INFINEON TLE5011

May 2010
TLE5011
GMR Angle Sensor
Final
Data Sheet
V1.1
Sensors
Edition 2010-05
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2010 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
TLE5011
Revision History: 2010-05, V1.1
Previous Revision: V1.0
Page
Subjects (major changes since last revision)
26
Table 14, register 0x0D updated
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us
to continously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
Final Data Sheet
3
V1.1, 2010-05
TLE5011
Table of Contents
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1
1.1
1.2
1.3
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
2.1
2.2
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Internal Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
GMR Voltage Regulator VRG (VDDG-Voltage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Analog Voltage Regulator VRA (VDDA-Voltage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Digital Voltage Regulator VRD (VDDD-Voltage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Phase-Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Safety Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3
3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GMR Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Offset and Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Offset Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Amplitude Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature-dependent behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Orthogonality Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GMR Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calibration Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Angle Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Components of the Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GMR Error Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature-dependent Offset Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Offset Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Amplitude Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Non-Orthogonality Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Resulting Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GMR Parameters after Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock Supply (CLK Timing Definition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Synchronous Serial Communication Interface (SSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Timing Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.5
3.6
3.6.1
3.6.2
3.6.3
3.7
3.8
3.9
3.9.1
Final Data Sheet
4
6
6
7
7
13
13
13
14
15
15
16
16
16
17
17
17
17
18
18
18
18
18
18
18
18
19
19
19
19
20
20
21
21
22
22
V1.1, 2010-05
TLE5011
Table of Contents
3.9.2
3.9.3
3.9.4
3.9.5
3.9.6
3.9.7
3.9.8
3.10
3.10.1
3.10.2
3.10.3
3.11
3.11.1
3.11.2
3.11.3
3.11.4
4
4.1
SSC Baud rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Spike Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Spike Filter Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Spike Filter On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Filter for DATA and CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Command Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Register Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bit Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reserved Registers (08H to 0BH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Communication via SSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CRC Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Slave-active Byte Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Example1: CRC calculation (Update X and Y and set ADC-Test Mode) . . . . . . . . . . . . . . . . . . .
Example2: Use of two TLE5011 units in a bus mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Test Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Angle Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ADC Test Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Angle Test and Temperature Measurement Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overvoltage Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Supply Voltage Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VDD Overvoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GND-off Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VDD - off Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24
24
24
24
25
25
25
26
26
29
32
33
33
34
35
36
36
37
37
38
39
39
39
39
40
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Outline PG-DSO-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Footprint PG-DSO-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
41
41
41
42
42
42
42
Final Data Sheet
5
V1.1, 2010-05
GMR Angle Sensor
1
1.1
TLE5011
Product Description
Overview
The TLE5011 is a 360° angle sensor that detects the orientation of a
magnetic field by measuring sine and cosine angle components with
monolithic integrated Giant Magneto Resistance (iGMR) elements.
Data communications are accomplished with a bi-directional
Synchronous Serial Communication (SSC) interface that is SPI
compatible.
The sine and cosine values can be read out digitally. These signals can
be digitally processed to calculate the angle orientation of the magnetic
field (magnet). This calculation can be done by using a COordinate
Rotation DIgital Computer (CORDIC) algorithm.
It is possible to connect more than one TLE5011 to one SSC interface of a microcontroller for redundancy or any
other reason. If multiple TLE5011 devices are used, the synchronization of the connected TLE5011 is performed
by a broadcast command.
Each connected TLE5011 can be addressed by a dedicated Chip Select CS pin.
Type
Marking
Ordering Code
Package
TLE5011
5011
SP000393517
PG-DSO-8
Final Data Sheet
6
V1.1, 2010-05
TLE5011
Product Description
1.2
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Features
Giant Magneto Resistance (GMR)-based principle
Integrated magnetic field sensing for angle measurement
Full 0 - 360° angle measurement
Highly accurate single-bit SD-ADC
16-bit representation of sine / cosine values on the interface
Wide magnetic operating range: 30mT to 50mT
Bi-directional SSC interface up to 2 Mbit/s
3-pin SSC interface, SPI compatible with open drain
ADCs and filters synchronized with external commands via SSC
Test resistors for simulating angle values
Core supply voltage 2.5 V
0.25-µm CMOS technology
Automotive qualified: -40°C to +150°C (junction temperature)
Latch-up immunity according JEDEC standard
ESD > 2 kV (HBM)
Green package with lead-free (Pb-free) plating
1.3
Application Example
The TLE5011 GMR angle sensor is designed for angular position sensing in automotive applications, such as:
•
•
•
•
Steering angle
Brushless DC motor commutation (e.g. Electric Power Steering (EPS))
Rotary switch
General angular sensing
Final Data Sheet
7
V1.1, 2010-05
TLE5011
Functional Description
2
Functional Description
2.1
General
The GMR angle sensor is implemented in vertical integration. This means that the GMR active areas are
integrated above the logic portion of the TLE5011 device. GMR elements change their resistance depending on
the direction of the magnetic field.
Four individual GMR elements are connected to one Wheatstone sensor bridge. These GMR elements sense
either of two components of the applied magnetic field:
•
•
X component, VX (cosine)
Y component, VY (sine)
The advantage of a full-bridge structure is that the amplitude of the GMR signal is doubled.
GMR Resistors
S
0°
VX
VY
N
ADCX+
ADCX -
GND
ADCY +
ADCY-
VDDG
90°
Figure 1
Sensitive Bridges of the GMR Angle Sensor
Note: In Figure 1, the arrows in the resistor symbols denote the direction of the reference layer, which is used for
the further explanation (Figure 2).
The output signal of each bridge is only unambiguous over 180° between two maxima. Therefore two bridges are
orientated orthogonally to each other to measure the 360° angle range.
Using the ARCTAN function, the true 360° angle value can be calculated that is represented by the relation of the
cosine (here X) and sine (here Y) signals.
Because only the relative values influence the result, the absolute size of the two signals is of minor importance.
Therefore, most influences on the amplitudes are compensated.
Final Data Sheet
8
V1.1, 2010-05
TLE5011
Functional Description
Y Component (SIN)
VY
X Component (COS)
VX
V
VX (COS)
90°
0°
180°
270°
360°
Angle α
VY (SIN)
Figure 2
Ideal Output of the GMR Angle Sensor
2.2
Pin Configuration
Figure 3
2.3
Table 1
8
7
6
5
1
2
3
4
Center of
Sensitive Area
Pin Configuration (Top View)
Pin Description
Pin Describtion
Pin No.
Symbol
In/Out
Function
1
CLK
I
Chip Clock
2
SCK
I
SSC Clock
3
CS
I
SSC Chip Select
4
DATA
I/O
SSC Data, open drain
5
TST1
I/O
Test Pin 1, must be connected to GND
6
VDD
-
Supply Voltage
7
GND
-
Ground
8
TST2
I/O
Test Pin 2, must be connected to GND
Final Data Sheet
9
V1.1, 2010-05
TLE5011
Functional Description
2.4
Block Diagram
The block diagram shows all switches in the reset position.
GND
VDD
GND-off
Comp
TST 1
VDD_max
VDD_OV
Comp
VDD-off
Comp
CLK
SCK
SCK
VRG VRG_OV
VRG_Rst
VRA
VRA_OV
VRA_Rst
VRD VRD_OV
SSC
VRD_Rst
DATA
CS
Angle
Voltage
GMR X
Temperature
Sensor
VDDG
A
D
2
1
GND
Comb
Filter
16
FSYNC
FIR
Filter 16
XH
XL
Control
FSM
FCNT
VDDG
A
D
2
GND
1
Comb 16
Filter
FIR 16
Filter
YH
YL
Angle
Voltage
GMR Y
Analog Clock
Digital Clock
2
VRG_Rst
VRA_Rst
VRD_Rst
differential
TLE5011
Reset
PLL
CLK
Lock
Digital Reset
TST1
Figure 4
TST 2
Block Diagram
Final Data Sheet
10
V1.1, 2010-05
TLE5011
Functional Description
2.5
Functional Block Description
2.5.1
Internal Power Supply
The internal stages of the TLE5011 are supplied with different voltage regulators:
•
•
•
GMR Voltage Regulator VRG
Analog Voltage Regulator VRA
Digital Voltage Regulator VRD
Each voltage regulator has its own overvoltage and undervoltage detection circuits.
2.5.2
GMR Voltage Regulator VRG (VDDG-Voltage)
The GMR voltage regulator supplies all GMR parts:
•
•
•
GMR bridges
Test voltages for angle test
ADC reference voltage
The voltages are monitored in the VRG overvoltage and undervoltage detectors.
2.5.3
Analog Voltage Regulator VRA (VDDA-Voltage)
The analog voltage regulator supplies the analog parts:
•
•
•
•
•
ADCs
PLL (analog)
VDD-off comparator
GND-off comparator
VDD Overvoltage detection
The voltages are monitored in the VRA overvoltage and undervoltage detectors.
2.5.4
Digital Voltage Regulator VRD (VDDD-Voltage)
The digital voltage regulator supplies all digital parts:
•
•
•
•
•
Comb filters, FIR filters
PLL (digital)
Control FSM with bitmap
SSC interface
Counters (Reset, FSYNC, FCNT)
The voltages are monitored in the VRD overvoltage and undervoltage detectors.
2.5.5
Phase-Locked Loop (PLL)
The clock for the sensors is provided externally. This ensures synchronous operation in case of multiple system
participants.
The sensor has its own PLL to generate the necessary clock frequency for the chip operation.
Final Data Sheet
11
V1.1, 2010-05
TLE5011
Functional Description
2.5.6
Safety Features
The TLE5011 has a multiplicity on safety features to support Safety Integrity Level (SIL). Sensors meeting this
performance standard are identified by Infineon with the following logo:
Figure 5
PRO SIL Logo
Safety features are:
•
•
•
•
•
•
•
•
•
Angle test (generated via test voltages feeding the ADC).
Crossed signal paths (switchable for comparison)
Invertable ADC bitstreams
Overvoltage and undervoltage detection of internal and external voltages
VDD-off and GND-off to detect supply malfunctions
Frame counter and synchronisation counter
Separate bandgap-reference voltages for regulators and comparators
CRC-protected SSC protocol
Locked configuration registers
Disclaimer
PRO-SIL™ is a Registered Trademark of Infineon Technologies AG
The PRO-SIL™ Trademark designates Infineon products which contain SIL Supporting Features.
SIL Supporting Features are intended to support the overall System Design to reach the desired SIL (according
to IEC61508) or A-SIL (according to ISO26262) level for the Safety System with high efficiency.
SIL respectively A-SIL certification for such a System has to be reached on system level by the System Responsible at an accredited Certification Authority.
SIL stands for Safety Integrity Level (according to IEC 61508)
A-SIL stands for Automotive-Safety Integrity Level (according to ISO 26262)
Final Data Sheet
12
V1.1, 2010-05
TLE5011
Specification
3
Specification
3.1
Application Circuit
The application circuit shows the microcontroller version with open-drain capabilities.
12V
Voltage
Regulator
VDD
SSC
CLK
each
100 R
1k
VDD
100 R
DATA_o
CAN RX
CAN TX
CAN
Tranceiver
CAN µController
Master
GMR-Sensor
TLE5011
DATA_i
SCK
100 nF
GND
CSQ
GND
Figure 6
Application Circuit
A complete system may consist of one TLE5011 and a microcontroller. The second TLE5011 may be used for
redundancy to increase system reliability. The microcontroller should contain a CORDIC coprocessor for fast
angle calculations, and flash memory for the calibration data storage.
3.2
Absolute Maximum Ratings
Table 2
Absolute Maximum Rating Parameters
Parameter
Symbol
Limit Values
min.
Unit
Notes
max.
Voltage on VDD pin with respect VDD
to ground (VSS)
-0.5
6.5
V
max 40 h / lifetime
Voltage on any pin with
respect to ground (VSS)
VIN
-0.5
6.5
V
VDD + 0.5 V may not be
exceeded
Junction temperature
TJ
-40
150
°C
150
°C
for 1000 h not additive
-
|125|
mT
max 5 min. @ tA = 25°C
-
|100|
max 5 h @ tA = 25°C
-
|70|
max 1000 h @ tA = 85°C
not additive
-
|60|
max 1000 h @ tA = 100°C
not additive
-40
150
Magnetic field induction
Storage temperature
B
TST
°C
without magnetic field
Note: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are
absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.
Final Data Sheet
13
V1.1, 2010-05
TLE5011
Specification
3.3
Operating Range
To ensure correct operation of the TLE5011, the operating conditions identified in Table 3 must not be exceeded.
All parameters specified in the following sections refer to these operating conditions, unless otherwise indicated.
Table 3 is valid for -40°C < TJ < 150°C
Table 3
Operating Range
Parameter
Symbol
Limit Values
min.
typ.
max.
Unit
Notes
Supply Voltage
VDD
4.5
-
5.5
V
1)
Output Current
IQ
-
-5
-10
mA
2) 3)
Input Voltage
VIN
-0.3
-
5.5
V
VDD + 0.35 V may not be
exceeded
Magnetic Induction
BXY
30
-
50
mT
In X / Y direction4)
Angle Range
Ang
0
-
360
°
sine / cosine
1)
2)
3)
4)
Directly blocked with 100-nF ceramic capacitor
Maximum current to GND over Open Drain Output
The corresponding voltage levels are listed in Table 4 “Electrical Parameters” on Page 15
Values refer to a homogenous magnetic field (Bxy) without vertical magnetic induction (Bz = 0 mT). Applying vertical
magnetic induction may cause an additional error.
Note: The thermal resistances listed in Table 19 “Package Parameters” on Page 41 must be used to calculate
the corresponding ambient temperature.
Calculation of the Junction Temperature
The total power dissipation PTOT of the chip increases its temperature above the ambient temperature.
The power multiplied by the total thermal resistance RthJA (Junction to Ambient) leads to the final junction temperature. RthJA
is the sum of the addition of the values of the two components Junction to Case and Case to Ambient.
RthJA = RthJC + RthCA
TJ = TA + ΔT
ΔT = RthJA x PTOT = RthJA x ( VDD x IDD + VOUT x IOUT )
IDD , IOUT > 0, if direction is into IC
Example (assuming no load on Vout):
– VDD = 5 V
– IDD = 15 mA
– ΔT =150 [K/W] x (5 [V] x 0.015 [A] + 0 [VA] ) = 11.25 K
For moulded sensors, the calculation with RthJC is more adequate.
Final Data Sheet
14
V1.1, 2010-05
TLE5011
Specification
3.4
Characteristics
3.4.1
Electrical Parameters
The indicated electrical parameters apply to the full operating range, unless otherwise specified. The typical values
correspond to a supply voltage VDD = 5.0 V and 25°C, unless individually specified. All other values correspond to
- 40°C < TJ < 150°C.
Table 4
Electrical Parameters
Parameter
Supply Current
Symbol
1)
IDD
Limit Values
min.
typ.
max.
-
15
20
-
-
21
Unit
Notes
mA
VDD = 4.5 to 5.5V
VDD = 6.5 V
POR Level
VPOR
2.0
2.3
2.9
V
POR Hysteresis
VPORhy
-
30
-
mV
Power-On Time
tPon
50
100
200
µs
VDD > VDDmin & after first
edge on fCLK
PLL Jitter
tPLLjit_S
-
1.3
2.0 2)
ns
short term 3)
3.0
3.9
1
2.2
tPLLjit_L
ADC Noise 5)
NADC
-
long term 4)
digits
2
4.4
1 σ @ FIR_BYP = 0
1 σ @ FIR_BYP = 1
2)
-
Power-On Reset
Input Signal
Low Level
VL
-0.35
-
0.3 VDD
V
Input Signal
High Level
VH
0.7 VDD
-
VDD
+0.35
V
Tested only at DATA pin as
structures of all pins are
identical
Capacitance of SSC
Data Pin
CLDATA
-
4
6 2)
pF
Internal
Input Hysteresis
VHY
0.07 VDD
-
-
V
Pull-Up Current
IPU
-10
-
-150
µA
CS, DATA
Pull-Down Current
IPD
15
-
225
µA
SCK, CLK
15
-
225
TST1
10
-
150
TST2
-
-
0.7
0.4
Output Signal
Low Level
VOL
V
IQ = - 10 mA
IQ = - 5 mA 6)
1)
2)
3)
4)
5)
Without external pull-up resistor for SSC interface
Not tested
From pulse to pulse
Accumulated over 1 ms
ADC noise with respect to the peak ADC value specified in “Signal Processing” on Page 20.
Noise tested using 1 σ of 100 sample values from Angle Test “000”
6) The value -5 mA is not tested
Note: Table 4 is valid for 4.5V < VDD < 5.5V.
Final Data Sheet
15
V1.1, 2010-05
TLE5011
Specification
3.4.2
ESD Protection
Table 5
ESD Protection
Parameter
Symbol
Limit Values
min.
ESD Voltage
Unit
Notes
max.
VHBM
-
±2
kV
HBM 1)
VSDM
-
± 500
V
SDM 2)
1) Human Body Model (HBM) according to JEDEC EIA/JESD22-A114-B (R = 1.5 kΩ, C = 100 pF, TA = 25°C)
2) Socketed Device Model (SDM) according to ESD ASS.STD.DS5.3-93
3.4.3
GMR Parameters
All parameters apply over the full operating range, unless otherwise specified.
Table 6
Basic GMR Parameters
Parameter
Symbol
X, Y Output range
X, Y Amplitude
1)
X, Y Synchronism
X, Y Offset
2)
3)
X, Y Orthogonality Error
X, Y without field
1)
2)
3)
4)
Limit Values
Unit
Notes
min.
typ.
max.
RGADC
-
-
±23230
digits
AX, AY
6000
9500
15781
digits
3922
-
20620
k
80
100
120
%
at calibration conditions
OX, OY
-3000
0
3000
digits
at calibration conditions
j
-10.0
0
10.0
°
at calibration conditions
-5000
-
5000
digits
without magnet4)
X0, Y 0
at calibration conditions
Operating Range
See Figure 2
k = 100 x ( AX / AY ).
OSIN = ( YMAX + YMIN ) / 2 ; OCOS = ( XMAX + XMIN ) / 2
Not tested
Offset and Amplitude
VY
+A
0°
90°
180°
0
Offset
270°
360°
Angle
-A
Figure 7
Offset and Amplitude Definition
Final Data Sheet
16
V1.1, 2010-05
TLE5011
Specification
Offset Definition
The offset of the X and Y signals is defined as the mean value between the signed maximum and minimum values
of the idealized sine or cosine wave.
X MAX + X MIN
O X = ---------------------------------
2
Y MAX + Y MIN
O Y = ---------------------------------
2
Amplitude Definition
The amplitude is defined as half the difference between the signed maximum and minimum values of the idealized
sine or cosine wave.
X MAX – X MIN
A X = ---------------------------------
2
Y MAX – Y MIN
A Y = --------------------------------
2
Temperature-dependent behavior
The temperature offset gradients for both channels depend on the value at 25°C. The gradients can be calculated
using the following linear equations:
KT OX = tco_d_x + ( tco_k_x × O X25 )
KT OY = tco_d_y + ( tco_k_y × O Y25 )
OX25, OY25: Offset values at 25°C in digits.
The application note “TLE5011 Calibration” describes in chapter 2.3, how to determine the coefficients (KTOX,
KTOY).
Orthogonality Definition
The corresponding maximum and zero-crossing points of the SIN and COS signals do not occur at the precise
distance of 90°. The difference between X and Y phase is called the orthogonality error.
ϕ = ϕX – ϕY
jideal = 0°
jX : Phase error of X (= cos) signal
jY : Phase error of Y (= sin) signal
Final Data Sheet
17
V1.1, 2010-05
TLE5011
Specification
3.5
Calibration
GMR Values
The end-of-line calibration can be accomplished using following sequence:
1.
2.
3.
4.
5.
6.
Turn magnetic field 360° left and measure X and Y values
Calculate amplitude, offset, phase correction values of left turn
Turn further 90° left and 90° back right without measurement
Turn magnetic field 360° right and measure X and Y values
Calculate amplitude, offset, phase correction values of right turn
Calculate mean values of amplitude, offset, phase correction values
The conditions are specified in Table 7.
The values obtained from this sequence must be stored in a non-volatile memory. They are used for the correction
of the read-out X and Y values before the angular calculation.
The resulting angular deviation is calculated using the parameters determined above.
Temperature Measurement
The signal amplitude T25 of the temperature measurement path at the calibration conditions must be measured
and stored.
Calibration Conditions
All errors are related to calibration performed by Infineon under the following conditions:
Table 7
GMR test calibration conditions at IFX
Parameter
Symbol
Limit Values
min.
typ.
max.
Unit
Notes
BZ = 0 mT
Flux density
BCAL
-
30
-
mT
Temperature
TCAL
-
25
-
°C
3.6
Angle Calculation
3.6.1
Components of the Output Signals
The X and Y signals at the output can be described by the following equations:
X = A X × cos ( α + ϕ X ) + O X
Y = A Y × sin ( α + ϕ Y ) + O Y
AX : Amplitude of X (= cos) signal
AY : Amplitude of Y (= sin) signal
OX : Offset of X (= cos) signal
OY : Offset of Y (= sin) signal
ϕX : Phase error of X (= cos) signal
ϕY : Phase error of Y (= sin) signal
3.6.2
GMR Error Compensation
Temperature-dependent Offset Value
To increase the accuracy, the temperature-dependent offset drift can be compensated. The temperature of the
chip must be read out. The offset values OX and OY can be described by the following equations.
Final Data Sheet
18
V1.1, 2010-05
TLE5011
Specification
KT OX
O X = O X25 + -------------- × ( T – T 25 )
S
T
KT OY
O Y = O Y25 + -------------- × ( T – T 25 )
S
T
OX25 , OY25 : Offset value at 25°C in digits
T25 : Temperature value at 25°C in digits
T : Temperature value in digits
ST : Sensitivity of the temperature measurement path, (see “Temperature Measurement” on Page 37).
Offset Correction
After the X and Y values are read out, the temperature-corrected offset value must be subtracted.
X1 = X – OX
Y1 = Y – OY
Amplitude Normalization
Next, the X and Y values are normalized using the peak values determined in the calibration.
X1
X 2 = -----AX
Y1
Y 2 = -----AY
Non-Orthogonality Correction
The influence of the non-orthogonality can be compensated using thefollowing equation, in which only the Y
channel must be corrected.
Y 2 – X 2 × sin ( – ϕ )
Y 3 = -------------------------------------------
cos ( – ϕ )
Resulting Angle
After correction of all errors, the resulting angle can be calculated using the arctan function1).
Y3
α = arc tan ⎛⎝ ------⎞⎠ – ϕ X
X2
1) Microcontroller function “arctan2(Y3,X2)” to resolve 360°
Final Data Sheet
19
V1.1, 2010-05
TLE5011
Specification
3.6.3
GMR Parameters after Calibration
After calibration under the conditions specified in Table 7 “GMR test calibration conditions at IFX” on Page 18,
the sensor has a remaining error as shown in Table 8.
The error value refers to BZ = 0 mT and operating conditions given in Table 3 “Operating Range” on Page 14.
Table 8
GMR Parameter with Temperature-Dependent Offset Compensation
Parameter
Symbol
Overall Angle Error
1)
2)
3)
4)
Limit Values
αerr
1)
Unit
Notes
min.
typ.
max.
-
0.7
1.6
°
2) 3)
-
-
2.2
°
2) 4)
At 25°C, B=30mT
Including hysteresis error
At 0h
At 1000h
3.7
Signal Processing
Table 9
Signal Processing
Parameter
Symbol
Internal Cutoff
Frequency (-3dB)
of sin or cos Value
fCut-Off
Update Time of
sin or cos Value2)
tupd
Settle Time
3)
Limit Values
min.
typ.
-
4.9
1)
Unit
Notes
kHz
FIR_BYP=0
max.
-
19.6
tsettle
Peak ADC Output value ADCPk
FIR_BYP=1
-
81.9
-
µs
-
20.5
-
FIR_BYP=1
-
163.8
-
FIR_BYP=0
-
41.0
-
FIR_BYP=1
-
-
23230
digits
FIR_BYP=0
signed 16-bit integer
(2s complement) 4) 5) 6)
1) For 4-MhHz input frequency
2) tupd = 8192 / (25 x fCLK) for FIR_BYP = 0
tupd = 8192 / (100 x fCLK) for FIR_BYP = 1
3) tsettle = 2 x tupd , after change of ADC input source
4) Output values are valid up to this limit. Above it, corrupted results may occur due to non-linearity of the ADC.
5) One digit typically represents 5.166 µV
6) Corresponds to max. GMR output value
Final Data Sheet
20
V1.1, 2010-05
TLE5011
Specification
3.8
Clock Supply (CLK Timing Definition)
The clock signal input “CLK” must fulfill certain requirements described in this section:
•
•
•
The high or low pulse width must not exceed the specified values, because the PLL needs a minimum pulse
width and must be spike filtered.
The duty-cycle factor should be 0.5 but can deviate from the values limited by tCLKh(f_min) and tCLKl(f_min).
The PLL is triggered at the positive edge of the clock. If more than 2 edges are missing, a chip reset is
generated automatically.
tCLK
tCLKh
t CLKl
VH
VL
t
Figure 8
CLK Timing Definition
Table 10
CLK Timing Specification
Parameter
Symbol
Limit Values
Unit
Notes
min.
typ.
max.
fCLK
3.8
4.00
4.2
MHz
CLKDUTY
30
50
70
%
CLK rise time
tCLKr
-
-
20
ns
from VL to VH
CLK fall time
tCLKf
-
-
20
ns
from VH to VL
PLL Frequency
fPLL
-
100
-
MHz
fCLK * 25
Digital Clock
fDIG
-
25
-
MHz
( 25 / 4 ) * fCLK
Digital Clock Periode
tDIG
-
40
-
ns
4 / (25 * fCLK)
Input Frequency
CLK Duty Cycle
1)
1) Minimum duty-cycle factor: tCLKh(f_min) / tCLK(f_min) with tCLK(f_min) = 1 / fCLK(f_min)
Maximum duty-cycle factor: tCLKh(f_max) / tCLK(f_min)with tCLKh(f_max) = tCLK(f_min) - tCLKl(min)
3.9
Synchronous Serial Communication Interface (SSC)
The 3-pin SSC interface has a bidirectional data line (open drain), a serial clock signal, and Chip Select.
The SSC interface is designed to communicate with a microcontroller with bi-directional SSC interface supporting
open drain. Other microcontrollers may require an external NPN transistor.
This allows communication with SPI-compatible devices.
Final Data Sheet
21
V1.1, 2010-05
TLE5011
Specification
µC
(SSC Master)
TLE 501x
(SSC Slave)
typ. 1k Ω
DATA
Shift Register
*)
*)
DATA
Shift Register
*)
SCK
SCK
*)
CS
Clock Generator
Figure 9
CS
*) optional , e.g. 100 Ω
SSC Half-Duplex Configuration - Microcontroller with Open Drain
µC
(SSC Master)
Shift Register
TLE 501x
(SSC Slave)
typ. 1kΩ
MRST
*)
*)
MTSR
DATA
Shift Register
optional
*)
SCK
SCK
*)
Clock Generator
CS
CS
*) optional , e.g. 100 Ω
Figure 10
SSC Half-Duplex Configuration - Microcontroller without Open Drain
3.9.1
SSC Timing Definition
SSC Timing Diagram
tSCKp
tCSs
tSCKh
tCSh
tSCKl
CS
VH
VL
SCK
VH
VL
DATA
VH
VL
tDATr
Figure 11
tCSoff
tDATw
SSC Timing Definition
SSC Inactive Time ( CSoff )
The SSC Inactive Time defines the delay before the TLE5011 can be selected again after a transfer. The TLE5011
reacts only to one command after an SSC Inactive Time. Then the SSC interface of the TLE5011 is disabled until
the next SSC Inactive Time occurs.
Final Data Sheet
22
V1.1, 2010-05
TLE5011
Specification
DATA Write Time ( tDATW )
During this time, the TLE5011 changes the data line, so the data are invalid. The DATA Write Time values are
defined without a pull-up resistor.
Pull-up Time Value ( tPU )
The value in Table 11 “SSC Timing Specification” on Page 23 is estimated at 60 ns.
Table 11
SSC Timing Specification
Note: Timing must be calculated according to Table 10 “CLK Timing Specification” on Page 21
Parameter
Symbol
Limit Values
Unit
min.
typ.
max.
SSC Baud Rate
fSSC
-
2.0
2.11)
Mbit / s
CS Setup Time
tCSs
3*tDIG+10
-
-
ns
CS Hold Time
tCSh
5*tDIG+10
-
-
ns
CSoff
tCSoff
10*tDIG
-
-
ns
SCK High
tSCKh
5*tDIG
-
-
ns
SCK Low
tSCKl
5*tDIG
-
-
ns
DATA Read Time
(Data Valid Time)
tDATr
6*tDIG-10
-
7*tDIG+10
ns
5*tDIG-10
-
7*tDIG+10
DATA Write Time
(Data Valid Time) 2)
tDATw
6*tDIG+25
-
7*tDIG+50 + tPU ns
DATA slope
tDATs
-
20
30 3)
1)
2)
3)
4)
Notes
SSC inactive time
SSC_FILT = 0
SSC_FILT = 1
ns
Falling edge 4)
fCLK/2, synchronized to fCLK if fCLK = fCLK(max)
tPU is the time generated by the pull-up resistor
Not tested
Internal slope control of falling edge for data bit transition from VH to VL.
tSCKl MIN
tSCKh
SCK
tDATw MIN
SSC_FILT=0
Wr
tDATw MAX
tPU
Earliest sample timepoint
tDATr MIN
tDATr MAX
Rd
SCK
tDATw MIN
SSC_FILT=1
Wr
tDATw MAX
tPU
t DATr MIN
tDATr MAX
Figure 12
Earliest sample timepoint of
second sample from 2 of 3 filter
Rd
SSC Interface Timing Details - Worst-Case Specified Timing
Note: The read window includes the sampling of the data bit. For SSC_FILT = 1, the 2-of-3 selection is already
considered. Only the two last data values need to be equal. For SSC_FILT = 0, only one sample point is
selected.
Final Data Sheet
23
V1.1, 2010-05
TLE5011
Specification
The margin time shown in Table 12 is the time between write access to the SSC data line and the earliest possible
sample read of the TLE5011 itself for read-back.
It is useful to have a maximum distance between the WRITE and subsequent READ. This ensures a reliable readback of the written data for the Slave-Active Byte generation.
Table 12
Maximum Pull-up Time Margin with Worst-Case Specified Timing
SSC_FILT
SSC_TIMING
Min. tPU Margin 1)
Unit
0
don’t care
90
ns
1
Comment
50
1) Calculation: Margin=tSCKl(min)+tDATwMAX-(tPU)-tDATrMIN.For Margin<50 ns no problems can occur.
3.9.2
SSC Baud rate
The SSC baud rate depends on the internal clock frequency.
Twelve internal digital clock cycles are necessary to ensure reliable operation. Therefore, the maximum SSC baud
rate depends on the external CLK.
f CLK
f SSC = -----------
2
3.9.3
SSC Spike Filter
A spike filter for all SSC lines can be selected via the SSC_FILT bit.
SSC Spike Filter Off
When the spike filter is disabled, each slope with rising voltage is used to define a bit. This is independent of the
length of the sampled pulse. For example, a positive spike generates a rising and a falling edge.
SSC Spike Filter On
A sliding window with four consecutive sample bits is analyzed.
The sample frequency is:
1
f S = --------------f DIGIT
Rising Edge Detect for SCK
•
•
After a rising edge (LH combination), at least one of the two following samples must be high. Valid bit
combinations: 0111 , 0110 , 0101.
A falling condition must be detected previously.
Falling Edge Detect for SCK
•
•
After a falling edge (HL combination), at least one of the two following samples must be low. Valid bit
combinations: 1000 , 1001 , 1010.
A rising condition must be detected previously.
Final Data Sheet
24
V1.1, 2010-05
TLE5011
Specification
)
SCK (PAD)
SCK Fall
SCK fall
detected
Suppressed
Spike
)
SCK rise
detected )
)
SCK Rise
Masked, because
no fall detected
Figure 13
SSC Spike Filter
Filter for DATA and CS
The following conditions apply:
•
•
The DATA pin has a ’2-of-3’ filter
The CS input has a ’2-of-3’ filter that suppresses only positive spikes
3.9.4
SSC Data Transfer
The following transfer Byte are possible:
•
•
•
•
Command Byte (to access and change operating modes of the TLE5011)
Data Bytes (any data transferred in any direction)
CRC Byte (cyclic redundancy check)
Slave-active Byte (response of all selected slaves)
SSC-Master is driving DATA (µC)
SSC-Slave is driving DATA (Sensor)
Command Byte
Data Byte(s)
SCK
DATA
MSB
6
5
4
3
2
1
LSB MSB
6
5
CRC
SlaveActive
4
3
2
1
LSB
CS
DATA
Command Byte
SSC-Master is driving DATA (µC)
Data
SSC-Slave is driving DATA (Sensor)
Figure 14
SSC Data Transfer (Data Read Example)
3.9.5
SSC Command Byte
The TLE5011 is controlled by a command Byte. It is sent first at every data transmission.
Table 13
Structure of the Command Byte
Name
Bits
Description
RW
[7]
Read - Write
0 = write, 1 = read
ADDR
[6..3]
Address to be read / written
0..15 - register start address (address auto increment)
ND
[2..0]
Number of data Bytes 0..7 - number of data Bytes to be transferred
Final Data Sheet
25
V1.1, 2010-05
TLE5011
Specification
Register Table
This section describes the complete address range as well as all registers of the TLE5011. It also defines the
read/write access rights of the specific registers. Table 14 identifies the values with symbols. Access to the
registers is accomplished via the SSC interface.
Table 14
Addr.
Address Map
Name
Bits
7
6
5
4
3
00H
CTRL1
01H
XL
XLow
02H
XH
XHigh
03H
YL
YLow
-
-
-
-
04H
YH
05H
FCNT_
STAT
-
06H
FSYNC_IN
V
FILT_
INV
07H
ANGT
-
08H
-
reserved
09H
-
reserved
0AH
-
reserved
0BH
-
0CH
TST
0DH
ID
0EH
LOCK
0FH
CRTL2
2
SSC_
FILT
1
-
0
AUTO
UR
YHigh
STAT_
VR
GMR_
OFF
UPDATE
FCNT
FSYNC
ANGT_E
N
ANGT_Y
ANGT_X
reserved
TEMP_E
N
ADCPY
FILT_
PAR
FILT_
CRS
FILT_
BYP
DEV_ID
TST_
ADC
TST_
GMR
TST_
CHAN
reserved
LOCK
VDD_OV
VDD_
OFF
GND_OF
F
VRG_
OV
VRA_
OV
VRD_
OV
S_NO
Bit Types
The types of bits used in the registers are listed here:
Abbreviation
Function
Description
L
Locked
Locked register.
Locked registers can be written only when the unlock-value is written
in the lock register (0EH).
This ensures that these bits cannot be modified unintentionally
during normal operation.
U
Update
Update buffer for this bit is present.
If an Update Command is issued and the Update-Mode bit (UR in
CTRL1) is set, the immediate values are stored in this Update Buffer
simultaneously.
This enables a snapshot of all necessary system parameters at the
same time.
Final Data Sheet
26
V1.1, 2010-05
TLE5011
Specification
Abbreviation
Function
Description
S
Status
Reset only after readout
R
Read
Read-only registers
W
Write
Read and write registers
CTRL1
Addr: 00H
Reset Value: 01H
7
6
5
4
3
2
1
0
reserved
reserved
reserved
reserved
SSC_FILT
reserved
AUTO
UR
-
-
-
WL
WL
-
WL
WL
Field
Bits
Type
Description
reserved
7
-
Reserved, must be set to 0
reserved
6
-
Reserved, must be set to 0
reserved
5
-
Reserved, must be set to 0
reserved
4
-
Reserved, must be set to 0
SSC_FILT
3
WL
SSC Digital Spike Filter enable for all SSC lines ( CS, CLK and
DATA )
0: Digital SSC Spike filters off
1: Digital SSC Spike filters on (modified timing)
reserved
2
-
Reserved, must be set to 0
AUTO
1
WL
Automatic update at angle tests
0: no automatic update in Angle Test Mode
1: automatic update-command after tsettle,
counters FSYNC and FCNT are reset to 0. Then the Angle-Test
(ANGT_EN) is automatically disabled and switches back to normal
operation.
Also, the UPDATE bit is toggled
UR
0
WL
Update / Run Mode
0: Run Mode (Buffer1 values are immediate values)
1: Update Mode (Buffer2 values are stored values)
The values in Register 01H to 04H represent one Byte of two’s complement signed 16 bit integer values.
X_L
Addr: 01H
7
Reset Value: 00H
6
5
4
3
2
1
0
2
1
0
X Low Byte
RU
X_H
Addr: 02H
7
Reset Value: 00H
6
5
4
3
X High Byte
RU
Final Data Sheet
27
V1.1, 2010-05
TLE5011
Specification
Y_L
Addr: 03H
Reset Value: 00H
7
6
5
4
3
2
1
0
2
1
0
2
1
0
Y Low Byte
RU
Y_H
Addr: 04H
Reset Value: 00H
7
6
5
4
3
Y High Byte
RU
FCNT_STAT
Addr: 05H
Reset Value: 80H
7
6
5
4
reserved
STAT_VR
GMR_OFF
UPDATE
FCNT
-
RS
RU
RS
RU
Field
3
Bits
Type
7
-
STAT_VR
6
RS
Voltage Regulator Status
This bit is a logical OR combination of Digital, Analog, GMR and
VDD_OV Comparator and GND_OFF, and VDD_OFF Comparator
outputs.
0: Voltage Supply OK
1: Voltage Supply is not OK
GMR_OFF
5
RU
ADC Values are no GMR values
(e.g.: Temperature measurement is active)
This bit indicates whether or not GMR values or any other values are
connected to the ADCs. This value is read back from the multiplexer
control signals.
0: X,Y Values are GMR values
1: X,Y Values normally represent temperature measurement or angle
test values. In the case of non-functional MUX, this bit is set to 1
UPDATE
4
RU
Update Toggle bit. This bit toggles after every update (update command
or automatic update at angle test)
The bit is independent of UR bit in CTRL1
FCNT
3-0
RU
Frame Counter (4-bit unsigned integer value)
This counter counts every new X,Y value pair coming out of the data
path. (approx. 80µs)
This counter is reset to 0H after any write to FSYNC and after every
change of the ANGT_EN bit. As tsettle time has to elapse for valid X,Y
data, this counter must be ≥ 2H to indicate valid X,Y values. If it
overflows, it resets to 3H to show that values are still valid.
reserved
Description
Note: If FIR_BYP is activated, this counter counts four times faster!
Final Data Sheet
28
V1.1, 2010-05
TLE5011
Specification
FSYNC_INV
Addr: 06H
Reset Value: 00H
7
6
5
4
3
FILT_INV
FSYNC
WU
WU
2
1
0
Field
Bits
Type
Description
FILT_INV
7
WU
Filter Input Inversion (to check the digital data path during operation)
0: Filter Inputs are not inverted
1: Filter Inputs are inverted
FSYNC
6-0
WU
Frame Synchronization (7-bit unsigned integer value)
The Filter Update time of approx. 80 µs results from the filter
decimation. The phase of this decimation can be set and checked by
this counter.
If FIR_BYP is activated, this counter overflows at the value 31D.
ANGT
Addr: 07H
Reset Value: 00H
7
6
5
4
3
2
1
reserved
ANGT_EN
ANGT_Y
ANGT_X
-
W
W
W
0
Field
Bits
Type
Description
reserved
7
-
Reserved, must be set to 0
ANGT_EN
6
W
Angle Test Enable
0: Angle Test disable command
1: Angle Test enable command
in this case X and Y values represent resistive test values that can be
used to simulate angle values
ANGT_Y
5-3
W
ANGT_X
2-0
W
Angle Test X and Y value
See : Table 16 “Functional Angle Test” on Page 36
Reserved Registers (08H to 0BH)
The values in these registers are 8-bit unsigned integer values.
The values in addr.8 and addr.9 have to be in reset status.
Reserved
Addr: 08H
7
Reset Value: FFH
6
5
4
3
2
1
0
Reserved
Final Data Sheet
29
V1.1, 2010-05
TLE5011
Specification
Reserved
Addr: 09H - 0BH
7
Reset Value: 00H
6
5
4
3
2
1
0
Reserved
TST
Addr: 0CH
Reset Value: 00H
7
6
5
4
3
2
1
0
TEMP_EN
ADCPY
FILT_PAR
FILT_CRS
FIR_BYP
TST_ADC
TST_GMR
TST_
CHAN
WL
WL
WL
WL
WL
WL
WL
WL
Field
Bits
Type
Description
TEMP_EN
7
WL
Temperature Device Enable
0: Temperature Measurement disabled
1: Temperature Measurement enabled
The X value represents the temperature.
Automatic update mode enabled, if AUTO=1
ADCPY
6
WL
Y Polarity
0: No inversion of Y bitstream
1: Inversion of Y bitstream (rotating direct. changed)
FILT_PAR
5
WL
Filter switched parallel
0: Filters in normal mode
1: Filters parallel, input selected by TST_CHAN
FILT_CRS
4
WL
Filter switched across
0: Filters in normal mode
1: Filters crossed, X and Y outputs are exchanged
FIR_BYP
3
WL
FIR Filter Bypass
0: No FIR Bypass
1: FIR Bypass
TST_ADC 1)
2
WL
ADC input switch to TST1and TST2
0: No ADC input switch, normal operation
1: ADC input switched to TST1,2, ADC selected by TST_CHAN 2)
TST_GMR 1)
1
WL
GMR switch to TST1and TST2
0: No GMR switch, normal operation
1: GMR switched to TST1,2 selected by TST_CHAN 2)
TST_CHAN
0
WL
Test Channel select
0: X channel linked to TST1and TST2
1: Y channel linked to TST1and TST2
1) Only for test purposes
2) if TST_ADC and TST_GMR are set to 1 at the same time, TST_GMR is forced to 0. TST_ADC has the higher priority.
Final Data Sheet
30
V1.1, 2010-05
TLE5011
Specification
ID
Addr: 0DH
Reset Value: 12H
7
6
5
4
3
2
1
0
2
1
0
1
0
DEV_ID
Reserved
R
R
Field
Bits
Type
Description
DEV_ID
7-4
R
Device Identifier
001H: TLE5011 production chip
reserved
3-0
-
LOCK
Addr: 0EH
Reset Value: 00H
7
6
5
4
3
LOCK
W
Field
Bits
Type
Description
LOCK
7-0
W
Lock Byte
≠ 5AH: Lock registers locked
= 5AH: Lock registers unlocked
CTRL2
Addr: 0FH
Reset Value: 00H
7
6
5
4
3
2
VDD_OV
VDD_OFF
GND_OFF
VRG_OV
VRA_OV
VRD_OV
S_NO
RS
RS
RS
RS
RS
RS
WL
Field
Bits
Type
Description
VDD_OV
7
RS
VDD Overvoltage Comparator
0: No VDD Overvoltage occurred
1: VDD Overvoltage occurred
VDD_OFF
6
RS
VDD - off Comparator
0: No VDD - off occurred
1: VDD - off occurred
GND_OFF
5
RS
GND - off Comparator
0: No GND - off occurred
1: GND - off occurred
VRG_OV
4
RS
GMR Voltage Regulator Overvoltage Comparator
0: Voltage ok
1: VRG Overvoltage occurred
Final Data Sheet
31
V1.1, 2010-05
TLE5011
Specification
Field
Bits
Type
Description
VRA_OV
3
RS
Analog Voltage Regulator Overvoltage Comparator
0: Voltage ok
1: VRA Overvoltage occurred
VRD_OV
2
RS
Digital Voltage Regulator Overvoltage Comparator
0: Voltage ok
1: VRD Overvoltage occurred
S_NO
1-0
WL
Slave Number
Used in the SSC protocol
3.9.6
Data Communication via SSC
Data communication via the SSC interface has the following characteristics:
•
•
•
•
•
•
•
•
•
•
•
•
•
The data transmission order is “Most Significant Bit (MSB) first”.
Data is put on the data line with the rising edge on SCK and read with the falling edge on SCK.
The SSC interface is Byte-aligned. All functions are activated after each transmitted Byte.
A “high” condition on the negated Chip Select pin (CS) of the selected TLE5011 interrupts the transfer
immediately. The CRC calculator is automatically reset.
Every access to the TLE5011 with the number of data (ND) ≥ 1 is performed with address auto-increment.
After an auto-increment overflow, the addresses begin from 00H.
For every data transfer with ND ≥ 1, an 8-bit CRC Byte will be appended by the selected TLE5011. No CRC
Byte is sent in a data transfer with ND = 0 (e.g. Update Command).
After the CRC Byte is sent, the bit represented by S_NO is pulled low by the selected slave in the Slave-ActiveByte (bits [3..0], low nibble). In this way, broadcast messages also produce individual feedback of every
selected slave. This is necessary to differentiate among the individual TLE5011 slave responses, because the
CRC Byte is written by both TLE5011 units in parallel.
If the CRC Byte on the bus is the same as the internally generated CRC of each TLE5011, each slave pulls
the dedicated bit in the Slave-Active Byte (bits [7..4], high nibble) low. If not, the bit in the high nibble remains 1.
A write command to address 00H with ND = 0 will update all values inside the TLE5011, and only in this case
can the transfer proceed. Furthermore, this command is added to the CRC calculation of the following
SSC transfer.
A command of 0000_0000 is called Update Command.
This command transfers the present immediate values of each register to the update register. After an Update
Command, the CS line does not need to be set and reset again.
The transfer ends after the CRC and Slave-active Byte have been sent.
The TLE5011 always sends logical 1 and all following sent bits from the SSC Master are ignored (TLE5011 is
in Idle mode). To enable data transfers again, the Chip Select pin (CS) of the TLE5011 must be deselected for
CSoff (see Table 11) once.
If the Update Mode is selected (CTRL register, UR = 1), all accesses are performed to update registers where
update registers are present. Other registers are accessed directly.
Final Data Sheet
32
V1.1, 2010-05
TLE5011
Specification
3.9.7
CRC Generation
These are the requirements for CRC generation:
•
•
•
•
•
•
This CRC is defined according to the J1850 Bus-Specification of 15.Feb.1994 for Class B Data
Communication.
Every new transfer resets the CRC generation.
Every Byte of a transfer will be taken into account to generate the CRC [also the sent command(s)].
Generator Polynomial: X8+X4+X3+X2+1, the fast CRC generation circuit, is used for CRC generation.
(See Figure 15)
The remainder of the fast CRC circuit is initially set to 11111111B.
The remainder is bit-inverted before transmission.
Figure 15 shows the fast CRC Polynomial.
The zero extension for initial CRC calculation is included!
Input
xor
TX_CRC
&
1
1
X0
xor
xor
1
X1
X2
xor 1
1
X3
1
X4
1
X5
Serial
CRC
output
1
X6
X7
parallel Remainder
Figure 15
Fast CRC Polynomial Division Circuit
3.9.8
Slave-active Byte Generation
The position of the 0 in a nibble corresponds to the given slave number.
The slave-active Byte (cccc_nnnn) consists of:
•
•
low nibble (nnnn). One 0 is generated always according to the slave number.
high nibble (cccc). The 0 is only generated, if the readback CRC is correct.
Slave1: S_NO = 0 Ö bit 0 is pulled low Slave-active Byte: 1110_1110
Slave2: S_NO = 1 Ö bit 1 is pulled low Slave-active Byte: 1101_1101
Slave3: S_NO = 2 Ö bit 2 is pulled low Slave-active Byte: 1011_1011
Slace4: S_NO = 3 Ö bit 3 is pulled low Slave-active Byte: 0111_0111
Example of a communication disturbed by other bus participants:
Slave1: S_NO = 0 Ö bit 0 is pulled low, but the high nibble remains as ’1111’.
> Slave-active Byte: 1111_1110
Final Data Sheet
33
V1.1, 2010-05
TLE5011
Specification
Example1: CRC calculation (Update X and Y and set ADC-Test Mode)
Command
Data
CRC (init all ‘0’)
00000001 00000101 00000000
----------------------------------xor 11111111
-------=11111110.0
.
.A
xor 10001110.1
.
.
--------..
.
= 01110000.10
.
.B
xor 1000111.01
.
.
-------.-.
.
= 0110111.110
.
.C
xor 100011.101
.
.
------.--.
.
= 10100.0110
.
.D
xor 10001.1101
.
.
-----.---.
.
= 00101.101101 .
.E
xor 100.011101 .
.
---.------ .
.
= 001.11000001.
.F
xor 1.00011101.
.
---.------ .
.
=.11011100.0
.G
xor.10001110.1
.
.--------..
= 1010010.10
.H
xor 1000111.01
.
-------..
= 10101.1100
.I
xor 10001.1101
.
----.----.
= 100.000100 .J
xor 100.011101 .
---.------ .
=01100100. Remainder
10011011 inverted Remainder
Transmitted Sequence:
Command Data
CRC
00000001 00000101 10011011
Final Data Sheet
34
V1.1, 2010-05
TLE5011
Specification
Example2: Use of two TLE5011 units in a bus mode.
Table 15
Update X,Y of two TLE5011 units, and read first TLE5011
SSC Byte no.
Description
Master transmitting
TLE5011 transmitting
1
Command1)
0_0000_000
(update all TLE5011)
-
2
Command2)
1_0001_110
(read first TLE5011)
-
3
Data Byte 1 to 01H
-
XL
4
Data Byte 2 to 02H
-
XH
5
Data Byte 3 to 03H
-
YL
6
Data Byte 4 to 04H
-
YH
7
Data Byte 5 to 05H
-
FCNT_STAT
8
Data Byte 6 to 06H
-
FSYNC_INV
9
CRC
-
calc. CRC value
10
Slave-active
-
cccc_nnnn
3)
11
Command
1_0001_110
(read second TLE5011)
-
12
Data Byte 1 to 01H
-
XL
13
Data Byte 2 to 02H
-
XH
14
Data Byte 3 to 03H
-
YL
15
Data Byte 4 to 04H
-
YH
16
Data Byte 5 to 05H
-
FCNT_STAT
17
Data Byte 6 to 06H
-
FSYNC_INV
18
CRC
-
calc. CRC value
19
Slave-active
-
cccc_nnnn
1) Both TLE5011 are selected (CS1=CS2=active) during this command Byte.
2) CS2 of the second TLE5011 slave is deactivated after the second command Byte.
3) CS1 of the first TLE5011 slave is deactivated after the third command Byte.
Final Data Sheet
35
V1.1, 2010-05
TLE5011
Specification
3.10
Test Structures
Two different test signal structures are implemented in the TLE5011:
•
•
Functional Angle Test. In this case, well-known signals feed the ADCs.
Temperature Measurement. This is useful to read out the chip temperature for compensation purposes.
3.10.1
Functional Angle Tests
It is possible to feed the ADCs with appropriate values to simulate a certain magnet position and other GMR
effects.
The values are generated with resistors on the chip.
The following X / Y ADC values can be programmed:
•
•
•
•
4 points, circle amplitude = 70.7%
(0°, 90°, 180°, 270°)
8 points, circle amplitude = 100.0%
(0°, 45°, 90°, 135°,180°, 225°, 270°, 315°)
8 points, circle amplitude = 122.1%
(35.3°, 54.7°, 125.3°, 144.7°, 215.3°, 234.7°, 305.3°, 324.7°)
4 points, circle amplitude = 141.4%
(45°, 135°, 225°, 315°)
Note: The 100% values typically correspond to 21700 digits and a voltage of ~ 110 mV.
Table 16
Functional Angle Test
Register bits
X / Y Values (decimal)
min.
typ.
max.
000
-400
0
400
001
14800
15500
16200
010
20700
21700
22700
011
100
32767
1)
-400
0
400
101
-16200
-15500
-14800
110
-22700
-21700
-20700
111
-32768
1) Not allowed to use.
Final Data Sheet
36
V1.1, 2010-05
TLE5011
Specification
ADC Test Vectors
Y
122.1%
141.4%
100.0%
0%
X
70.7%
Figure 16
ADC Test Vectors
3.10.2
Temperature Measurement
An internal bandgap voltage can be used to measure the temperature on the chip.
This may be used to compensate for temperature-dependent errors.
The temperature values is sent out instead of the X value.
Table 17
Temperature Measurement
Parameter
Symbol
Limit Values
Unit
min.
typ.
max.
Value at -40°C
T-40
-
-
+22000
digits
Value at 25°C
T25
+2550
+5775
+9000
digits
Value at 150°C
T150
-22000
-
-
digits
Temperature Sensitivity
ST
-
-188.75
-
dig / K
Notes
1)
1) Should be used for temperature compensation of offset errors
Final Data Sheet
37
V1.1, 2010-05
TLE5011
Specification
3.10.3
Functional Angle Test and Temperature Measurement Timing
The functional angle test and the temperature readout are based on the same mechanism.
In the Normal Mode, the output path is linked to the functional angle test or to the temperature measurement unit
until the mode is terminated.
< tupd
< tupd
tupd
tupd
tupd
tupd
tupd
tupd
FSYNC
(reset)
4
5
0
1
2
0
1
2
ADC&Filter
Val_G4
Val_G5
Val_A0
Val_A1
Val_A2
Val_G0
Val_G1
Val_G2
X[16],Y[16]
Buffer1
Val_G3
Val_G0
Val_G1
FCNT[4]
Val_G4
Val_A0
Val_A1
ANGT_EN
or TEMP_EN
Update
useful
GMR_OFF
Figure 17
No GMR signal available
Measurement in Normal Mode
In Automatic Mode, the signal is automatically switched back to GMR measurement after the read-out of one
value.
< tupd
tupd
tupd
tupd
FSYNC
(reset)
FCNT[4]
tupd
tupd
tupd
Updated FCNT=2
4
5
0
1
0
1
2
ADC&Filter
Val_G4
Val_G5
Val_A0
Val_A1
Val_G0
Val_G1
Val_G2
X[16],Y[16]
Buffer1
Val_G3
Val_A0
Val_A1
Val_G0
Val_G4
Val_G1
ANGT_EN
or TEMP_EN
automatic!
Update
GMR_OFF
Figure 18
No GMR signal available
Measurement in Automatic Mode
Final Data Sheet
38
V1.1, 2010-05
TLE5011
Specification
3.11
Overvoltage Comparators
Various comparators monitor the voltage in order to ensure error-free operation.
The overvoltages must be active for at least tDEL to set the test comparator bits in the SSC interface registers. This
works as digital spike suppression.
Table 18
Test Comparators
Parameter
Symbol
Limit Values
Unit
Notes
min.
typ.
max.
VOVG
-
2.80
-
V
VOVA
-
2.80
-
V
VOVD
-
2.80
-
V
VDD Overvoltage
VDDOV
-
6.5
-
V
GND - off Voltage
VGNDoff
-
0.54
-
V
VGNDoff = VGND - VTST1
VDD - off Voltage
VVDDoff
-
0.48
-
V
VVDDoff = VCLK - VDD
or VSCK - VDD
Spike filter Delay
tDEL
-
10
-
µs
The error condition has to last longer
than this value
(min. 256 clocks of fDIG)
Overvoltage Detection
3.11.1
Internal Supply Voltage Comparators
Every voltage regulator has an overvoltage comparator to detect a malfunction.
If the nominal output voltage of 2.5 V is larger than VOVG, VOVA and VOVD, then this overvoltage comparator is
activated. It sets the VRx_OV bit.
.
VDDA
-
REF
VDD
VRG
VRA
VRD
10µs
Spike
Filter
+
GND
Figure 19
OV Comparator
3.11.2
VDD Overvoltage Detection
xxx_OV
GND
The Overvoltage Detection Comparator monitors the external supply voltage at the VDD pin. It activates the
STAT_VR (see Figure 19).
3.11.3
GND-off Comparator
The GND-off Comparator is used to detect a voltage difference between the GND pin and TST1 (which must be
soldered to GND in the application). It activates the STAT_VR bit. This circuit can detect a disconnection of the
Supply GND Pin.
Final Data Sheet
39
V1.1, 2010-05
TLE5011
Specification
.
VDD
VDDA
VGNDoff
-
+dV
TST1
GND
10µs
Spike
Filter
+
GND_OFF
GND
Figure 20
GND-off Comparator
3.11.4
VDD - off Comparator
The VDD-off Comparator detects a disconnection of the VDD pin supply voltage. In this case, the TLE5011 is
supplied by the SCK, CLK and CS input pins via the ESD structures. It activates the STAT_VR bit.
The retriggerable analog monoflop is necessary because of the non-static signal of the CLK and SCK signals.
This comparator is also activated if spikes on CLK or SCK achieve the condition:
(VCLK - VDD) > VVDDoff or (VSCK - VDD) > VVDDoff
.
VDDA
-
VDD
1µs
Mono
Flop
VVDDoff
CLK
SCK
-dV
GND
Figure 21
+
10µs
Spike
Filter
VDD _OFF
GND
VDD - off Comparator
Final Data Sheet
40
V1.1, 2010-05
TLE5011
Package Information
4
Package Information
4.1
Package Parameters
Table 19
Package Parameters
Parameter
Symbol
Thermal Resistance
Limit Values
Unit
Notes
min.
typ.
max.
RthJA
-
150
200
K/W
Junction to air 1)
RthJC
-
-
75
K/W
Junction to case
RthJL
-
-
85
K/W
Junction to lead
Soldering Moisture Level
Lead frame
MSL 3
260°C
Cu
Plating
Sn 100%
> 7 µm
1) According to Jedec JESD51-7
Package Outline PG-DSO-8
Figure 22
Package Outline PG-DSO-8
Final Data Sheet
41
V1.1, 2010-05
TLE5011
Package Information
1.31
Footprint PG-DSO-8
5.69
0.65
1.27
Figure 23
Footprint PG-DSO-8
Packing
0.3
5.2
12 ±0.3
8
1.75
6.4
2.1
Figure 24
Tape and Reel
Marking
Position
Marking
Description
1st Line
5011xx
See ordering table on page 6
2nd Line
GSyww
G .. green, S .. series production, y .. year, ww .. cal.week
Processing
Note: For processing recommendations, please refer to Infineon’s Notes on Processing
Final Data Sheet
42
V1.1, 2010-05
www.infineon.com
Published by Infineon Technologies AG