Equivalent q input noise voltage f = 10 Hz 25°C 43 43 f = 1 kHz 25°C 12 12 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.8 0.8 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.3 1.3 In Equivalent input noise current 25°C 0.6 0.6 THD + N Total harmonic distortion plus noise VO = ± 2.3 V, RL = 50 kΩ, kΩ f = 20 kHz AV = 1 Gain-bandwidth product f =10 kHz,, CL = 100 pF RL = 50 kΩ,, 25°C 0 73 0.73 0 73 0.73 MHz Maximum outputswing bandwidth VO(PP) = 4.6 V,, RL = 50 kΩ, AV = 1,, CL = 100 pF 25°C 70 70 kHz To 0.1% 0 1% 71 7.1 71 7.1 Settling time AV = – 1, Step = – 2.3 V to 2.3 V,, RL = 50 kΩ, CL = 100 pF 16 5 16.5 16 5 16.5 RL = 50 kΩ, CL = 100 pF 25°C 57° 57° Gain margin 25°C † Full range is – 40°C to 125°C for Q suffix, – 55°C to 125°C for M suffix. 11 11 BOM ts φm Phase margin at unity gain RL = 50 kΩ, kΩ V/µs 0 25 0.25 0.014% 0.014% 0.024% 0.024% µV fA /√Hz 25°C AV = 10 µs 25°C To 0.01% 0 01% POST OFFICE BOX 655303 nV/√Hz • DALLAS, TEXAS 75265 dB 29 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution vs Common-mode input voltage αVIO IIB/IIO Input offset voltage temperature coefficient Distribution Input bias and input offset currents vs Free-air temperature 12 VI Input voltage range vs Supply voltage vs Free-air temperature 13 14 VOH VOL High-level output voltage vs High-level output current 15 Low-level output voltage vs Low-level output current 16, 17 VOM + VOM – Maximum positive output voltage vs Output current 18 Maximum negative output voltage vs Output current 19 VO(PP) Maximum peak-to-peak output voltage vs Frequency 20 IOS Short-circuit output current vs Supply voltage vs Free-air temperature 21 22 VO Output voltage vs Differential input voltage Differential gain vs Load resistance AVD Large-signal differential voltage amplification vs Frequency vs Free-air temperature 26, 27 28, 29 zo Output impedance vs Frequency 30, 31 CMRR Common-mode rejection ratio vs Frequency vs Free-air temperature 32 33 kSVR Supply-voltage rejection ratio vs Frequency vs Free-air temperature 34, 35 36 IDD Supply current vs Supply voltage vs Free-air temperature 37, 38 39, 40 SR Slew rate vs Load capacitance vs Free-air temperature 41 42 VO Vn THD + N φm B1 30 2–5 6, 7 8 – 11 23, 24 25 Inverting large-signal pulse response 43, 44 Voltage-follower large-signal pulse response 45, 46 Inverting small-signal pulse response 47, 48 Voltage-follower small-signal pulse response 49, 50 Equivalent input noise voltage vs Frequency Noise voltage (referred to input) Over a 10-second period 53 Integrated noise voltage vs Frequency 54 Total harmonic distortion plus noise vs Frequency 55 Gain-bandwidth product vs Supply voltage vs Free-air temperature 56 57 Phase margin vs Frequency vs Load capacitance 26, 27 58 Gain margin vs Load capacitance 59 Unity-gain bandwidth vs Load capacitance 60 Overestimation of phase margin vs Load capacitance 61 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51, 52 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC2262 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLC2262 INPUT OFFSET VOLTAGE 25 25 1274 Amplifiers From 2 Wafer Lots VDD± = ± 5 V TA = 25°C 20 Percentage of Amplifiers – % Precentage of Amplifiers – % 1274 Amplifiers From 2 Wafer Lots VDD± = ± 2.5 V TA = 25°C 15 10 5 20 15 10 5 0 – 1.6 – 0.8 0 0.8 VIO – Input Offset Voltage – mV 0 – 1.6 1.6 Figure 2 DISTRIBUTION OF TLC2264 INPUT OFFSET VOLTAGE 16 Percentage of Amplifiers – % Percentage of Amplifiers – % 20 2272 Amplifiers From 2 Wafer Lots VDD ± = ± 2.5 V TA = 25°C 12 8 4 0 – 1.6 1.6 Figure 3 DISTRIBUTION OF TLC2264 INPUT OFFSET VOLTAGE 20 – 0.8 0 0.8 VIO – Input Offset Voltage – mV – 0.8 0 0.8 VIO – Input Offset Voltage – mV 1.6 2272 Amplifiers From 2 Wafer Lots VDD ± = ± 5 V TA = 25°C 16 12 8 4 0 – 1.6 – 0.8 0 0.8 VIO – Input Offset Voltage – mV 1.6 Figure 5 Figure 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 1 VDD = 5 V RS = 50 Ω TA = 25°C VVIO IO – Input Offset Voltage – mV VVIO IO – Input Offset Voltage – mV 1 0.5 0 ÁÁÁ ÁÁÁ 0.5 0 ÁÁ ÁÁ ÁÁ – 0.5 –1 –1 VDD± = ± 5 V RS = 50 Ω TA = 25°C 0 1 2 3 4 – 0.5 –1 –6 –5 –4 –3 –2 –1 0 5 VIC – Common-Mode Input Voltage – V † For curves where VDD = 5 V, all loads are referenced to 2.5 V. 4 30 128 Amplifiers From 2 Wafer Lots VDD± = ± 2.5 V P Package TA = 25°C to 125°C Percentage of Amplifiers – % 25 20 15 10 5 128 Amplifiers From 2 Wafer Lots VDD± = ± 5 V P Package TA = 25°C to 125°C 20 15 10 5 –4 –3 –2 –1 0 1 2 3 4 αVIO – Temperature Coefficient – µV / °C 5 0 –5 –4 –3 –2 –1 0 1 2 3 4 αVIO – Temperature Coefficient – µV / °C Figure 8 Figure 9 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. 