P reli mi nary Dat a Sheet, V 0.9, Ma y 2007 TLE5010 D ra ft GMR B a sed A ng u lar S en s or Se n so rs Edition 2007-05 Published by Infineon Technologies AG 81726 München, Germany © 2007 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. TLE5010 Draft Revision History: 2007-05 Previous Version: - Page V 0.9 Subjects (major changes since last revision) We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] Template: mc_a5_ds_tmplt.fm / 4 / 2004-09-15 TLE5010 Draft 1 1.1 1.2 1.3 1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 2.2 2.3 2.4 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Internal Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 GMR Voltage Regulator VRG (VDDG-Voltage) . . . . . . . . . . . . . . . . . 10 Analog Voltage Regulator VRA (VDDA-Voltage) . . . . . . . . . . . . . . . . 10 Digital Voltage Regulator VRD (VDDD-Voltage) . . . . . . . . . . . . . . . . 10 GMR Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 5.1 5.2 5.3 Electrical and Magnetic Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GMR Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Offset and Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Amplitude Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Offset Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature dependent behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . Orthogonality Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GMR Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Angle Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Components of the Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . GMR Error Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature dependent Offset Value . . . . . . . . . . . . . . . . . . . . . . . . Offset Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Amplitude Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non-Orthogonality Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resulting Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Error Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Anisotropy Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hysteresis Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Residual Angle Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GMR Parameters after Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.4 5.5 5.5.1 5.5.2 5.6 5.7 Preliminary Data Sheet 4 6 6 7 7 8 15 15 16 17 17 18 18 18 19 19 19 19 19 20 20 20 20 21 21 21 21 22 22 22 22 23 V 0.9, 2007-05 TLE5010 Draft 6 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7 Clock Supply (CLK Timing Definition) . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8 8.1 Synchronous Serial Communication Interface (SSC) . . . . . . . . . . . . . SSC Timing Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Baud rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Spike Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Spike Filter Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Spike Filter On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Filter for DATA and CS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Command Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 8.3 8.3.1 8.3.2 8.4 8.5 26 27 27 30 30 30 31 31 32 32 9 Register Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Bit Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Reserved Registers (08H to 0BH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 10 10.1 10.2 Data Communication via SSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CRC Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Slave Active Byte Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example: Update X and Y and set ADC-Test Mode . . . . . . . . . . . . . 43 44 44 45 11 11.1 11.2 11.3 Test Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Angle Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ADC Test Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Angle Test and Temperature Measurement Timing . . . . . . . . . . . . . . . . . 46 46 47 47 48 12 12.1 12.2 12.3 12.4 Overvoltage Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal Supply Voltage Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD Overvoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GND - Off Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD - Off Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 49 49 50 50 13 13.1 Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Angle Sensor System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 14 14.1 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline PG-DSO-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Footprint PG-DSO-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preliminary Data Sheet 5 52 52 53 54 54 54 55 V 0.9, 2007-05 Draft GMR Based Angular Sensor 1 Overview 1.1 Features TLE5010 • Giant MagnetoResistance based principle • Integrated magnetic field sensing for angle measurement • Full 0 - 360° angle measurement • Highly accurate single bit SD-ADC PG-DSO-8-3 • 16 bit representation of sine / cosine values on the interface • Bidirectional SSC interface up to 2 Mbit/s • 3 pin SSC interface, SPI compatible with open drain • ADCs and filters are synchronized with external commands via SSC • Test resistors for simulating angle values • Core supply voltage 2.5 V • 0.25 µm CMOS technology • Automotive qualified: -40°C to +150°C (Junction Temperature) • Latch up immunity according JEDEC standard • ESD > 2 kV (HBM) • Green package with lead-free plating Type TLE5010 Marking 5010-2 Preliminary Data Sheet Ordering Code tbd. 6 Package PG-DSO-8 V 0.9, 2007-05 TLE5010 Draft Overview 1.2 Target Applications Angular position sensing in automotive applications like: • • • • Steering Angle Brushless DC Motor Commutation (e.g. EPS) Rotary Switch General Angular sensing in automotive applications 1.3 Product Description The TLE5010 is a 360° angle sensor, which detects the orientation of a magnetic field. This is achieved by measuring sine and cosine angle components with monolithic integrated GMR elements (Giant Magnetic Resistance). Data communication is done with a bi-directional SSC interface (SPI compatible). The sine and cosine values can be read out. These signals can be digitally processed to calculate the angle orientation of the magnetic field (magnet). This calculation can be done by using a cordic algorithm. It is possible to connect more than one TLE5010 to one SSC Interface of a µC for redundancy or any other reasons. In this case the synchronization of the connected TLE5010 is done by a broadcast command. Each connected TLE5010 can be addressed by a dedicated chip select CS pin. Online diagnostic functionalities are provided to ensure a reliable operation. These are • • • • Angle Test (generated via test voltages feeding the ADC). Crossed signal paths (switchable for comparison) Inverted signs of bit streams Over and undervoltage detections Preliminary Data Sheet 7 V 0.9, 2007-05 TLE5010 Draft 1.4 Overview Pin Configuration (top view) 8 7 6 5 1 2 3 4 Center of Sensitive Area Figure 1 Pin Configuration Table 1 Pin Definitions and Functions Pin No. Symbol In/Out Function 1 CLK I Chip Clock 2 SCK I SSC Clock 3 CS I SSC Chip Select 4 DATA I/O SSC Data, open drain 5 TST1 I/O Test Pin 1, must be connected to GND 6 VDD - Supply voltage 7 GND - Ground 8 TST2 I/O Test Pin 2, must be connected to GND Preliminary Data Sheet 8 V 0.9, 2007-05 TLE5010 Draft General 2 General 2.1 Functional Description The clock for the sensors will be provided by external. This ensures a synchronously operation in case of multiple system participants. The sensor has its own PLL to generate the necessary clock frequency for the chip operation. 2.2 Block Diagram The block diagram shows all switches in reset position. GND VDD GND-off Comp VDD_max TST1 VDD_O V Comp V DD-off Comp CLK SCK SCK V RG VRG _OV VRG _Rst V RA V RA_OV V RA_Rst VRD SSC VRD_OV V RD_Rst DA TA CS Angle V oltage GMR X Temperature Sensor V DDG A D 2 1 GND Comb Filter 16 FS YNC FIR Filter 16 XH XL Control FSM FCNT V DDG A D 2 GND 1 Comb 16 Filter FIR 16 Filter YH YL A ngle Voltage GMR Y Analog Clock Digital Clock 2 V RG_Rst VRA_Rst VRD_Rst differential TLE5010 Reset P LL CLK Lock Digital Reset TS T1 Figure 2 TST2 Block Diagram Preliminary Data Sheet 9 V 0.9, 2007-05 TLE5010 Draft 2.3 General Internal Power Supply The internal stages of the TLE5010 are supplied with different voltage regulators. Each voltage regulator has its own over- and undervoltage detection circuits. GMR Voltage Regulator VRG (VDDG-Voltage) The GMR voltage regulator supplies all GMR parts. • GMR Bridges • Test Voltages for Angle Test • ADC Reference Voltage The voltages are monitored in the VRG over- and undervoltage detectors. Analog Voltage Regulator VRA (VDDA-Voltage) The analog voltage regulator supplies the analog parts. • • • • • ADCs PLL (analog) VDD-Off comparator GND-Off comparator VDD Overvoltage detection The voltages are monitored in the VRA over- and undervoltage detectors. Digital Voltage Regulator VRD (VDDD-Voltage) The digital voltage regulator supplies all digital parts. • • • • • Comb filters, FIR filters and Low Pass filter PLL (digital) Control FSM with Bitmap SSC -Interface Counters (Reset, FSYNC, FCNT) The voltages are monitored in the VRD over- and undervoltage detectors. Preliminary Data Sheet 10 V 0.9, 2007-05 TLE5010 Draft 2.4 General GMR Functionality The GMR sensor is implemented in vertical integration. This means, that the GMR active areas are integrated above the logic part. GMR elements change their resistance depending on the direction of the magnetic field. 4 individual GMR elements are connected to one Wheatstone sensor bridge. They sense either the • X component, VX (cosine) or the • Y component, VY (sine) of the applied magnetic field. The advantage of a full-bridge structure is that the GMR signal amplitude is doubled. 90° GMR Resistors S 0° VX N ADCX+ Figure 3 1) VY ADCX - GND ADCY+ ADCY - V DDG Sensitive bridges of the GMR Sensor1) The arrows in the resistor symbols show the direction of the reference layer Preliminary Data Sheet 11 V 0.9, 2007-05 TLE5010 Draft General The output signal of each bridge is only unambiguous over 180° between two maxima. Therefore two bridges are orientated orthogonal to each other. Using the ARCTAN function, the true 360° angle value can be calculated which is represented by the relation of the X and Y signals. As only the relative values influence the result, the absolute size of the two signals is of minor importance. Therefore most influences to the amplitudes are compensated. Y Component (SIN) VY X Component (COS) VX V VX (COS) 0° 90° 180° 270° 360° Angle α VY (SIN) Figure 4 Ideal Output of the GMR Sensor Preliminary Data Sheet 12 V 0.9, 2007-05 TLE5010 Draft 3 Table 2 Absolute Maximum Ratings Absolute Maximum Ratings Absolute Maximum Rating Parameters Parameter Symbol Limit Values min. Unit Notes max. Voltage on VDD pin respect to ground (VSS) VDD -0.5 6.5 V max 40 h / lifetime Voltage on any pin respect to ground (VSS) VIN -0.5 6.5 V VDD + 0.35 V may Junction Temperature not be exceeded TJ Magnetic Field Induction B -40 150 - |125| - |80| °C mT max 5 min. @ tA = 25°C max 5 h @ tA = 25°C Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions (VIN > VDD or VIN < GND) the voltage on VDD pins with respect to ground (GND) must not exceed the values defined by the absolute maximum ratings. Preliminary Data Sheet 13 V 0.9, 2007-05 TLE5010 Draft Operating Range 4 Operating Range The following operating conditions must not be exceeded in order to ensure correct operation of the TLE5010. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed. Table 3 Operating Range ( - 40°C < TJ < 150°C ) Parameter Supply Voltage Output Current Input Voltage Symbol VDD IQ VIN Limit Values Unit Notes min. typ. max. 4.5 - 5.5 V 1) - -5 -10 mA 2) 3) -0.3 - 5.5 V VDD + 0.5 V may not be exceeded Magnetic Induction BXY 25 30 45 mT In X / Y direction4) Angle Range Ang TST 0 - 360 ° sine / cosine -40 - 50 °C tlife - - 15 Years Storage Temperature Overall Life Time 1) Directly blocked with 100 nF ceramic capacitor 2) Max current to GND over Open Drain Output 3) The corresponding voltage levels are listed in Table 5 "Electrical Parameters for 4.5V < VDD < 5.5V" on Page 16 4) Values refer to an homogenous magnetic field (Bxy) without vertical magnetic induction (Bz = 0 mT). By applying a vertical magnetic induction an additional error has to be considered Note: For a calculation of the corresponding ambient temperature the thermal resistances in Table 20 "Package Parameters" on Page 51 have to be used. Preliminary Data Sheet 14 V 0.9, 2007-05 TLE5010 Draft Electrical and Magnetic Parameters 5 Electrical and Magnetic Parameters 5.1 Electrical Parameters These are all parameters over operating range, unless otherwise specified. Unless individually specified, typical values correspond to a supply voltage VDD = 5.0 V and 25°C. All other values correspond to - 40°C < TJ < 150°C Table 4 Electrical Parameters Parameter Supply Current Symbol Limit Values 1) POR Level POR Hysteresis Power On Time PLL Jitter ADC Noise 5) Unit Notes mA VDD = 4.5 to 5.5V VDD = 6.5 V Power On Reset min. typ. max. - 15 20 - - 21 VPOR 2.0 VPORhy tPon 50 2.3 2.9 V 30 - mV 100 200 µs VDD > VDDmin & after first edge on fCLK tPLLjit_S tPLLjit_L NADC - 1.3 2.0 2) ns short term 3.0 3.9 long term 4) 1 2.2 digits 1 σ @ FIR_BYP = 0 - 2 4.42) IDD 3) 1 σ @ FIR_BYP = 1 Input Signal Low Level VL -0.35 - 0.3 VDD V Input Signal High Level VH 0.7 VDD - VDD +0.35 V Tested only at DATA pin as structures of all pins are identical Capacitance of SSC Data Pin CLDATA - 4 6 2) pF Internal 1) Without external pull-up resistor for SSC-Interface 2) Not tested 3) From pulse to pulse 4) Accumulated over 1 ms 5) ADC noise in respect to the peak ADC value specified in “Signal Processing” on Page 23. Noise tested using 1 σ of 100 sample values from Angle Test “000” Preliminary Data Sheet 15 V 0.9, 2007-05 TLE5010 Draft Electrical and Magnetic Parameters .. Electrical Parameters for 4.5V < VDD < 5.5V Table 5 Parameter Symbol Limit Values min. VHY Pull-Up Current IPU Pull-Down Current IPD Input Hysteresis Output Signal Low Level 1) VOL typ. Unit Notes max. 0.07 VDD - - V -10 - -150 µA CS, DATA 15 - 225 µA SCK, CLK 15 - 225 TST1 10 - 150 TST2 - - 0.7 0.4 IQ = - 10 mA IQ = - 5 mA 1) V The value -5 mA is not tested 5.2 ESD Protection Table 6 ESD Protection Parameter Symbol Limit Values min. ESD Voltage VHBM VCDM Unit Notes max. - ±2 kV HBM 1) - ± 500 V CDM 2) 1) Human Body Model (HBM) according to: JEDEC EIA/JESD22-A114-B (R = 1.5 kΩ, C = 100 pF, TA = 25°C) 2) Charge Device Model (CDM) according to: ANSI ESD STM JEDEC JESD 22-C101-A Class III. Preliminary Data Sheet 16 V 0.9, 2007-05 TLE5010 Draft 5.3 Electrical and Magnetic Parameters GMR Parameters All parameters over operating range, unless otherwise specified. Table 7 Basic GMR Parameters Parameter Symbol Limit Values min. X, Y Output range X, Y Amplitude 1) X, Y Synchronism X; Y Offset 2) 3) X, Y Orthogonality Error Notes typ. max. RGADC AX, AY 7402 - ±23230 digits 12337 15781 3922 - 20620 k 80 100 120 % OX, OY -3000 0 3000 digits @ Calib. Conditions ϕ -10.0 10.0 ° X0, Y0 X,Y without field Unit 0 -5000 - 5000 1) See Figure 4, Page 12 2) k = 100 x ( AX / AY ). 3) OSIN = ( YMAX + YMIN ) / 2 ; OCOS = ( XMAX + XMIN ) / 2 4) Not tested. digits @ Calib. Conditions Operating Range @ Calib. Conditions @ Calib. Conditions digits without magnet4) Offset and Amplitude VY +A 0° 90° 180° 0 Offset 270° 360° Angle -A Figure 5 Offset and Amplitude Definition Preliminary Data Sheet 17 V 0.9, 2007-05 TLE5010 Draft Electrical and Magnetic Parameters Amplitude Definition The amplitude is defined as half difference between the signed maximum and minimum values of the idealized (fitted) sine or cosine wave. X MAX – X MIN A X = --------------------------------AY 2 Y MAX – Y MIN = -------------------------------2 Offset Definition The offset of the X and Y signals is defined as the mean value between the signed maximum and minimum values of the idealized (fitted) sine or cosine wave. OX OY X MAX + X MIN --------------------------------= 2 Y MAX + Y MIN = --------------------------------2 Temperature dependent behavior The temperature offset gradients for both channels depend on the value at 25°C. It can be calculated using following linear equations: KT OX = tco_d_x + ( tco_k_x × O X25 ) KT OY = tco_d_y + ( tco_k_y × O Y25 ) OX25, OY25: Offset values at 25°C in digits. . Table 8 GMR Temperature Coefficients Parameter Symbol Limit Values min. Unit typ. max. Offset Temperature Coefficient base tco_d_x - +0.116296 - tco_d_y - -0.079401 - Offset Temperature Coefficient gain tco_k_x - -0.0010147 - tco_k_y - -0.0010121 - Preliminary Data Sheet 18 Notes digits_/_K 1_/_K V 0.9, 2007-05 TLE5010 Draft Electrical and Magnetic Parameters Orthogonality Definition The corresponding maximum and zero crossing points of the SIN and COS signals are not exactly in a distance of 90°. The difference between X and Y phase is called ’Orthogonality Error’. ϕ = ϕX – ϕY jideal = 0° jX : Phase error of X (= cos) Signal jY : Phase error of Y (= sin) Signal 5.4 Calibration GMR Values The end-of-line calibration can be done using following sequence. The conditions are specified in Table 9. • • • • • • Turn magnetic field left and measure X and Y values Calculation of Amplitude, Offset, Phase correction values of left turn Turn further 90° left and 90° back right without measurement Turn magnetic field right and measure X and Y values Calculation of Amplitude, Offset, Phase correction values of right turn Calculation of mean values of Amplitude, Offset, Phase correction values The above gained values have to be stored in a non-volatile memory. They are used for the correction of the read-out X and Y values before the angular calculation. The resulting angular deviation is calculated using above determined parameters. Temperature Measurement The signal amplitude T25 of the temperature measurement path at calibration conditions has to be measured and stored. Calibration Conditions All errors are related to a calibration done using following conditions: Table 9 GMR calibration conditions Parameter Flux density Temperature Preliminary Data Sheet Symbol Limit Values BCAL TCAL Unit Notes BZ = 0 mT min. typ. max. - 30 - mT - 25 - °C 19 V 0.9, 2007-05 TLE5010 Draft Electrical and Magnetic Parameters 5.5 Angle Calculation 5.5.1 Components of the Output Signals The X and Y signals at the output can be described with following equations: X = A X × cos ( α + ϕ X ) + O X Y = A Y × sin ( α + ϕ Y ) + O Y AX : Amplitude of X (= cos) Signal OX : Offset of X (= cos) Signal AY : Amplitude of Y (= sin) Signal OY : Offset of Y (= sin) Signal ϕX : Phase error of X (= cos) Signal ϕY : Phase error of Y (= sin) Signal 5.5.2 GMR Error Compensation Temperature dependent Offset Value To increase the accuracy, the temperature dependent offset drift can be compensated. The temperature of the chip has to be read out. The Offset values OX and OY have to be multiplied with the Offset temperature coefficient and the temperature value. KT OX O X = O X25 + -------------- × ( T – T 25 ) S T KT OY O Y = O Y25 + -------------- × ( T – T 25 ) S T OX25 , OY25 : Offset value at 25°C in digits T25 : Temperature value at 25°C in digits T : Temperature value in digits ST : Sensitivity of the temperature measurement path, (see chapter “Temperature Measurement” on Page 46). Preliminary Data Sheet 20 V 0.9, 2007-05 TLE5010 Draft Electrical and Magnetic Parameters Offset Correction After read-out of the X and Y value first the temperature corrected offset value has to be subtracted. X 1 = X – OX Y1 = Y – OY Amplitude Normalization Then the X and Y values are normalized using the peak values determined in the calibration. X 1 X 2 = ------ AX Y1 Y 2 = -----AY Non-Orthogonality Correction The influence of the non-orthogonality can be compensated using following equation. Only the Y channel has to be corrected. Y 2 – X 2 × sin ( – ϕ ) Y 3 = ------------------------------------------- cos ( – ϕ ) Resulting Angle After correction of all errors, the resulting angle can be calculated using the arctan function1). Y3 α = arc tan ------ – ϕ X X 2 1) µC-function “arctan2(Y3,X2)” to resolve 360° Preliminary Data Sheet 21 V 0.9, 2007-05 TLE5010 Draft 5.6 Electrical and Magnetic Parameters GMR Parameters after Calibration After calibration under the conditions specified in Table 9 "GMR calibration conditions" on Page 19, the sensor has following remaining error: The error value refers to BZ = 0 mT and operating conditions given in Table 3 "Operating Range ( - 40°C < TJ < 150°C )" on Page 14. Table 10 GMR parameter with temperature dependent offset compensation Parameter Symbol Limit Values min. typ. Unit Notes max. 1) Overall Error 1) At 25°C, B=30mT 2) incl. hysteresis error 3) At 0h Preliminary Data Sheet - 0.7 22 2,0 ° 2) 3) V 0.9, 2007-05 TLE5010 Draft 6 Signal Processing Signal Processing Table 11 Signal Processing Parameter Symbol Limit Values Internal Cutoff Frequency (-3dB) of sin or cos Value fCut-Off Update Time of sin or cos Value2) tupd Settle Time 3) Peak ADC Output value min. typ. - 4.9 1) Unit Notes kHz FIR_BYP=0 max. - 19.6 tsettle ADCPk FIR_BYP=1 - 81,9 - µs FIR_BYP=0 - 20,5 - FIR_BYP=1 - 163,8 - FIR_BYP=0 - 41,0 - FIR_BYP=1 - - 23230 digits signed 16 bit integer (2s complement) 4) 5) 6) 1) For 4 Mhz input frequency 2) tupd = 8192 / (25 x fCLK) for FIR_BYP = 0 tupd = 8192 / (100 x fCLK) for FIR_BYP = 1 3) tsettle = 2 x tupd , after change of ADC input source 4) Output values are valid up to this limit. Above it, corrupted results may occur due to non-linearity of the ADC. 5) The internal quantization is typically 5.166 µV per digit. 6) Correspond to max. GMR output value. Preliminary Data Sheet 23 V 0.9, 2007-05 TLE5010 Draft 7 Clock Supply (CLK Timing Definition) Clock Supply (CLK Timing Definition) The clock signal input “CLK” must fulfill certain requirements which are described in the following: • The high or low pulse width must not exceed the specified values, because the PLL needs a minimum pulse width and must be spike filtered. • The duty cycle factor should be 0.5 but can deviate to the values limited by tCLKh(f_min) and tCLKl(f_min). • The PLL is triggered at the positive edge of the clock. If more than 2 edges are missing, a chip reset is generated automatically. tCLK tCLKh tCLKl VH VL t Figure 6 CLK Timing Definition Table 12 CLK Timing Specification Parameter Symbol fCLK CLK Duty Cycle 1) CLKDUTY CLK rise time tCLKr CLK fall time tCLKf PLL Frequency fPLL Digital Clock fDIG Digital Clock Periode tDIG Input Frequency 1) Limit Values Unit Notes min. typ. max. 3.9 4.00 4.2 MHz 30 50 70 % - - 20 ns from VL to VH - - 20 ns from VH to VL - 100 - MHz fCLK * 25 - 25 - MHz ( 25 / 4 ) * fCLK - 40 - ns 4 / (25 * fCLK) Minimum duty cycle factor: tCLKh(f_min) / tCLK(f_min) with tCLK(f_min) = 1 / fCLK(f_min) Maximum duty cycle factor: tCLKh(f_max) / tCLK(f_min) with tCLKh(f_max) = tCLK(f_min) - tCLKl(min) Preliminary Data Sheet 24 V 0.9, 2007-05 TLE5010 Draft Synchronous Serial Communication Interface (SSC) 8 Synchronous Serial Communication Interface (SSC) The 3 pin synchronous serial interface (SSC) has a bidirectional data line (open drain), serial clock signal and chip select. It is designed to communicate with a micro controller with bidirectional SSC interface supporting Open Drain. Other micro controllers may require an external NPN transistor. This allows communication with SPI compatible devices. µC (SSC Master) TLE 501x (SSC Slave) typ. 1k Ω DATA Shift Register *) SCK *) DATA Shift Register *) SCK *) Clock Generator Figure 7 CS CS *) optional , e.g. 100 Ω SSC Half-Duplex Configuration for µC with Open Drain support µC (SSC Master) Shift Register typ. 1kΩ MRST TLE 501x (SSC Slave) *) *) MTSR DATA Shift Register optional *) SCK SCK *) Clock Generator Figure 8 CS CS *) optional , e.g. 100 Ω SSC Half-Duplex Configuration for µC without Open Drain support Preliminary Data Sheet 25 V 0.9, 2007-05 TLE5010 Draft 8.1 Synchronous Serial Communication Interface (SSC) SSC Timing Definition SSC Timing Diagram tSCKp tCSs tSCKh tCSh tSCKl tCSoff CS VH VL SCK VH VL DATA VH VL tDATr Figure 9 tDATw SSC Timing Definition • SSC Inactive Time ( CSoff ) The SSC inactive time defines the delay, before the TLE5010 can be selected again after a transfer. The TLE5010 reacts only to one command after SSC inactive time. Then the SSC Interface of the TLE5010 is disabled until the next SSC Inactive Time is performed. • DATA Write Time ( tDATW ) During this time the TLE5010 changes the data line, thus the data are invalid. The DATA Write Time values are defined without pull-up resistor. • Pull-up Time Value ( tPU ) The value in Table 13 "SSC Timing Specification" on Page 27 is estimated with 60 ns. • Chip Select Off time ( tCSOFF ) Preliminary Data Sheet 26 V 0.9, 2007-05 TLE5010 Draft Table 13 Synchronous Serial Communication Interface (SSC) SSC Timing Specification 1) Parameter SSC Baud Rate Symbol Limit Values fSSC Unit min. typ. max. - 2.0 2.12) MBit / s tCSs CS Hold Time tCSh CSoff tCSoff SCK High tSCKh SCK Low tSCKl DATA Read Time tDATr 3*tDIG+10 - - ns 5*tDIG+10 - - ns 10*tDIG - - ns 5*tDIG - - ns 5*tDIG - - ns 6*tDIG-10 - 7*tDIG+10 ns (Data Valid Time) 5*tDIG-10 - 7*tDIG+10 tDATw 6*tDIG+25 - 7*tDIG+50 + tPU ns tDATs - 30 4) ns CS Setup Time DATA Write Time (Data Valid Time) 3) DATA slope 20 Notes SSC inactive time SSC_FILT = 0 SSC_FILT = 1 Falling edge 5) 1) Timings have to be calculated acc. Table 12 "CLK Timing Specification" on Page 24. 2) fCLK/2, synchronized to fCLK if fCLK = fCLK(max) 3) tPU is the time generated by the pull-up resistor 4) Not tested. 5) Internal slope control of falling edge for data bit transition from VH to VL. Preliminary Data Sheet 27 V 0.9, 2007-05 TLE5010 Draft Synchronous Serial Communication Interface (SSC) t SCKl MIN t SCKh SCK t DATw MIN Wr t DATw MAX S SC_FILT=0 tPU Earliest sample timepoint t DATr MIN Rd t DATr MAX SCK t DATw MIN Wr t DATw MAX SSC_FILT=1 tPU tDATr MIN t DATr MAX Figure 10 Earliest sample timepoint of second sample from 2 of 3 filter Rd SSC Interface Timing Details with worst-case specified Timing Note: – The read window includes the sampling of the data bit. – For SSC_FILT = 1, the 2-of-3 selection is already regarded. Only the 2 last data values have to be equal. – For SSC_FILT = 0 only one sample point is selected. Preliminary Data Sheet 28 V 0.9, 2007-05 TLE5010 Draft Synchronous Serial Communication Interface (SSC) The margin time in following table is the time between write access to the SSC Data Line and the earliest possible sample read of the TLE5010 itself for read back. It is useful to have a maximum distance between WRITE and subsequent READ. This ensures a reliable read back of the written data for the Slave-Active Byte generation. Table 14 Maximum Pull-up Time Margin with worst-case specified Timing SSC_FILT 0 1 1) Min. tPU Margin 1) 90 50 SSC_TIMING don’t care Unit ns Comment Calculation: Margin=tSCKl(min)+tDATwMAX -(tPU)-tDATrMIN.For Margin<50 ns no problems can occur. 8.2 SSC Baud rate The SSC Baud rate depends on the internal clock frequency. 12 internal digital clock cycles are necessary to ensure a reliable operation. Therefore the maximum SSC Baud rate depends on the external CLK. f CLK f SSC = ----------- 2 8.3 SSC Spike Filter A SSC Spike Filter for all SSC lines can be selected via the SSC_FILT bit. 8.3.1 SSC Spike Filter Off When the spike filter is disabled, each slope of a rising voltage is used to define a bit. This is independent of the length of the sampled pulse. For example a positive spike generates therefore a rising and a falling edge. Preliminary Data Sheet 29 V 0.9, 2007-05 TLE5010 Draft 8.3.2 Synchronous Serial Communication Interface (SSC) SSC Spike Filter On A sliding window with four consecutive sample bits is analyzed. The sample frequency is: 1 f S = --------------f DIGIT Rising Edge Detect for SCK • After a rising edge (LH combination), at least one of the 2 following samples has to be ’high’. Valid bit combinations: 0111 , 0110 , 0101. • A falling condition has to be detected before. Falling Edge Detect for SCK • After a falling edge (HL combination), at least one of the 2 following samples has to be ’low’. Valid bit combinations: 1000 , 1001 , 1010. • A rising condition has to be detected before. ) SCK (PAD) SCK Fall ) SCK rise detected ) ) SCK Rise SCK fall detected Suppressed Spike Masked, because no fall detected Figure 11 SSC Spike Filter Filter for DATA and CS • The DATA pin has a ’2-of-3’ filter. • The CS input has a ’2-of-3’ filter, which suppresses only positive spikes. Preliminary Data Sheet 30 V 0.9, 2007-05 TLE5010 Draft 8.4 Synchronous Serial Communication Interface (SSC) SSC Data Transfer The following transfer bytes are possible: • • • • Command byte (to access and change operating modes of the TLE5010) Data bytes (any data transferred in any direction) CRC byte (cyclic redundancy check) Slave Active byte (response of all selected slaves) SSC-Master is driving DATA (µC) SSC-Slave is driving DATA (Sensor) Command Byte Data Byte(s) SCK DATA MSB 6 5 4 3 2 1 LSB MSB 6 5 CRC SlaveActive 4 3 2 1 LSB CS DATA Command Byte SSC-Master is driving DATA (µC) Figure 12 8.5 Data SSC-Slave is driving DATA (Sensor) SSC Data Transfer (Data Read Example) SSC Command Byte The TLE5010 is controlled by a command byte. It is sent first at every data transmission. Table 15 Structure of the Command Byte Name RW Bits [7] ADDR [6..3] ND [2..0] Preliminary Data Sheet Description Read - Write ’0’ = write, ’1’ = read Address to be read / written ’0..15’ - register start address (address auto increment) Number of data bytes ’0..7’ - number of data bytes to be transferred 31 V 0.9, 2007-05 TLE5010 Draft Register Table 9 Register Table This chapter defines the complete address range as well as all registers of the TLE5010. It also defines the read/write access rights of the specific registers. In the following table values through symbols are listed. Access to the registers is done via the SSC interface. Table 16 Address Map Addr. Name 00H 01H 02H 03H 04H 05H 06H CTRL1 Bits 7 - XL XH YL YH FCNT_ STAT FSYNC_ FILT_ INV INV 07H ANGT 08H 09H 0AH 0BH - 0CH TST 0DH 0EH ID LOCK 0FH CRTL2 - 6 5 - 4 - - Preliminary Data Sheet 1 - 0 AUTO UR XLow XHigh YLow YHigh STAT_ GMR_ UPDATE VR OFF FCNT FSYNC ANGT_ EN ANGT_Y reserved reserved reserved reserved FILT_ FILT_ CRS BYP TEMP_ FILT_ ADCPY EN PAR DEV_ID VDD_ OV 3 2 SSC_ FILT VDD_ OFF LOCK VRG_ VRA_ OV OV GND_ OFF 32 ANGT_X TST_ TST_ TST_ ADC GMR CHAN REV_ID VRD_ OV S_NO V 0.9, 2007-05 TLE5010 Draft Register Table Bit Types Abbreviation Function Description L Locked Locked register. These registers can only be written, when the unlockvalue is written in the lock register (0EH). This ensures, that these bits cannot be modified unwanted during normal operation. U Update Update-Buffer is for this bit is present. In case of an Update Command and the UpdateMode bit (UR in CTRL1) is set, the immediate values are stored in this Update-Buffer simultaneous. This enables a snapshot of all necessary system parameters at the same time. S Status Reset only after readout R Read Read-only registers W Write Read and write registers Preliminary Data Sheet 33 V 0.9, 2007-05 TLE5010 Draft Register Table CTRL1 Addr: 00H Reset Value: 01H 7 6 5 reserved reserved reserved - - - 4 3 2 reserved SSC_FILT reserved WL WL - 1 0 AUTO UR WL WL Field Bits Type Description reserved 7 - reserved, has to be set to 0 reserved 6 - reserved, has to be set to 0 reserved 5 - reserved, has to be set to 0 reserved 4 - reserved, has to be set to 0 SSC_FILT 3 WL SSC Digital Spike Filter enable for all SSC lines ( CS, CLK and DATA ) 0: Digital SSC Spike filters off 1: Digital SSC Spike filters on (modified timing) reserved 2 - reserved, has to be set to 0 AUTO 1 WL Automatic update at angle tests 0: no automatic update in Angle Test Mode 1: automatic update-command after tsettle, counters FSYNC and FCNT are reset to “0”. Then the Angle-Test (ANGT_EN) is automatically disabled and switches back to normal operation. Also the UPDATE bit is toggled UR 0 WL Update / Run Mode 0: Run Mode (Buffer1 values are immediate values) 1: Update Mode (Buffer2 values are stored values) Preliminary Data Sheet 34 V 0.9, 2007-05 TLE5010 Draft Register Table The values in Register 01H to 04H represent one byte of two’s complement signed 16 bit integer values. X_L Addr: 01H 7 Reset Value: 00H 6 5 4 3 2 1 0 1 0 1 0 1 0 X Low Byte RU X_H Addr: 02H 7 Reset Value: 00H 6 5 4 3 2 X High Byte RU Y_L Addr: 03H 7 Reset Value: 00H 6 5 4 3 2 Y Low Byte RU Y_H Addr: 04H 7 Reset Value: 00H 6 5 4 3 2 Y High Byte RU Preliminary Data Sheet 35 V 0.9, 2007-05 TLE5010 Draft Register Table FCNT_STAT Addr: 05H 7 reserved - Reset Value: 80H 6 5 4 3 STAT_VR GMR_OFF UPDATE RS RU 2 1 0 FCNT RS RU Field Bits Type Description reserved 7 - STAT_VR 6 RS Voltage Regulator Status This bit is a logical OR combination of Digital, Analog, GMR and VDDOV Comparator and GNDOFF, and VDDOFF Comparator outputs. 0: Voltage Supply ok 1: Voltage Supply not ok GMR_OFF 5 RU ADC Values are no GMR values (e.g.: Temperature measurement is active) This bit indicates, whether GMR values or any other values are connected to the ADCs. This value is read back from the multiplexer control signals. 0: X,Y Values are GMR values 1: X,Y Values normally represent temp. measurement or angle test values. In case of non functional MUX this bit is set to “1” UPDATE 4 RU Update Toggle bit. This bit toggles after every update (update command or automatic update at angle test) The bit is independent of 'UR' bit in CTRL1 FCNT 3-0 RU Frame Counter (4 bit unsigned integer value) This counter counts every new X,Y value pair coming out of the data path. (approx. 80µs) This counter is reset to 0H after any write to FSYNC and after every change of the ANGT_EN bit. As tsettle time has to be waited for valid X,Y data, this counter must be ≥ 2H to indicate valid X,Y values. If it overflows, it resets to 3H to show, that values are still valid. Note: If FIR_BYP is activated, this counter counts 4 times faster! Preliminary Data Sheet 36 V 0.9, 2007-05 TLE5010 Draft Register Table FSYNC_INV Addr: 06H 7 Reset Value: 00H 6 5 4 3 FILT_INV FSYNC WU WU 2 1 0 Field Bits Type Description FILT_INV 7 WU Filter Input Inversion (to check the digital data path during operation) 0: Filter Inputs are not inverted 1: Filter Inputs are inverted FSYNC 6-0 WU Frame Synchronization (7bit unsigned integer value) The Filter Update time of approx. 80 µs results from the filter decimation. The phase of this decimation can be set and checked by this counter. If FIR_BYP is activated, this counter overflows at the value 31D. ANGT Addr: 07H 7 Reset Value: 00H 6 5 reserved ANGT_EN - W 4 3 2 1 0 ANGT_Y ANGT_X W W Field Bits Type Description reserved 7 - reserved, has to be set to 0 ANGT_EN 6 W Angle Test Enable 0: Angle Test disable command 1: Angle Test enable command in this case X and Y values represent resistive test values, which can be used to simulate angle values ANGT_Y 5-3 W ANGT_X 2-0 W Angle Test X and Y value see : Table 17 "Functional Angle Test" on Page 45 Preliminary Data Sheet 37 V 0.9, 2007-05 TLE5010 Draft Register Table Reserved Registers (08H to 0BH) The values in these registers are 8 bit unsigned integer values. The values in addr.8 and addr.9 have to be in reset status. Reserved Addr: 08H 7 Reset Value: FFH 6 5 4 3 2 1 0 1 0 Reserved Reserved Addr: 09H - 0BH 7 6 Reset Value: 00H 5 4 3 2 Reserved Preliminary Data Sheet 38 V 0.9, 2007-05 TLE5010 Draft Register Table TST Addr: 0CH Reset Value: 00H 7 6 TEMP_EN ADCPY WL WL 5 4 3 FILT_PAR FILT_CRS FIR_BYP WL WL WL 2 1 0 TST_ADC TST_GMR WL TST_ CHAN WL WL Field Bits Type Description TEMP_EN 7 WL Temperature Device Enable 0: Temperature Measurement disabled 1: Temperature Measurement enabled The X value represents the temperature. Automatic update mode enabled, if AUTO='1' ADCPY 6 WL Y Polarity 0: No inversion of Y bit stream 1: Inversion of Y bit stream (rotating direct. changed) FILT_PAR 5 WL Filter switched parallel 0: Filters in normal mode 1: Filters parallel, input selected by TST_CHAN FILT_CRS 4 WL Filter switched across 0: Filters in normal mode 1: Filters crossed, X and Y outputs are exchanged FIR_BYP 3 WL FIR Filter Bypass 0: No FIR Bypass 1: FIR Bypass TST_ADC 1) 2 WL ADC input switch to TST1and TST2 0: No ADC input switch, normal operation 1: ADC input switched to TST1,2, ADC selected by TST_CHAN 2) TST_GMR 1) 1 WL GMR switch to TST1and TST2 0: No GMR switch, normal operation 1: GMR switched to TST1,2 2) TST_CHAN 0 WL Test Channel select 0: X channel linked to TST1and TST2 1: Y channel linked to TST1and TST2 1) Only for test purposes 2) if TST_ADC and TST_GMR are set to ’1’ at the same time, TST_GMR is forced to 0. TST_ADC has the higher priority. Preliminary Data Sheet 39 V 0.9, 2007-05 TLE5010 Draft Register Table ID Addr: 0DH 7 Reset Value: 12H 6 5 4 3 2 1 DEV_ID DEV_REV R R 0 Field Bits Type Description DEV_ID 7-4 R Device Identifier 001H: TLE5010 productive chip DEV_REV 3-0 R Device Revision (current number) 00H: TLE5010 productive chip, 1st revision (B11) 01H: TLE5010 productive chip, 2nd revision (B21) 02H: TLE5010 productive chip, 3rd revision (B31) 03H: TLE5010 productive chip, 4th revision (B41) (Referred to errata sheets for further versions) LOCK Addr: 0EH 7 Reset Value: 00H 6 5 4 3 2 1 0 1 0 LOCK W Field Bits Type Description LOCK 7-0 W Lock Byte ≠ 5AH: Lock registers locked = 5AH: Lock registers unlocked CTRL2 Addr: 0FH 7 VDD_OV RS Reset Value: 00H 6 5 4 VDD_OFF GND_OFF VRG_OV RS Preliminary Data Sheet RS RS 40 3 2 VRA_OV VRD_OV S_NO RS RS WL V 0.9, 2007-05 TLE5010 Draft Register Table Field Bits Type Description VDD_OV 7 RS VDD Overvoltage Comparator 0: No VDD Overvoltage occurred 1: VDD Overvoltage occurred VDD_OFF 6 RS VDD - Off Comparator 0: No VDD - Off occurred 1: VDD - Off occurred GND_OFF 5 RS GND - Off Comparator 0: No GND - Off occurred 1: GND - Off occurred VRG_OV 4 RS GMR Voltage Regulator Overvoltage Comparator 0: Voltage ok 1: VRG Overvoltage occurred VRA_OV 3 RS Analog Voltage Regulator Overvoltage Comparator 0: Voltage ok 1: VRA Overvoltage occurred VRD_OV 2 RS Digital Voltage Regulator Overvoltage Comparator 0: Voltage ok 1: VRD Overvoltage occurred S_NO 1-0 WL Slave Number Used in the SSC protocol Preliminary Data Sheet 41 V 0.9, 2007-05 TLE5010 Draft 10 Data Communication via SSC Data Communication via SSC • The data transmission order is ’MSB first’. • Data is put on the data line with the rising edge on SCK and read with the falling edge on SCK. • The SSC interface is byte aligned. Functions are activated after each transmitted byte. • A “high” condition on the negated chip select pin (CS) of the selected TLE5010 interrupts the transfer immediately. The CRC calculator is automatically resetted. • Every access to the TLE5010 with ND (number of data) ≥ 1 is done with address auto increment. • After an auto-increment overflow the addresses are beginning from 00H again. • For every data transfer with ND ≥ 1 a 8 bit CRC byte will be appended by the selected TLE5010. No CRC byte is sent in a data transfer with ND = 0 (e.g. Update Command). • After the CRC byte is sent, the bit represented by S_NO is pulled low by the selected slave in the Slave-Active-Byte (bits [3..0], low nibble). In this way, also broadcastmessages produce an individual feedback of every selected slave. This is necessary to differentiate the individual TLE5010 slave response, because the CRC byte is written by both TLE5010 in parallel. • If the CRC byte on the bus is the same as the internal generated CRC of each TLE5010, each slave pulls low the dedicated bit in the Slave-Active-Byte (bits [7..4], high nibble). If not, the bit in the high nibble remains ’1’. • A write command to address 00H with ND = 0 will update all values inside the TLE5010, and only in this case the transfer can proceed. Furthermore this command is add to the CRC-calculation of the following SSC Transfer. • A command of “0000_0000” is called ’Update Command’. This command transfers the present immediate values of each register to the update register. After an Update Command, the CS line need not set and reset again. • After the CRC and Slave-Active byte have been sent the transfer ends. The TLE5010 always sends logical “1” and all following sent bits from the SSC Master are ignored (TLE5010 is in idle mode). To enable data transfers again the chip select pin (CS) of the TLE5010 has to be deselected for CSoff (see Table 13) once. • If the update mode is selected (CTRL register, UR = ’1’), all accesses are done to update registers where update registers are present. Other registers are accessed directly. Preliminary Data Sheet 42 V 0.9, 2007-05 TLE5010 Draft Data Communication via SSC 10.1 CRC Generation • This CRC is according to the J1850 Bus-Specification of 15.Feb.1994 for Class B Data Communication. • Every new transfer resets the CRC generation. • Every byte of a transfer will be taken into account to generate the CRC (also the sent command(s)). • Generator Polynom: X8+X4+X3+X2+1, for the CRC generation the fast CRC generation circuit is used. (See Figure 13) • The remainder of the fast CRC circuit is initial set to ’11111111B’. • Remainder is bit inverted before transmission. Figure 13 shows the fast CRC Polynom. The zero extension for initial CRC calculation is included! Input xor & TX_CRC 1 xor 1 X0 X1 xor 1 X2 xor 1 1 X3 1 X4 1 X5 Serial CRC output 1 X6 X7 parallel Remainder Figure 13 10.2 Fast CRC polynomial division circuit Slave Active Byte Generation The position of the ’0’ in a nibble corresponds to the given slave number. The slave active byte (cccc_nnnn) is made up of a • low nibble (nnnn). One ’0’ is generated always according to the slave number. • high nibble (cccc). The ’0’ is only generated, if the readback CRC is correct. Slave1: S_NO = 0 Ö bit 0 is pulled low Slave Active Byte: 1110_1110 Slave2: S_NO = 1 Ö bit 1 is pulled low Slave Active Byte: 1101_1101 Slave3: S_NO = 2 Ö bit 2 is pulled low Slave Active Byte: 1011_1011 Slace4: S_NO = 3 Ö bit 3 is pulled low Slave Active Byte: 0111_0111 Example for a communication disturbed by other bus participants: Slave1: S_NO = 0 Ö bit 0 is pulled low, but the high nibble remains as ’1111’. > Slave Active Byte: 1111_1110 Preliminary Data Sheet 43 V 0.9, 2007-05 TLE5010 Draft Data Communication via SSC Example: Update X and Y and set ADC-Test Mode Command Data 00000001 00000101 CRC (init all ‘0’) 00000000 ----------------------------------xor 11111111 -------=11111110.0 . .A xor 10001110.1 . . --------.. . = 01110000.10 . .B xor 1000111.01 . . -------.-. . = 0110111.110 . .C xor 100011.101 . . ------.--. . = 10100.0110 . .D xor 10001.1101 . . -----.---. . = 00101.101101 . .E xor 100.011101 . . ---.------ . . = 001.11000001. .F xor 1.00011101. . ---.------ . . =.11011100.0 .G xor.10001110.1 . .--------.. = 1010010.10 .H xor 1000111.01 . -------.. = 10101.1100 .I xor 10001.1101 . ----.----. = 100.000100 .J xor 100.011101 . ---.------ . =01100100. Remainder 10011011 inverted Remainder Transmitted Sequence: Command Data CRC 00000001 00000101 10011011 Preliminary Data Sheet 44 V 0.9, 2007-05 TLE5010 Draft 11 Test Structures Test Structures Two different test signal structures are implemented in the TLE5010. These are: • Functional angle test. In this case, well-knows signals feed the ADCs. • Temperature measurement. This is useful to read out the chip temperature for compensation purposes. 11.1 Functional Angle Tests It is possible to feed the ADCs with appropriate values to simulate a certain magnetposition and other GMR effects. The values are generated with resistors on the chip. Following X / Y ADC values can be programmed: • 4 points, circle amplitude = 70.7% (0°, 90°, 180°, 270°) • 8 points, circle amplitude = 100.0% (0°, 45°, 90°, 135°,180°, 225°, 270°, 315°) • 8 points, circle amplitude = 122.1% (35.3°, 54.7°, 125.3°, 144.7°, 215.3°, 234.7°, 305.3°, 324.7°) • 4 points, circle amplitude = 141.4% (45°, 135°, 225°, 315°) Note: The 100% values correspond to typically 21700 digits and a voltage of ~ 110 mV. Table 17 Functional Angle Test Register Bits X / Y Values (decimal) min. typ. max. 000 -400 0 400 001 14800 15500 16200 010 20700 21700 22700 011 100 32767 1) -400 0 400 101 -14800 -15500 -16200 110 -20700 -21700 -22700 111 1) -32768 Not allowed to use. Preliminary Data Sheet 45 V 0.9, 2007-05 TLE5010 Draft Test Structures ADC Test Vectors Y 122.1% 141.4% 100.0% 0% X 70.7% Figure 14 11.2 ADC Test Vectors Temperature Measurement An internal bandgap voltage can be used to measure the temperature on the chip. This may be used to compensate temperature dependent errors. The temperature value is sent out instead of the X value. Table 18 Temperature Measurement Parameter Value at -40°C Value at 25°C Value at 150°C Temperature Sensitivity 1) Symbol Limit Values T-40 T25 T150 ST Unit min. typ. max. - - +22000 digits +2550 +5775 +9000 digits -22000 - - digits - - dig / K -188.75 Notes 1) Should be used for temperature compensation of offset errors Preliminary Data Sheet 46 V 0.9, 2007-05 TLE5010 Draft Test Structures 11.3 Angle Test and Temperature Measurement Timing The angle test and the temperature readout is based on the same mechanism. In the Normal Mode, the output path is linked to the angle test or temperature measurement unit until the mode is terminated. < tupd < tupd tupd tupd tupd tupd tupd tupd FSYNC (reset) 4 5 0 1 2 0 1 2 ADC&Filter Val_G4 Val_G5 Val_A0 Val_A1 Val_A2 Val_G0 Val_G1 Val_G2 X[16],Y[16] Buffer1 Val_G3 Val_G0 Val_G1 FCNT[4] Val_G4 Val_A0 Val_A1 ANGT_EN or TEMP_EN Update useful GMR_OFF Figure 15 No GMR signal available Measurement in Normal Mode In the Automatic Mode, the signal is automatically switched back to GMR measurement after the read-out of one value. < tupd tupd tupd tupd FSYNC (reset) FCNT[4] tupd tupd tupd Updated FCNT=2 4 5 0 1 0 1 2 ADC&Filter Val_G4 Val_G5 Val_A0 Val_A1 Val_G0 Val_G1 Val_G2 X[16],Y[16] Buffer1 Val_G3 Val_A0 Val_A1 Val_G0 Val_G4 Val_G1 ANGT_EN or TEMP_EN automatic! Update No GMR signal available GMR_OFF Figure 16 Measurement in Automatic Mode Preliminary Data Sheet 47 V 0.9, 2007-05 TLE5010 Draft Overvoltage Comparators 12 Overvoltage Comparators Various comparators monitor the voltage in order to ensure a error free operation. The overvoltages must be active for at least tDEL to set the test comparator bits in the SSC Interface registers. This works as digital spike suppression. Table 19 Test Comparators Parameter Symbol Limit Values VOVG VOVA VOVD VDD Overvoltage VDDOV GND - Off Voltage VGNDoff VDD - Off Voltage VVDDoff Overvoltage Detection Spike filter Delay 12.1 tDEL Unit min. typ. - 2.80 - V - 2.80 - V - 2.80 - V - 6.5 - V - 0.54 - V - 0.48 - - 10 Notes max. - VGND_OFF = VGND - VTST1 VVDD_off = VCLK - VDD or VSCK - VDD V µs The error condition has to be longer than this value (min. 256 clocks of fDIG) Internal Supply Voltage Comparators Every voltage regulator has an overvoltage comparator to detect a malfunction. If the nominal output voltage of 2.5 V is larger than VOVG, VOVA and VOVD, then this overvoltage comparator is activated. It sets the VRx_OV bit. . VDDA - REF VDD VRG VRA VRD + GND Figure 17 12.2 10µs Spike Filter xxx_OV GND OV Comparator VDD Overvoltage Detection This comparator (see Figure 17) monitors the external supply voltage at the VDD pin. It activates the STAT_VR bit. Preliminary Data Sheet 48 V 0.9, 2007-05 TLE5010 Draft 12.3 Overvoltage Comparators GND - Off Comparator This comparator is used to detect a voltage difference between the GND pin and TST1 (which must be soldered to GND in the application). It activates the STAT_VR bit. This circuit can detect a disconnection of the Supply GND Pin. . VDD VDDA VGNDoff +dV TST1 GND - 10µs Spike Filter + GND_OFF GND Figure 18 12.4 GND - Off Comparator VDD - Off Comparator This comparator detects a disconnection of the VDD pin supply voltage. In this case the TLE5010 is supplied by the SCK, CLK and CS input pins via the ESD structures. It activates the STAT_VR bit. The retriggerable analog monoflop is necessary because of the not static signal of the CLK and SCK signals. This comparator is also activated, if spikes on CLK or SCK achieve the condition: (VCLK - VDD) > VVDDoff or (VSCK - VDD) > VVDDoff . VDDA - VDD 1µs Mono Flop VVDDoff CLK SCK -dV GND Figure 19 + 10µs Spike Filter VDD _OFF GND VDD - Off Comparator Preliminary Data Sheet 49 V 0.9, 2007-05 TLE5010 Draft Typical Application Circuit 13 Typical Application Circuit The application circuit shows the µC version with open drain capabilities. 12V Voltage Regulator VDD SSC CLK DATA_o CAN RX CAN TX CAN Tranceiver CAN µController Master DATA_i SCK each 100R 1k VDD 100R GMR-Sensor TLE5010 100nF GND CSQ GND Figure 20 13.1 Application Circuit Angle Sensor System A complete system may consist out of one TLE5010 and a micro controller. The second TLE5010 can be redundand in order to increase the system reliability. The µC should contain a CORDIC coprocessor for fast angle calculations and a flash memory for the calibration data storage. Preliminary Data Sheet 50 V 0.9, 2007-05 TLE5010 Draft Package Information 14 Package Information 14.1 Package Parameters Table 20 Package Parameters Parameter Symbol Limit Values Unit Notes min. typ. max. Thermal Resistance RthJA - 150 200 K/W Junction to Air 1) RthJC RthJL - - 75 K/W Junction to Case - - 85 K/W Junction to Lead Soldering Moisture Level Lead frame Plating Molding Compound 1) MSL 3 Cu194 / OLIN Sn 100% EME-G700 260°C Fe 2.35%, P 0.03%, Cu 97.5%, Zn0.12% stamped > 7 µm Halogen Free according to Jedec JESD51-7 Preliminary Data Sheet 51 V 0.9, 2007-05 TLE5010 Draft Package Information E 0.2 M +0.05 0.41 +0.1 -0.05 0.2 -0.01 1.27 A C 8˚MAX. 3.9 ±0.11) 1.22 ±0.18 1.65 ±0.1 4.9 ±0.08 0.33 ±0.08 x 45˚ A (1.5) D 0.1 MIN. STAND OFF Package Outline PG-DSO-8 0.64 ±0.25 0.1 8x D C 8x SEATING PLANE 6 ±0.2 2.53 0.4 B Detail A 3 x 1.27 = 3.81 3) 1.95 1 4 B 0.32 MIN. Pin 1 Index Marking ø0.6 Sensitive Area 2) 5 0.4 A Center of Sensitive Area 8 5.06 ±0.1 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Max. 3˚ tilt of sensitive area to preference "E" 3) Independent from dimensions 1.65 and 1.22 GPS19032 Figure 21 Package Outline PG-DSO-8 Preliminary Data Sheet 52 V 0.9, 2007-05 TLE5010 Draft Package Information 1.31 Footprint PG-DSO-8 5.69 0.65 1.27 Figure 22 Footprint PG-DSO-8 Packing 0.3 12 ±0.3 5.2 8 1.75 6.4 2.1 Figure 23 Tape and Reel Preliminary Data Sheet 53 V 0.9, 2007-05 TLE5010 Draft Package Information Marking Top view 123456 G 0624 Bottom view Type code Date code (Year/Month) 111111 11111 111111 Pin 1 Pin 1 marking Green Package Production Code HLGM1227 Figure 24 Marking Processing For processing recommendations please refer Infineon’s “Notes on Processing” Preliminary Data Sheet 54 V 0.9, 2007-05 TLE5010 Draft Preliminary Data Sheet Package Information 55 V 0.9, 2007-05 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG