INFINEON TLE4247

Datasheet, Rev. 1.01, May 2010
TLE4247
Constant Current Relay Driver
Automotive Power
TLE4247
Table of Contents
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
4.1
4.2
4.3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
5.1
5.2
Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical Characteristics Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Datasheet
2
6
6
7
7
Rev. 1.01, 2010-05-04
Constant Current Relay Driver
1
TLE4247
Overview
Features
•
•
•
•
•
•
Reduces relay hold current to min. 40 mA
Functional at low battery voltage.
Active freewheeling path using relay integrated freewheeling resistor.
Over temperature protection
Green Product (RoHScompliant)
AEC-Q100 qualified
PG-DSO-8 (exposed pad)
Description
The TLE4247 is intended to drive relays with a constant current in order to reduce the coil current during relay hold
phase. For relay activation, the IC pass element works as an activated switch for a limited period of time. After the
activation time period has elapsed, the IC reduces the relay coil current to a lower constant value. Different
operation modes allow adequate functionality also at very low or very high battery voltage.
The IC is suited to operate with relay coil inductance, freewheeling resistor, operating voltage and environment
conditions as required in automotive applications. For details see operation range and electrical characteristics
tables.
Type
Package
Marking
TLE4247 EL40
PG-DSO-8 (exposed pad)
4247-40
Datasheet
3
Rev. 1.01, 2010-05-04
TLE4247
Block Diagram
2
Block Diagram
$
5HOD\
5/
)UHHZKHHOLQJ
5HVLVWRU
5HOD\
&RLO
5)
/5
6
,1
%LDVLQJ
%DQGJDS
&RQVWDQW&XUUHQW
5HOD\'ULYHU
)ZG&WUO
&6
'ULYHU
'
'HOD\
&'
&*1'
%ORFN'LDJUDPVYJ
%
Figure 1
Datasheet
Block Diagram and Simplified Application Circuit
4
Rev. 1.01, 2010-05-04
TLE4247
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
3*'62H[SRVHGSDG
6
,1
QF
QF
QF
QF
'
&*1'
3LQRXWVYJ
Figure 2
Pin Configuration
3.2
Pin Definitions and Functions
Pin
Symbol
Function
1
S
IC Supply; connect to relay coil freewheeling resistor according to Figure 1.
2, 3, 6, 7
n.c.
Not Connected; connection to heat sink area and CGND recommended.
4
D
Delay; for generating the activation time length, connect a ceramic capacitor
between pin D and CGND.
5
CGND
Relay Coil Current Output and IC Ground;
8
IN
Relay Coil Current Input;
connect to relay coil according to Figure 1.
Exposed Pad
–
Exposed Pad;
interconnect with CGND and heat sink area on PCB.
Datasheet
5
Rev. 1.01, 2010-05-04
TLE4247
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Absolute Maximum Ratings 1)
Tj = -40 °C to +150 °C; all voltages with respect to CGND, positive current flowing into pin
(unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Max.
Unit
Conditions
VS > VIN or VIN open;
IS externally not limited
VS < -0.3V
Pin S (IC Supply)
4.1.1
Voltage at pin S
VS
-0.3
45
V
4.1.2
Current into pin S
IS
-400
–
mA
Pin IN (Relay Coil Current Input)
4.1.3
Voltage at pin IN
VIN
-0.3
30
V
VS > VIN or VS open;
IIN externally not limited
4.1.4
Current into pin IN
IIN
-250
400
mA
–
VD
-0.3
6.8
V
Tj
Tstg
-40
150
°C
–
-55
150
°C
–
4
kV
HBM2)
1.5
kV
CDM3)
Pin D (Delay)
4.1.5
Voltage at pin D
Temperatures
4.1.6
Junction Temperature
4.1.7
Storage Temperature
ESD Susceptibility
4.1.8
ESD Resistivity to CGND
4.1.9
ESD Resistivity middle pins
VESD,HBM -4
VESD,CDM -1.5
1) Not subject to production test, specified by design.
2) ESD susceptibility, Human Body Model “HBM” according to EIA/JESD 22-A114B
3) ESD susceptibility, Charged Device Model “CDM” according to EIA/JESD22-C101 or ESDA STM5.3.1
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
Datasheet
6
Rev. 1.01, 2010-05-04
TLE4247
General Product Characteristics
4.2
Pos.
Functional Range
Parameter
Symbol
Limit Values
Min.
Max.
Unit
Conditions
4.2.10
Supply Voltage
VS
3
30
V
–
4.2.11
Input Capacitance
CS
70
–
nF
typ. 100nF/50V
recommended for
compensating line
influences
4.2.12
Delay Capacitance
CD
250
–
nF
typ. 470nF/6.3V
recommended
4.2.13
Tj
Relay Coil Inductance
LR
Relay Coil Series Resistance RL
Relay Freewheeling Resistor RF
-40
150
°C
–
–
1000
mH
–
60
120
Ω
–
420
750
Ω
–
4.2.14
4.2.15
4.2.16
Junction Temperature
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
Thermal Resistance1)
4.3
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
Min.
Typ.
Max.
–
10
–
K/W
–
70
–
K/W
1)
PG-DSO-8 (exposed pad):
4.3.1
Junction to Case Bottom
4.3.2
Junction to Ambient
RthJC
RthJA
–
2
1) EIA/JESD 52_2, FR4, 80 × 80 × 1.5 mm; 35µ Cu, 5µ Sn; 300 mm
1) Not subject to production test, specified by design.
Datasheet
7
Rev. 1.01, 2010-05-04
TLE4247
Operation Modes
5
Operation Modes
5.1
Description
The TLE4247 provides two different operation modes: For relay activation, the IC pass element works as an
activated switch with lowest dropout voltage VDR (see Figure 3 a). After the activation time period tActv has elapsed,
the IC switches to hold mode regulating the relay coil current to constant values (see Figure 3 b).
During commutation, the relay coil current flows from the IC input “IN” to “S” into the relay freewheeling resistor.
A zener structure prevents the IC from overvoltage by limiting the input voltage transient to VZ.
The relay activation time period tActv is generated by charging the external capacitor CD at pin D with a constant
current. This time period starts once the IC supply voltage exceeds VS,Start. In case the IC supply voltage VS falls
below the threshold VS,Hold-Actv, the IC changes to active mode allowing maximum relay current flow at low vehicle
battery voltage.
At low supply voltage, the IC switches to “Low Voltage Mode” with lowest current consumption. As in activation
mode, the IC is working as a switch with lowest dropout voltage.
In order to prevent the IC from excessive power dissipation at high supply voltage, the IC is working as a switch
(High Voltage Mode). A transition to Hold Mode during this mode is not possible.
An overtemperature protection circuit prevents the IC from immediate destruction under fault conditions by
reducing the output current. A thermal balance below 200 °C junction temperature will be established. Please note
that a junction temperature above 150 °C is outside the maximum ratings and reduces the IC lifetime.
6
%LDVLQJ
%DQGJDS
,1
6
)ZG
&RQWURO
,1
%LDVLQJ
%DQGJDS
)ZG
&RQWURO
,,1+ROG
9'5
'ULYHU
'
9=
9=
'ULYHU
'
'HOD\
&*1'
'HOD\
&*1'
%ORFN'LDJUDPB0RGHVVYJ
D$FWLYDWLRQ0RGH
+LJK9ROWDJH0RGH
/RZ9ROWDJH0RGH
Figure 3
Datasheet
E+ROG0RGH
Operation as switch or current source
8
Rev. 1.01, 2010-05-04
TLE4247
Operation Modes
96
96*R+90KL
96*R+90OR
966WDUW
96*R/90
96PLQ
W
W$FWY
9'
9'KL
W
9=
9,1
9'5
W
,,1
,,1+ROG
W
96WRRORZ
+ROG0RGH
/RZ9ROWDJH
0RGH
$FWLYDWLRQ
$FWLYDWLRQ
96WRRORZ $FWLYDWLRQ
/RZ 0RGH
0RGH
0RGH
XQGHILQHG
9ROWDJH
0RGH
/RZ9ROWDJH
+LJK9ROWDJH
0RGH
0RGH
+LJK9ROWDJH0RGH
XQGHILQHG
Figure 4
+ROG0RGH
96WRRORZ
&RQVWDQW&XUUHQW
XQGHILQHG
5HJXODWLRQ
/RZ
9ROWDJH
0RGH
3ULQFLSOH2I2SHUDWLRQVYJ
Principle of Operation
+LJK
9ROWDJH0RGH
96*R+90KL
96*R+90OR
$FWLYDWLRQ0RGH
966WDUW
W$FW
96*R+90KL
+ROG0RGH
96*R/90
/RZ
9ROWDJH0RGH
0RGHVB%XEEOH'LDJUDPVYJ
Figure 5
Datasheet
Conditions of transition between modes, definition of parameters
9
Rev. 1.01, 2010-05-04
TLE4247
Operation Modes
5.2
Electrical Characteristics Tables
Tj = -40 °C to +150 °C,
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Unit
Conditions
Typ.
Max.
1
2
V
IIN-S = 400 mA
45
V
200
°C
IZ = 50 mA
Tj increasing due to power
General
5.2.1
Freewheeling path drop
voltage
VIN-S
5.2.2
Input Zener Voltage
5.2.3
Overtemperature
Shutdown Threshold 1)
VZ
Tj,sd
30
151
–
dissipation generated by
the IC.
Activation Mode, VS ≥ VS,Start, unless otherwise specified
5.2.4
Activation Mode Timing Start
Supply Voltage Threshold
VS,Start
7
8
9
V
VS increasing
5.2.5
Activation Time Period
65
100
135
ms
5.2.6
Dropout Voltage
Activation Mode
tActv
VDR,Actv
–
0.9
1.3
V
5.2.7
Current consumption
Activation Mode
IS,Actv
–
0.85
1.5
mA
CD = 470 nF
IIN = 200 mA
VS = 9V
IIN = 200 mA
VS = 9V
Hold Mode, VS,GoHVM ≥ VS ≥ VS,GoLVM , unless otherwise specified
5.2.8
Relay coil hold current
5.2.9
Current consumption
Hold Mode
IIN,Hold
IS,Hold
40
50
60
mA
–
–
0.85
1.5
mA
VS = 9V
–
1
1.8
mA
VS = 18V
7
8
V
VS decreasing
–
V
Calculated value:
VS,GoLVM,hy =
VS,Start - VS,GoLVM
IIN = 40 mA
Low Voltage Mode, VS,Start ≥ VS ≥ 3 V, unless otherwise specified
5.2.10
Go to Low Voltage Mode
Threshold
VS,GoLVM
5.2.11
Go to Low Voltage Mode
Hysteresis
VS,GoLVM,hy 0.7
1
5.2.12
Dropout voltage
Low Voltage Mode
VDR,LVM
–
0.85
1.3
V
5.2.13
Dropout voltage
Low Voltage Mode
VDR,LVM
–
0.85
1.0
V
IIN = 40 mA;
Tj = 25°C
5.2.14
Current consumption
Low Voltage Mode
IS,LVM
–
0.65
1.1
mA
VS = 3V; IIN = IIN,Hold
–
0.85
1.4
mA
VS = 7V; IIN = IIN,Hold
Datasheet
6
10
Rev. 1.01, 2010-05-04
TLE4247
Operation Modes
Tj = -40 °C to +150 °C,
all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Unit
Conditions
Max.
High Voltage Mode, VS ≥ VS,GoHVM,, unless otherwise specified
5.2.15
Go to High Voltage Mode
Upper Threshold
VS,GoHVM,hi 19
–
21
V
VS increasing
5.2.16
Go to High Voltage Mode
Lower Threshold
VS,GoHVM,lo 18
–
20
V
VS decreasing
5.2.17
Go to High Voltage Mode
Hysteresis
VS,GoHVM,hy 0.7
1
–
V
Calculated value:
5.2.18
Dropout Voltage
High Voltage Mode
VDR,HVM
–
1.1
1.6
V
VS,GoHVM,hy =
VS,GoHVM,hi - VS,GoHVM,lo
IIN = 400 mA; VS = 28V
5.2.19
Current Consumption
High Voltage Mode
IS,HVM
–
1
1.8
mA
IIN = 400 mA; VS = 28V
1) Specified by design, not subject to production test.
Datasheet
11
Rev. 1.01, 2010-05-04
TLE4247
Package Outlines
6
Package Outlines
0.35 x 45˚
1.27
0.41±0.09 2)
0.2
M
0.19 +0.06
0.08 C
Seating Plane
C A-B D 8x
0.64 ±0.25
D
0.2
6 ±0.2
8˚ MAX.
C
0.1 C D 2x
1.7 MAX.
Stand Off
(1.45)
0.1+0
-0.1
3.9 ±0.11)
M
D 8x
Bottom View
8
1
5
1
4
8
4
5
2.65 ±0.2
3 ±0.2
A
B
4.9 ±0.11)
0.1 C A-B 2x
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width
3) JEDEC reference MS-012 variation BA
PG-DSO-8-27-PO V01
1.31
0.65
3
1.27
2.65
5.69
PG-DSO-8-27-FP V01
Figure 6
PG-DSO-8 (exposed pad) Outline and recommended footprint for reflow soldering
Green Product
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
For further information on Infineon packages, please visit our website:
http://www.infineon.com/packages.
Datasheet
12
Dimensions in mm
Rev. 1.01, 2010-05-04
TLE4247
Revision History
7
Revision History
Revision
Date
Changes
1.01
2010-05-04
Final Datasheet.
Datasheet
13
Rev. 1.01, 2010-05-04
Edition 2010-05-04
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2010 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.