32 5 DISTRIBUTION OF TLC2262 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT † 30 Percentage of Amplifiers – % 3 Figure 7 DISTRIBUTION OF TLC2262 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT † 0 –5 2 VIC – Common-Mode Input Voltage – V Figure 6 25 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLC2264 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT† DISTRIBUTION OF TLC2264 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT† 35 35 128 Amplifiers From 2 Wafer Lots VDD ± = ± 2.5 V N Package TA = 25°C to 125°C 25 30 Percentage of Amplifiers – % Percentage of Amplifiers – % 30 128 Amplifiers From 2 Wafer Lots VDD ± = ± 5 V N Package TA = 25°C to 125°C 20 15 10 25 20 15 10 5 5 0 0 –5 –4 –3 –2 –1 0 1 2 3 4 –5 5 –4 αVIO – Temperature Coefficient of Input Offset Voltage – µV / °C –3 2 3 4 5 10 VDD± = ± 2.5 V VIC = 0 V VO = 0 RS = 50 Ω RS = 50 Ω TA = 25°C 8 V VII – Input Voltage Range – V IIO – Input Bias and Input Offset Currents – pA IIIB IB and IIO 1 INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE 450 300 IIB 250 200 150 100 ÁÁ ÁÁ 0 Figure 11 INPUT BIAS AND INPUT OFFSET CURRENTS† vs FREE-AIR TEMPERATURE 350 –1 αVIO – Temperature Coefficient of Input Offset Voltage – µV / °C Figure 10 400 –2 50 IIO 6 4 2 0 | VIO | ≤ 5 mV –2 –4 –6 –8 – 10 0 25 45 65 85 105 TA – Free-Air Temperature – °C 125 2 Figure 12 3 6 7 4 5 | VDD ± | – Supply Voltage – V 8 Figure 13 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS INPUT VOLTAGE RANGE†‡ vs FREE-AIR TEMPERATURE HIGH-LEVEL OUTPUT VOLTAGE†‡ vs HIGH-LEVEL OUTPUT CURRENT 5 6 VDD = 5 V V VOH OH – High-Level Output Voltage – V VDD = 5 V V VII – Input Voltage Range – V 4 3 | VIO | ≤ 5 mV 2 ÁÁ ÁÁ 1 ÁÁ ÁÁ 0 –1 – 75 – 55 – 35 – 15 5 25 45 65 85 TA – Free-Air Temperature – °C 105 125 5 4 TA = 125°C 3 TA = 25°C 2 TA = – 40°C 1 0 0 500 1000 1500 2000 2500 3000 | IOH| – High-Level Output Current – µA Figure 14 LOW-LEVEL OUTPUT VOLTAGE†‡ vs LOW-LEVEL OUTPUT CURRENT 1.4 VDD = 5 V TA = 25°C 1 V VOL OL – Low-Level Output Voltage – V VOL VOL – Low-Level Output Voltage – V 1.2 VIC = 1.25 V VIC = 0 0.8 0.6 VIC = 2.5 V 0.4 ÁÁ ÁÁ 0.2 VDD = 5 V VIC = 2.5 V 1.2 TA = 125°C 1 0.8 TA = 25°C 0.6 TA = – 40°C TA = – 55°C 0.4 0.2 0 0 0 1 2 3 4 5 IOL – Low-Level Output Current – mA 0 1 2 3 4 5 IOL – Low-Level Output Current – mA Figure 16 Figure 17 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. 34 3500 Figure 15 LOW-LEVEL OUTPUT VOLTAGE‡ vs LOW-LEVEL OUTPUT CURRENT ÁÁ ÁÁ ÁÁ TA = – 55°C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS MAXIMUM POSITIVE OUTPUT VOLTAGE† vs OUTPUT CURRENT VVOM OM ++ – Maximum Positive Output Voltage – V VDD± = ± 5 V 5 TA = – 55°C 4 TA = 125°C 3 TA = 25°C 2 TA = – 40°C 1 0 0 500 1000 1500 2000 2500 | IO | – Output Current – µA 3000 3500 VOM – VOM – – Maximum Negative Output Voltage – V – 3.8 6 ÁÁ ÁÁ ÁÁ MAXIMUM NEGATIVE OUTPUT VOLTAGE† vs OUTPUT CURRENT VDD ± = ± 5 V VIC = 0 –4 TA = 125°C – 4.2 TA = 25°C – 4.4 TA = – 40°C TA = – 55°C – 4.6 ÁÁ ÁÁ ÁÁ ÁÁ – 4.8 –5 0 1 2 3 4 IO – Output Current – mA SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE ÁÁ ÁÁ ÁÁ 12 10 RL = 10 kΩ TA = 25°C VDD± = ± 5 V 8 7 6 VDD = 5 V 4 3 2 1 0 103 I OS – Short-Circuit Output Current – mA IOS VO(PP) VO(PP) – Maximum Peak-to-Peak Output Voltage – V MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE†‡ vs FREQUENCY 5 6 Figure 19 Figure 18 9 5 10 VID = – 100 mV 8 VO = 0 TA = 25°C 6 4 2 0 VID = 100 mV –2 –4 104 105 106 2 3 f – Frequency – Hz 4 5 6 7 | VDD ± | – Supply Voltage – V 8 ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. Figure 20 Figure 21 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT † vs FREE-AIR TEMPERATURE OUTPUT VOLTAGE‡ vs DIFFERENTIAL INPUT VOLTAGE 5 VO = 0 VDD± = ± 5 V 12 VDD = 5 V RL = 50 kΩ VIC = 2.5 V TA = 25°C 11 10 9 4 VO – Output Voltage – V IIOS OS – Short-Circuit Output Current – mA 13 VID = – 100 mV 8 7 1 0 –1 VID = 100 mV –2 3 2 1 –3 –4 – 75 – 50 – 25 0 25 50 75 100 0 0 250 500 750 1000 – 1000 – 750 – 500 – 250 VID – Differential Input Voltage – µV 125 TA – Free-Air Temperature – °C Figure 22 Figure 23 DIFFERENTIAL GAIN‡ vs LOAD RESISTANCE OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE VO – Output Voltage – V 3 104 VDD± = ± 5 V VIC = 0 V RL = 50 kΩ TA = 25°C VO(PP) = 2 V TA = 25°C Differential Gain – V/ mV 5 1 –1 103 102 VDD± = ± 5 V VDD = 5 V 10 –3 –5 0 250 500 750 1000 – 1000 – 750 – 500 – 250 VID – Differential Input Voltage – µV 1 103 Figure 24 104 105 RL – Load Resistance – kΩ Figure 25 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 106 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE† AMPLIFICATION AND PHASE MARGIN vs FREQUENCY ÁÁ ÁÁ ÁÁ 60 180° VDD = 5 V CL= 100 pF TA = 25°C 135° 40 Phase Margin 20 90° 45° Gain 0 0° – 20 φom m – Phase Margin AVD AVD – Large-Signal Differential Voltage Amplification – dB 80 – 45° – 40 10 3 10 4 10 5 10 6 – 90° 10 7 f – Frequency – Hz † For curves where VDD = 5 V, all loads are referenced to 2.5 V. Figure 26 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY ÁÁ ÁÁ ÁÁ 60 180° VDD± = ± 5 V CL = 100 pF TA = 25°C 135° 40 Phase Margin 20 90° 45° Gain 0 0° – 20 – 40 10 3 φom m – Phase Margin AVD AVD – Large-Signal Differential Voltage Amplification – dB 80 – 45° 10 4 10 5 10 6 – 90° 10 7 f – Frequency – Hz Figure 27 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION†‡ vs FREE-AIR TEMPERATURE ÁÁ ÁÁ 104 VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V AVD AVD – Large-Signal Differential Voltage Amplification – V/mV AVD AVD – Large-Signal Differential Voltage Amplification – V/mV 104 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION† vs FREE-AIR TEMPERATURE RL = 1 MΩ 103 RL = 50 kΩ 102 ÁÁ ÁÁ RL = 10 kΩ 101 – 75 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C RL = 1 MΩ 103 RL = 50 kΩ 102 RL = 10 kΩ 101 – 75 – 50 125 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C OUTPUT IMPEDANCE‡ vs FREQUENCY OUTPUT IMPEDANCE vs FREQUENCY 1000 1000 VDD± = ± 5 V TA = 25°C z o – Output Impedance – 0 zo Ω VDD = 5 V TA = 25°C 100 AV = 100 10 AV = 10 1 100 10 0.1 102 AV = 100 AV = 10 1 AV = 1 AV = 1 103 104 105 f – Frequency – Hz 106 0.1 102 Figure 30 103 104 105 f – Frequency – Hz Figure 31 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. 38 125 Figure 29 Figure 28 z o – Output Impedance – 0 zo Ω VDD± = ± 5 V VIC = 0 V VO = ± 4 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 106 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS COMMON-MODE REJECTION RATIO†‡ vs FREE-AIR TEMPERATURE COMMON-MODE REJECTION RATIO† vs FREQUENCY 90 CMRR – Common-Mode Rejection Ratio – dB CMRR – Common-Mode Rejection Ratio – dB 100 VDD± = ± 5 V 80 VDD = 5 V 60 40 20 0 101 102 103 104 105 VDD± = ± 5 V 88 86 84 VDD = 5 V 82 80 – 75 106 f – Frequency – Hz – 50 –25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 32 Figure 33 SUPPLY-VOLTAGE REJECTION RATIO† vs FREQUENCY SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY 100 VDD = 5 V TA = 25°C KSVR k SVR – Supply-Voltage Rejection Ratio – dB KSVR k SVR – Supply-Voltage Rejection Ratio – dB 100 80 kSVR + 60 kSVR – 40 20 ÁÁ ÁÁ ÁÁ 0 – 20 101 125 102 103 104 105 106 f – Frequency – Hz VDD± = ± 5 V TA = 25°C 80 kSVR + 60 kSVR – 40 20 ÁÁ ÁÁ ÁÁ 0 – 20 101 Figure 34 102 103 104 f – Frequency – Hz 105 106 Figure 35 † For curves where VDD = 5 V, all loads are referenced to 2.5 V. ‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS TLC2262 SUPPLY CURRENT † vs SUPPLY VOLTAGE SUPPLY-VOLTAGE REJECTION RATIO† vs FREE-AIR TEMPERATURE 600 ÁÁ ÁÁ ÁÁ VO = 0 No Load VDD ± = ± 2.2 V to ± 8 V VO = 0 500 IDD µA I DD – Supply Current – uA k KSVR SVR – Supply-Voltage Rejection Ratio – dB 110 105 100 TA = – 55°C 400 TA = 25°C TA = 125°C TA = 40°C 300 ÁÁ ÁÁ 95 200 100 90 – 75 0 – 50 – 25 0 25 50 75 100 0 125 1 TA – Free-Air Temperature – °C Figure 36 6 2 3 4 5 | VDD ± | – Supply Voltage – V 7 8 Figure 37 TLC2264 SUPPLY CURRENT † vs SUPPLY VOLTAGE TLC2262 SUPPLY CURRENT †‡ vs FREE-AIR TEMPERATURE 1200 600 VO = 0 No Load VDD± = ± 5 V VO = 0 500 TA = – 55°C µA IDD I DD – Supply Current – uA IDD µA I DD – Supply Current – uA 1000 800 TA = 125°C TA = 25°C TA = 40°C 600 ÁÁ ÁÁ ÁÁ 400 VDD = 5 V VO = 2.5 V 300 ÁÁ ÁÁ ÁÁ 400 200 200 100 0 0 1 6 2 3 4 5 | VDD ± | – Supply Voltage – V 7 8 0 – 75 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 39 Figure 38 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS TLC2264 SUPPLY CURRENT †‡ vs FREE-AIR TEMPERATURE SLEW RATE‡ vs LOAD CAPACITANCE 1 1200 VDD ± = ± 5 V VO = 0 0.8 SR – Slew Rate – V/ v/us µs 1000 µA IDD I DD – Supply Current – uA VDD = 5 V AV = – 1 TA = 25°C 800 VDD = 5 V VO = 2.5 V 600 ÁÁ ÁÁ 400 0.6 SR + 0.4 0.2 200 0 – 75 SR – – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 0 101 125 102 103 CL – Load Capacitance – pF Figure 40 Figure 41 SLEW RATE†‡ vs FREE-AIR TEMPERATURE INVERTING LARGE-SIGNAL PULSE RESPONSE‡ 5 1.2 VO VO – Output Voltage – V SR – Slew Rate – v/uss V/ µ 1 SR – 0.8 SR + 0.6 0.4 0.2 0 – 75 104 VDD = 5 V RL = 50 kΩ CL = 100 pF AV = 1 VDD = 5 V RL = 50 kΩ CL = 100 pF 4 A = –1 V TA = 25°C 3 2 1 0 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 125 0 2 4 6 8 10 12 14 16 18 20 t – Time – µs Figure 43 Figure 42 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE† INVERTING LARGE-SIGNAL PULSE RESPONSE 5 5 VDD± = ± 5 V RL = 50 kΩ CL = 100 pF AV = – 1 TA = 25°C VO VO – Output Voltage – V 3 2 VDD = 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C 4 VO VO – Output Voltage – V 4 1 0 –1 –2 3 2 1 –3 –4 –5 0 0 2 4 6 8 10 12 t – Time – µs 14 16 18 0 20 2 4 Figure 44 2 18 20 2.65 VDD = 5 V RL = 50 kΩ CL = 100 pF AV = – 1 TA = 25°C 2.6 VO VO – Output Voltage – V VO VO – Output Voltage – V 3 16 INVERTING SMALL-SIGNAL PULSE RESPONSE† VDD± = ± 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C 4 8 10 12 14 t – Time – µs Figure 45 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 5 6 1 0 –1 –2 –3 2.55 2.5 2.45 –4 –5 2.4 0 2 4 6 8 10 12 t – Time – µs 14 16 18 20 0 2 Figure 46 6 8 10 12 t – Time – µs Figure 47 † For curves where VDD = 5 V, all loads are referenced to 2.5 V. 42 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 14 16 18 20 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS INVERTING SMALL-SIGNAL PULSE RESPONSE 2.65 VDD± = ± 5 V RL = 50 kΩ CL = 100 pF AV = – 1 TA = 25°C 50 VDD = 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C 2.6 VO VO – Output Voltage – V VO VO – Output Voltage – mV 100 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE† 0 – 50 2.55 2.5 2.45 2.4 – 100 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 t – Time – µs Figure 48 V n – Equivalent Input Noise Voltage – nV/ VN nv//HzHz VO VO – Output Voltage – V – 50 – 100 2 4 6 18 20 60 0 0 16 EQUIVALENT INPUT NOISE VOLTAGE† vs FREQUENCY VDD ± = ± 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C 50 14 Figure 49 VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 100 8 10 12 t – Time – µs 8 10 12 t – Time – µs 14 16 18 20 50 VDD = 5 V RS = 20 Ω TA = 25°C 40 30 20 10 0 101 102 103 104 f – Frequency – Hz Figure 51 Figure 50 † For curves where VDD = 5 V, all loads are referenced to 2.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY EQUIVALENT INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD† 1000 VDD± = ± 5 V RS = 20 Ω 50 TA = 25°C 750 500 Noise Voltage – nV V n – Equivalent Input Noise Voltage – nv//Hz VN nV/ Hz 60 40 30 20 250 0 – 250 – 500 10 VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25°C – 750 – 1000 0 101 102 103 f – Frequency – Hz 104 0 2 4 6 t – Time – s Figure 52 TOTAL HARMONIC DISTORTION PLUS NOISE† vs FREQUENCY THD + N – Total Harmonic Distortion Plus Noise – % Integrated Noise Voltage – µ V 100 Calculated Using Ideal Pass-Band Filter Low Frequency = 1 Hz TA = 25°C 10 1 101 102 103 f – Frequency – Hz 104 105 0.1 AV = 100 0.01 AV = 10 AV = 1 VDD = 5 V RL = 50 kΩ TA = 25°C 0.001 101 102 103 f – Frequency – Hz Figure 54 Figure 55 † For curves where VDD = 5 V, all loads are referenced to 2.5 V. 44 10 Figure 53 INTEGRATED NOISE VOLTAGE vs FREQUENCY 0.1 100 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 104 105 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS GAIN-BANDWIDTH PRODUCT †‡ vs FREE-AIR TEMPERATURE GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 1200 f = 10 kHz RL = 50 kΩ CL = 100 pF 900 TA = 25°C VDD = 5 V f = 10 kHz CL = 100 pF Gain-Bandwidth Product – kHz Gain-Bandwidth Product – kHz 940 860 820 780 1000 800 600 740 0 1 2 3 5 4 7 6 400 – 75 8 – 50 – 25 Figure 56 50 75 100 125 GAIN MARGIN vs LOAD CAPACITANCE 20 TA = 25°C TA = 25°C 60° 15 Gain Margin – dB Rnull = 100 Ω φom m – Phase Margin 25 Figure 57 PHASE MARGIN vs LOAD CAPACITANCE 75° 0 TA – Free-Air Temperature – °C | VDD ± | – Supply Voltage – V Rnull = 50 Ω 45° 30° Rnull = 20 Ω 50 kΩ 15° 50 kΩ VI 0° 101 Rnull = 100 Ω 10 Rnull = 50 Ω 5 – + VDD – Rnull = 20 Ω Rnull = 10 Ω VDD + Rnull CL Rnull = 10 Ω Rnull = 0 10 2 10 3 CL – Load Capacitance – pF Rnull = 0 10 4 0 101 Figure 58 10 2 10 3 CL – Load Capacitance – pF 10 4 Figure 59 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For curves where VDD = 5 V, all loads are referenced to 2.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 TYPICAL CHARACTERISTICS UNITY-GAIN BANDWIDTH† vs LOAD CAPACITANCE OVERESTIMATION OF PHASE MARGIN† vs LOAD CAPACITANCE 1000 14° ÁÁ ÁÁ TA = 25°C 12° Overestimation of Phase Margin B1 – Unity-Gain Bandwidth – kHz TA = 25°C 800 600 400 Rnull = 100 Ω 10° 8° Rnull = 50 Ω 6° 4° Rnull = 10 Ω 200 101 10 2 10 3 CL – Load Capacitance – pF 10 4 0 101 Figure 60 10 2 10 3 CL – Load Capacitance – pF Figure 61 † See application information 46 Rnull = 20 Ω 2° POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 4 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 APPLICATION INFORMATION driving large capacitive loads The TLC226x is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 58 and Figure 59 illustrate its ability to drive loads greater than 400 pF while maintaining good gain and phase margins (Rnull = 0). A smaller series resistor (Rnull) at the output of the device (see Figure 62) improves the gain and phase margins when driving large capacitive loads. Figure 58 and Figure 59 show the effects of adding series resistances of 10 Ω, 20 Ω, 50 Ω, and 100 Ω. The addition of this series resistor has two effects: the first is that it adds a zero to the transfer function and the second is that it reduces the frequency of the pole associated with the output load in the transfer function. The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the improvement in phase margin, equation 1 can be used. ∆Θ m1 + tan–1 ǒ 2 × π × UGBW × R null × C Ǔ L (1) Where : + improvement in phase margin UGBW + unity-gain bandwidth frequency R null + output series resistance C L + load capacitance ∆Θ m1 The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 60). To use equation 1, UGBW must be approximated from Figure 60. Using equation 1 alone overestimates the improvement in phase margin, as illustrated in Figure 61. The overestimation is caused by the decrease in the frequency of the pole associated with the load, thus providing additional phase shift and reducing the overall improvement in phase margin. The pole associated with the load is reduced by the factor calculated in equation 2. F + 1 ) gm1 × R (2) null Where : + factor reducing frequency of pole g m + small-signal output transconductance (typically 4.83 × 10 – 3 mhos) R null + output series resistance F For the TLC226x, the pole associated with the load is typically 7 MHz with 100-pF load capacitance. This value varies inversely with CL: at CL = 10 pF, use 70 MHz, at CL = 1000 pF, use 700 kHz, and so on. Reducing the pole associated with the load introduces phase shift, thereby reducing phase margin. This results in an error in the increase in phase margin expected by considering the zero alone (equation 1). Equation 3 approximates the reduction in phase margin due to the movement of the pole associated with the load. The result of this equation can be subtracted from the result of the equation in equation 1 to better approximate the improvement in phase margin. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 47 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 APPLICATION INFORMATION driving large capacitive loads (continued) ∆Θ m2 Where : + tan–1 ȱȧǒ Ǔȳȧ Ȳ ȴ UGBW F × P2 – tan –1 ǒ Ǔ UGBW P2 + reduction in phase margin UGBW + unity-gain bandwidth frequency F + factor from equation 2 P 2 + unadjusted pole (70 MHz @10 pF, (3) ∆Θ m2 7 MHz @100 pF, etc.) Using these equations with Figure 60 and Figure 61 enables the designer to choose the appropriate output series resistance to optimize the design of circuits driving large capacitive loads. 50 kΩ VDD + 50 kΩ VI – Rnull + CL VDD – / GND Figure 62. Series-Resistance Circuit 48 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts, the model generation software used with Microsim PSpice . The Boyle macromodel (see Note 5) and subcircuit in Figure 63 are generated using the TLC226x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3 VCC + 9 RSS 92 FB 10 J1 DP VC J2 IN + 11 RD1 VAD DC 12 C1 R2 – 53 HLIM – + C2 6 – – – + VLN + GCM GA VLIM 8 – RD2 54 4 91 + VLP 7 60 + – + DLP 90 RO2 VB IN – VCC – – + ISS RP 2 1 DLN EGND + – RO1 DE 5 + VE OUT .SUBCKT TLC226x 1 2 3 4 5 C1 11 12 3.560E–12 C2 6 7 15.00E–12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP + VLN 0 21.04E6 –30E6 30E6 30E6 –30E6 GA 6 0 11 12 47.12E–6 GCM 0 6 10 99 4.9E–9 ISS 3 10 DC 8.250E–6 HLIM 90 0 VLIM 1K J1 11 2 10 JX J2 12 1 10 JX R2 6 9 100.0E3 RD1 60 11 21.22E3 RD2 60 12 21.22E3 R01 8 5 120 R02 7 99 120 RP 3 4 26.04E3 RSS 10 99 24.24E6 VAD 60 4 –.6 VB 9 0 DC 0 VC 3 53 DC .65 VE 54 4 DC .65 VLIM 7 8 DC 0 VLP 91 0 DC 1.4 VLN 0 92 DC 9.4 .MODEL DX D (IS=800.0E–18) .MODEL JX PJF (IS=500.0E–15 BETA=281E–6 + VTO= –.065) .ENDS Figure 63. Boyle Macromodel and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 49 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 MECHANICAL INFORMATION D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN PINS ** 0.050 (1,27) 8 14 16 A MAX 0.197 (5,00) 0.344 (8,75) 0.394 (10,00) A MIN 0.189 (4,80) 0.337 (8,55) 0.386 (9,80) DIM 0.020 (0,51) 0.014 (0,35) 14 0.010 (0,25) M 8 0.244 (6,20) 0.228 (5,80) 0.008 (0,20) NOM 0.157 (4,00) 0.150 (3,81) 1 Gage Plane 7 A 0.010 (0,25) 0°– 8° 0.044 (1,12) 0.016 (0,40) Seating Plane 0.069 (1,75) MAX 0.010 (0,25) 0.004 (0,10) 0.004 (0,10) 4040047 / B 03/95 NOTES: A. B. C. D. E. 50 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). Four center pins are connected to die mount pad. Falls within JEDEC MS-012 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 MECHANICAL INFORMATION FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN 18 17 16 15 14 13 NO. OF TERMINALS ** 12 19 11 20 10 A B MIN MAX MIN MAX 20 0.342 (8,69) 0.358 (9,09) 0.307 (7,80) 0.358 (9,09) 28 0.442 (11,23) 0.458 (11,63) 0.406 (10,31) 0.458 (11,63) 21 9 22 8 44 0.640 (16,26) 0.660 (16,76) 0.495 (12,58) 0.560 (14,22) 23 7 52 0.740 (18,78) 0.761 (19,32) 0.495 (12,58) 0.560 (14,22) 24 6 68 25 5 0.938 (23,83) 0.962 (24,43) 0.850 (21,6) 0.858 (21,8) 84 1.141 (28,99) 1.165 (29,59) 1.047 (26,6) 1.063 (27,0) B SQ A SQ 26 27 28 1 2 3 4 0.080 (2,03) 0.064 (1,63) 0.020 (0,51) 0.010 (0,25) 0.020 (0,51) 0.010 (0,25) 0.055 (1,40) 0.045 (1,14) 0.045 (1,14) 0.035 (0,89) 0.045 (1,14) 0.035 (0,89) 0.028 (0,71) 0.022 (0,54) 0.050 (1,27) 4040140 / C 11/95 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a metal lid. The terminals are gold plated. Falls within JEDEC MS-004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 MECHANICAL INFORMATION J (R-GDIP-T**) CERAMIC DUAL-IN-LINE PACKAGE 14 PIN SHOWN PINS ** 14 16 18 20 22 A MAX 0.310 (7,87) 0.310 (7,87) 0.310 (7,87) 0.310 (7,87) 0.410 (10,41) A MIN 0.290 (7,37) 0.290 (7,37) 0.290 (7,37) 0.290 (7,37) 0.390 (9,91) B MAX 0.785 (19,94) 0.785 (19,94) 0.910 (23,10) 0.975 (24,77) 1.100 (28,00) B MIN 0.755 (19,18) 0.755 (19,18) C MAX 0.280 (7,11) 0.300 (7,62) 0.300 (7,62) 0.300 (7,62) C MIN 0.245 (6,22) 0.245 (6,22) 0.245 (6,22) 0.245 (6,22) DIM B 14 8 C 1 7 0.065 (1,65) 0.045 (1,14) 0.100 (2,54) 0.070 (1,78) 0.020 (0,51) MIN 0.930 (23,62) 0.388 (9,65) A 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0°– 15° 0.100 (2,54) 0.023 (0,58) 0.015 (0,38) 0.014 (0,36) 0.008 (0,20) 4040083 / B 04/95 NOTES: A. B. C. D. E. 52 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification on press ceramic glass frit seal only. Falls within MIL-STD-1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 MECHANICAL INFORMATION JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE 0.400 (10,20) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.063 (1,60) 0.015 (0,38) 0°–15° 0.023 (0,58) 0.015 (0,38) 0.015 (0,38) 0.008 (0,20) 0.100 (2,54) 4040107 / B 04/95 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification on press ceramic glass frit seal only Falls within MIL-STD-1835 GDIP1-T8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 53 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 MECHANICAL INFORMATION N (R-PDIP-T**) PLASTIC DUAL-IN-LINE PACKAGE 16 PIN SHOWN PINS ** 14 16 18 20 A MAX 0.775 (19,69) 0.775 (19,69) 0.920 (23.37) 0.975 (24,77) A MIN 0.745 (18,92) 0.745 (18,92) 0.850 (21.59) 0.940 (23,88) DIM A 16 9 0.260 (6,60) 0.240 (6,10) 1 8 0.070 (1,78) MAX 0.035 (0,89) MAX 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0.010 (0,25) M 0°– 15° 0.010 (0,25) NOM 14/18 PIN ONLY 4040049/C 08/95 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.) 54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 MECHANICAL INFORMATION P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE 0.400 (10,60) 0.355 (9,02) 8 5 0.260 (6,60) 0.240 (6,10) 1 4 0.070 (1,78) MAX 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0°– 15° 0.010 (0,25) M 0.010 (0,25) NOM 4040082 / B 03/95 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 55 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 MECHANICAL INFORMATION PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0,32 0,19 0,65 14 0,13 M 8 0,15 NOM 4,50 4,30 6,70 6,10 Gage Plane 0,25 1 7 0°– 8° 0,75 0,50 A Seating Plane 1,20 MAX 0,10 0,10 MIN PINS ** 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064 / D 10/95 NOTES: A. B. C. D. 56 All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 MECHANICAL INFORMATION U (S-GDFP-F10) CERAMIC DUAL FLATPACK 0.250 (6,35) 0.246 (6,10) 0.006 (0,15) 0.004 (0,10) 0.080 (2,03) 0.050 (1,27) 0.045 (1,14) 0.026 (0,66) 0.300 (7,62) 0.350 (8,89) 0.250 (6,35) 1 0.350 (8,89) 0.250 (6,35) 10 0.019 (0,48) 0.015 (0,38) 0.050 (1,27) 0.250 (6,35) 5 6 0.025 (0,64) 0.005 (0,13) 1.000 (25,40) 0.750 (19,05) 4040179 / B 03/95 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 57 TLC226x, TLC226xA Advanced LinCMOS RAIL-TO-RAIL OPERATIONAL AMPLIFIERS SLOS177D – FEBRUARY 1997 – REVISED MARCH 2001 MECHANICAL INFORMATION W (R-GDFP-F16) CERAMIC DUAL FLATPACK Base and Seating Plane 0.285 (7,24) 0.245 (6,22) 0.006 (0,15) 0.004 (0,10) 0.085 (2,16) 0.045 (1,14) 0.045 (1,14) 0.026 (0,66) 0.305 (7,75) 0.275 (6,99) 0.355 (9,02) 0.235 (5,97) 1 0.355 (9,02) 0.235 (5,97) 16 0.019 (0,48) 0.015 (0,38) 0.050 (1,27) 0.440 (11,18) 0.371 (9,42) 0.025 (0,64) 0.015 (0,38) 8 9 1.025 (26,04) 0.745 (18,92) 4040180-3 / B 03/95 NOTES: A. B. C. D. E. 58 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only. Falls within MIL-STD-1835 GDFP1-F16 and JEDEC MO-092AC POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 7-May-2007 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty 5962-9469201Q2A ACTIVE LCCC FK 20 1 TBD 5962-9469201QHA ACTIVE CFP U 10 1 TBD 5962-9469201QPA ACTIVE CDIP JG 8 1 TBD 5962-9469202Q2A ACTIVE LCCC FK 20 1 TBD 5962-9469202QCA ACTIVE CDIP J 14 1 TBD 5962-9469202QDA ACTIVE CFP W 14 1 TBD 5962-9469203Q2A ACTIVE LCCC FK 20 1 TBD 5962-9469203QHA ACTIVE CFP U 10 1 TBD 5962-9469203QPA ACTIVE CDIP JG 8 1 TBD 5962-9469204Q2A ACTIVE LCCC FK 20 1 TBD 5962-9469204QCA ACTIVE CDIP J 14 1 TBD 5962-9469204QDA ACTIVE CFP W 14 1 TLC2262AID ACTIVE SOIC D 8 75 TLC2262AIDG4 ACTIVE SOIC D 8 75 TLC2262AIDR ACTIVE SOIC D TLC2262AIDRG4 ACTIVE SOIC TLC2262AIP ACTIVE TLC2262AIPE4 Lead/Ball Finish MSL Peak Temp (3) POST-PLATE N / A for Pkg Type A42 SNPB N / A for Pkg Type A42 SNPB N / A for Pkg Type POST-PLATE N / A for Pkg Type A42 SNPB N / A for Pkg Type A42 SNPB N / A for Pkg Type POST-PLATE N / A for Pkg Type A42 SNPB N / A for Pkg Type A42 SNPB N / A for Pkg Type POST-PLATE N / A for Pkg Type A42 SNPB N / A for Pkg Type TBD A42 SNPB N / A for Pkg Type Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC2262AIPW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2262AIPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2262AIPWLE OBSOLETE TSSOP PW 8 TLC2262AIPWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2262AIPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2262AMFKB ACTIVE LCCC FK 20 1 TBD TLC2262AMJG ACTIVE CDIP JG 8 1 TBD A42 SNPB N / A for Pkg Type TLC2262AMJGB ACTIVE CDIP JG 8 1 TBD A42 SNPB N / A for Pkg Type TLC2262AMUB ACTIVE CFP U 10 1 TBD A42 SNPB N / A for Pkg Type TLC2262AQD ACTIVE SOIC D 8 75 TBD CU NIPDAU TLC2262AQDR ACTIVE SOIC D 8 2500 TBD Call TI TLC2262CD ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2262CDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2262CDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2262CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM TBD Addendum-Page 1 Call TI Call TI POST-PLATE N / A for Pkg Type Level-1-220C-UNLIM Call TI PACKAGE OPTION ADDENDUM www.ti.com 7-May-2007 Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TLC2262CP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC2262CPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC2262CPW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2262CPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2262CPWLE OBSOLETE TSSOP PW 8 TLC2262CPWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2262CPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2262ID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2262IDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2262IDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2262IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2262IP ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC2262IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC2262MFKB ACTIVE LCCC FK 20 1 TBD Lead/Ball Finish MSL Peak Temp (3) no Sb/Br) TBD Call TI Call TI POST-PLATE N / A for Pkg Type TLC2262MJG ACTIVE CDIP JG 8 1 TBD A42 SNPB N / A for Pkg Type TLC2262MJGB ACTIVE CDIP JG 8 1 TBD A42 SNPB N / A for Pkg Type TLC2262MUB ACTIVE CFP U 10 1 TBD A42 SNPB N / A for Pkg Type TLC2262QD ACTIVE SOIC D 8 75 TBD CU NIPDAU Level-1-220C-UNLIM TLC2262QDR ACTIVE SOIC D 8 2500 TBD CU NIPDAU Level-1-220C-UNLIM TLC2264AID ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264AIDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264AIDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264AIDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264AIN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC2264AINE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC2264AIPW ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264AIPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264AIPWLE OBSOLETE TSSOP PW 14 TLC2264AIPWR ACTIVE TSSOP PW 14 TBD 2000 Green (RoHS & Addendum-Page 2 Call TI CU NIPDAU Call TI Level-1-260C-UNLIM PACKAGE OPTION ADDENDUM www.ti.com 7-May-2007 Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TLC2264AIPWRG4 ACTIVE TSSOP PW 14 TLC2264AMFKB ACTIVE LCCC FK 20 1 TBD TLC2264AMJ ACTIVE CDIP J 14 1 TBD A42 SNPB N / A for Pkg Type TLC2264AMJB ACTIVE CDIP J 14 1 TBD A42 SNPB N / A for Pkg Type TLC2264AMWB ACTIVE CFP W 14 1 TBD A42 SNPB N / A for Pkg Type TLC2264AQD ACTIVE SOIC D 14 50 TBD CU NIPDAU TLC2264AQDR ACTIVE SOIC D 14 2500 TBD Call TI TLC2264CD ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264CDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264CDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264CDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264CN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC2264CNE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC2264CPW ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264CPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264CPWLE OBSOLETE TSSOP PW 14 TBD Call TI TLC2264CPWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264CPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264ID ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264IDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264IDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLC2264IN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC2264INE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type TLC2264MFKB ACTIVE LCCC FK 20 1 TBD Lead/Ball Finish MSL Peak Temp (3) no Sb/Br) 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM POST-PLATE N / A for Pkg Type Level-1-220C-UNLIM Call TI Call TI POST-PLATE N / A for Pkg Type TLC2264MJ ACTIVE CDIP J 14 1 TBD A42 SNPB N / A for Pkg Type TLC2264MJB ACTIVE CDIP J 14 1 TBD A42 SNPB N / A for Pkg Type TLC2264MWB ACTIVE CFP W 14 1 TBD A42 SNPB N / A for Pkg Type TLC2264QD ACTIVE SOIC D 14 50 TBD CU NIPDAU TLC2264QDR ACTIVE SOIC D 14 2500 TBD Call TI Addendum-Page 3 Level-1-220C-UNLIM Call TI PACKAGE OPTION ADDENDUM www.ti.com 7-May-2007 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 4 PACKAGE MATERIALS INFORMATION www.ti.com 7-May-2007 TAPE AND REEL INFORMATION Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com Device 7-May-2007 Package Pins Site Reel Diameter (mm) Reel Width (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant TLC2262AIDR D 8 TAI 330 12 6.4 5.2 2.1 8 12 Q1 TLC2262AIDR D 8 FMX 330 0 6.4 5.2 2.1 8 12 Q1 TLC2262CDR D 8 TAI 330 12 6.4 5.2 2.1 8 12 Q1 TLC2262CDR D 8 FMX 330 0 6.4 5.2 2.1 8 12 Q1 TLC2262IDR D 8 TAI 330 12 6.4 5.2 2.1 8 12 Q1 TLC2262IDR D 8 FMX 330 0 6.4 5.2 2.1 8 12 Q1 TLC2264AIPWR PW 14 MLA 330 12 7.0 5.6 1.6 8 12 Q1 TLC2264CPWR PW 14 MLA 330 12 7.0 5.6 1.6 8 12 Q1 TAPE AND REEL BOX INFORMATION Device Package Pins Site Length (mm) Width (mm) Height (mm) TLC2262AIDR D TLC2262AIDR D 8 TAI 346.0 346.0 61.0 8 FMX 342.9 336.6 TLC2262CDR 20.6 D 8 TAI 346.0 346.0 61.0 TLC2262CDR D 8 FMX 342.9 336.6 20.6 TLC2262IDR D 8 TAI 346.0 346.0 61.0 TLC2262IDR D 8 FMX 342.9 336.6 20.6 TLC2264AIPWR PW 14 MLA 342.9 336.6 20.6 TLC2264CPWR PW 14 MLA 342.9 336.6 20.6 Pack Materials-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 7-May-2007 Pack Materials-Page 3 MECHANICAL DATA MCER001A – JANUARY 1995 – REVISED JANUARY 1997 JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE 0.400 (10,16) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 0.063 (1,60) 0.015 (0,38) 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.023 (0,58) 0.015 (0,38) 0°–15° 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040107/C 08/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification. Falls within MIL STD 1835 GDIP1-T8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MLCC006B – OCTOBER 1996 FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN 18 17 16 15 14 13 NO. OF TERMINALS ** 12 19 11 20 10 A B MIN MAX MIN MAX 20 0.342 (8,69) 0.358 (9,09) 0.307 (7,80) 0.358 (9,09) 28 0.442 (11,23) 0.458 (11,63) 0.406 (10,31) 0.458 (11,63) 21 9 22 8 44 0.640 (16,26) 0.660 (16,76) 0.495 (12,58) 0.560 (14,22) 23 7 52 0.739 (18,78) 0.761 (19,32) 0.495 (12,58) 0.560 (14,22) 24 6 68 0.938 (23,83) 0.962 (24,43) 0.850 (21,6) 0.858 (21,8) 84 1.141 (28,99) 1.165 (29,59) 1.047 (26,6) 1.063 (27,0) B SQ A SQ 25 5 26 27 28 1 2 3 4 0.080 (2,03) 0.064 (1,63) 0.020 (0,51) 0.010 (0,25) 0.020 (0,51) 0.010 (0,25) 0.055 (1,40) 0.045 (1,14) 0.045 (1,14) 0.035 (0,89) 0.045 (1,14) 0.035 (0,89) 0.028 (0,71) 0.022 (0,54) 0.050 (1,27) 4040140 / D 10/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a metal lid. The terminals are gold plated. Falls within JEDEC MS-004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MPDI001A – JANUARY 1995 – REVISED JUNE 1999 P (R-PDIP-T8) PLASTIC DUAL-IN-LINE 0.400 (10,60) 0.355 (9,02) 8 5 0.260 (6,60) 0.240 (6,10) 1 4 0.070 (1,78) MAX 0.325 (8,26) 0.300 (7,62) 0.020 (0,51) MIN 0.015 (0,38) Gage Plane 0.200 (5,08) MAX Seating Plane 0.010 (0,25) NOM 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0.430 (10,92) MAX 0.010 (0,25) M 4040082/D 05/98 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated