TLM.32. Vishay Semiconductors Power SMD LED PLCC-4 FEATURES • Available in 8 mm tape • Luminous intensity and color categorized per packing unit e3 • Luminous intensity ratio per packing unit IVmax/IVmin ≤ 1.6 • ESD-withstand voltage: up to 2 kV according to JESD22-A114-B • Suitable for all soldering methods according to CECC 00802 and J-STD-020C • Preconditioning: acc. to JEDEC level 2a • Lead (Pb)-free device • Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC 19210 DESCRIPTION The TLM.32. is an advanced development in terms of heat dissipation. The leadframe profile of this PLCC-4 SMD package is optimized to reduce the thermal resistance. This allows higher drive current and doubles the light output compared to Vishay’s high intensity SMD LED in PLCC-2 package. APPLICATIONS • Interior and exterior lighting • Indicator and backlighting purposes for audio, video, LCDs, switches, symbols, illuminated advertising etc. • Illumination purpose, alternative to incandescent lamps • General use PRODUCT GROUP AND PACKAGE DATA • Product group: LED • Package: SMD PLCC-4 • Product series: power • Angle of half intensity: ± 60° PARTS TABLE COLOR, LUMINOUS INTENSITY TECHNOLOGY TLMK32T2V1-GS18 PART Red, IV = (355 to 900) mcd AlInGaP on GaAs TLMK32U2AA-GS18 Red, IV = (560 to 1400) mcd AlInGaP on GaAs TLMK32T2AA-GS18 Red, IV = (355 to 1400) mcd AlInGaP on GaAs TLMS32S2U1-GS18 Super red, IV = (224 to 560) mcd AlInGaP on GaAs TLMS32T1U2-GS18 Super red, IV = (280 to 710) mcd AlInGaP on GaAs TLMS32S2V1-GS18 Super red, IV = (224 to 900) mcd AlInGaP on GaAs TLMO32U2AA-GS18 Soft orange, IV = (560 to 1400) mcd AlInGaP on GaAs TLMO32T2V1-GS18 Soft orange, IV = (355 to 900) mcd AlInGaP on GaAs TLMO32U1AA-GS18 Soft orange, IV = (450 to 1400) mcd AlInGaP on GaAs TLMY32T2V1-GS18 Yellow, IV = (355 to 900) mcd AlInGaP on GaAs TLMY32U2AA-GS18 Yellow, IV = (560 to 1400) mcd AlInGaP on GaAs TLMY32T2AA-GS18 Yellow, IV = (355 to 1400) mcd AlInGaP on GaAs Document Number 81284 Rev. 1.0, 22-Feb-08 www.vishay.com 1 TLM.32. Vishay Semiconductors ABSOLUTE MAXIMUM RATINGS 1) TLMK32., TLMS32., TLMO32., TLMY32. SYMBOL VALUE Reverse voltage 2) PARAMETER TEST CONDITION VR 5 V Forward current IF 70 mA Ptot 180 mW Tj 125 °C Tamb - 40 to + 100 °C Power dissipation Junction temperature Operating temperature range Tstg - 40 to + 100 °C mounted on PC board FR4 optional paddesign RthJA 290 K/W mounted on PC board FR4 recommended paddesign RthJA 270 K/W Storage temperature range Thermal resistance junction/ambient UNIT Note: 1) Tamb = 25 °C, unless otherwise specified 2) Driving the LED in reverse direction is suitable for short term application OPTICAL AND ELECTRICAL CHARACTERISTICS 1) TLMK32., RED PARAMETER TEST CONDITION Luminous intensity 2) IF = 50 mA PART SYMBOL MIN. MAX. UNIT TLMK32T2V1 IV 355 900 mcd TLMK32U2AA IV 560 1400 mcd TLMK32T2AA IV 355 1400 φV/IV Luminous flux λd TYP. 3 mcd mlm/mcd Dominant wavelength IF = 50 mA Peak wavelength IF = 50 mA λp 624 nm Spectral bandwidth at 50 % Irel max IF = 50 mA Δλ 18 nm Angle of half intensity IF = 50 mA ϕ ± 60 deg IF = 50 mA VF VR = 5 V IR Forward voltage 3) Reverse current TLMK32.. 612 1.85 617 624 nm 2.1 2.55 V 0.01 10 µA Note: 1) T amb = 25 °C, unless otherwise specified 2) In one packing unit I Vmax/IVmin ≤ 1.6 3) Forward voltage is tested at a current pulse duration of 1 ms and a tolerance of ± 0.05 V OPTICAL AND ELECTRICAL CHARACTERISTICS 1) TLMS32., SUPER RED PARAMETER TEST CONDITION Luminous intensity 2) IF = 50 mA PART SYMBOL MIN. MAX. UNIT TLMS32S2U1 IV 224 560 mcd TLMS32T1U2 IV 280 710 mcd TLMS32S2V1 IV 224 900 φV/IV Luminous flux TYP. 3 mcd mlm/mcd Dominant wavelength IF = 50 mA λd Peak wavelength IF = 50 mA λp 641 nm Spectral bandwidth at 50 % Irel max IF = 50 mA Δλ 17 nm Angle of half intensity IF = 50 mA ϕ ± 60 deg IF = 50 mA VF VR = 5 V IR Forward voltage Reverse current 3) 626 1.85 630 638 nm 2.1 2.55 V 0.01 10 µA Note: 1) T amb = 25 °C, unless otherwise specified 2) In one packing unit IVmax/IVmin ≤ 1.6 3) Forward voltage is tested at a current pulse duration of 1 ms and a tolerance of ± 0.05 V www.vishay.com 2 Document Number 81284 Rev. 1.0, 22-Feb-08 TLM.32. Vishay Semiconductors OPTICAL AND ELECTRICAL CHARACTERISTICS 1) TLMO32., SOFT ORANGE PARAMETER TEST CONDITION 2) Luminous intensity IF = 50 mA PART SYMBOL MIN. MAX. UNIT TLMO32T2V1 IV 355 TYP. 900 mcd TLMO32U2AA IV 560 1400 mcd TLMO32U1AA IV 450 1400 φV/IV Luminous flux 3 mcd mlm/mcd Dominant wavelength IF = 50 mA λd Peak wavelength IF = 50 mA λp 611 nm Spectral bandwidth at 50 % Irel max IF = 50 mA Δλ 17 nm Angle of half intensity Forward voltage 3) Reverse current IF = 50 mA ϕ IF = 50 mA VF VR = 5 V IR 600 605 609 ± 60 1.85 nm deg 2.1 2.55 V 0.01 10 µA TYP. Note: 1) T amb = 25 °C, unless otherwise specified 2) In one packing unit IVmax/IVmin ≤ 1.6 3) Forward voltage is tested at a current pulse duration of 1 ms and a tolerance of ± 0.05 V OPTICAL AND ELECTRICAL CHARACTERISTICS 1) TLMY3214, YELLOW PARAMETER TEST CONDITION 2) Luminous intensity IF = 50 mA PART SYMBOL MIN. MAX. UNIT TLMY32T2V1 IV 355 900 mcd TLMY32U2AA IV 560 1400 mcd TLMY32T2AA IV 355 φV/IV Luminous flux 1400 3 mcd mlm/mcd Dominant wavelength IF = 50 mA λd Peak wavelength IF = 50 mA λp 590 nm Spectral bandwidth at 50 % Irel max IF = 50 mA Δλ 18 nm Angle of half intensity Forward voltage 3) Reverse current IF = 50 mA ϕ IF = 50 mA VF VR = 5 V IR 580 588 595 ± 60 1.85 nm deg 2.1 2.55 V 0.01 10 µA Note: 1) Tamb = 25 °C, unless otherwise specified 2) In one packing unit IVmax/IVmin ≤ 1.6 3) Forward voltage is tested at a current pulse duration of 1 ms and a tolerance of ± 0.05 V LUMINOUS INTENSITY CLASSIFICATION GROUP STANDARD LIGHT INTENSITY (MCD) OPTIONAL MIN. MAX. 1 180 224 2 224 280 1 280 355 2 355 450 1 450 560 2 560 710 1 710 900 2 900 1120 A 1120 1400 S T U V A Document Number 81284 Rev. 1.0, 22-Feb-08 Note: Luminous intensity is tested at a current pulse duration of 25 ms and an accuracy of ± 11 %. The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each reel (there will be no mixing of two groups on each reel). In order to ensure availability, single brightness groups will not be orderable. In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one reel. In order to ensure availability, single wavelength groups will not be orderable. www.vishay.com 3 TLM.32. Vishay Semiconductors COLOR CLASSIFICATION CROSSING TABLE YELLOW GROUP SOFT ORANGE DOM. WAVELENGTH (NM) MIN. MAX. VISHAY OSRAM TLMK32T2V1 LAE67BT2V1 TLMK32U2AA LAE67BU2AA TLMK32T2AA LAE67BT2AA LSE67AS2U1 MIN. MAX. 1 581 584 2 583 586 600 603 TLMS32S2U1 3 585 588 602 605 TLMS32T1U2 LSE67AT1U2 4 587 590 604 607 TLMS32S2V1 LSE67AS2V1 5 589 592 606 609 TLMO32U2AA LOE67BU2AA 6 591 594 608 611 TLMY32T2V1 LYE67BT2V1 TLMY32U2AA LYE67BU2AA TLMY32T2AA LYE67BT2AA Note: Wavelengths are tested at a current pulse duration of 25 ms and an accuracy of ± 1 nm. 100 100 90 90 80 80 I F - Forward Current (mA) IF - Forward Current (mA) TYPICAL CHARACTERISTICS Tamb = 25 °C, unless otherwise specified 70 270 K/W 60 RthJA = 290 K/W 50 40 30 20 10 70 60 50 40 30 20 10 0 0 18568 25 50 75 100 Tamb - Ambient Temperature (°C) 0 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 125 0° 10° VF - Forward Voltage (V) 17046 Figure 1. Forward Current vs. Ambient Temperature Figure 3. Forward Current vs. Forward Voltage 20° 30° 40° 1.0 0.9 50° 0.8 60° 70° 0.7 80° 1.2 IV rel - Relative Luminous Intensity IV rel - Relative Luminous Intensity yellow soft orange red super red red 1.0 0.8 0.6 0.4 0.2 0.0 95 10319 0.6 0.4 0.2 0 0.2 0.4 0.6 570 16007 Figure 2. Rel. Luminous Intensity vs. Angular Displacement www.vishay.com 4 590 610 630 650 670 λ - Wavelength (nm) Figure 4. Relative Intensity vs. Wavelength Document Number 81284 Rev. 1.0, 22-Feb-08 TLM.32. 250 10 IV rel - Relative Luminous Intensity VF - Change of Forward Voltage (mV) Vishay Semiconductors 200 red 50 mA 150 100 50 30 mA 0 - 50 10 mA - 100 - 150 - 200 - 50 0 25 50 75 1 10 IF - Forward Current (mA) 17037 red 2.0 1.5 1.0 1.5 red 1.0 0.5 0.0 - 0.5 - 1.0 d 0.5 100 Figure 8. Relative Luminous Intensity vs. Forward Current - Change of Dom. Wavelength (nm) 2.5 IV rel - Relative Luminous Intensity 0.1 100 Figure 5. Change of Forward Voltage vs. Ambient Temperature 0.0 - 50 - 1.5 - 25 0 25 50 75 100 Tamb - Ambient Temperature (°C) 17035 17038 Figure 6. Relative Luminous Intensity vs. Ambient Temperature IV rel - Relative Luminous Intensity red 4 2 0 -2 -4 -6 - 50 17036 - 25 0 25 50 75 100 Tamb - Ambient Temperature (°C) Figure 7. Change of Dominant Wavelength vs. Ambient Temperature Document Number 81284 Rev. 1.0, 22-Feb-08 10 20 30 40 50 60 70 80 90 100 IF - Forward Current (mA) Figure 9. Change of Dominant Wavelength vs. Forward Current 6 d - Change of Dom. Wavelength (nm) 1 0.01 - 25 Tamb - Ambient Temperature (°C) 17034 red 1.2 1.1 super red 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 600 620 17045 640 660 680 700 λ - Wavelength (nm) Figure 10. Relative Intensity vs. Wavelength www.vishay.com 5 TLM.32. 10 250 IV rel - Relative Luminous Intensity VF - Change of Forward Voltage (mV) Vishay Semiconductors super red 200 30 mA 150 100 50 mA 50 0 10 mA - 50 - 100 - 150 - 200 - 50 0 25 50 75 2.0 1.5 1.0 0.5 - 25 0 25 50 75 Tamb - Ambient Temperature (°C) super red 1.0 0.5 0.0 - 0.5 - 1.0 - 1.5 17043 Figure 15. Change of Dominant Wavelength vs. Forward Current -2 -3 -4 - 25 soft orange IV rel - Relative Luminous Itensity super red -1 0 25 50 75 1.0 0.8 0.6 0.4 0.2 0.0 560 100 Tamb - Ambient Temperature (°C) Figure 13. Change of Dominant Wavelength vs. Ambient Temperature www.vishay.com 6 IF - Forward Current (mA) 1.2 0 17041 10 20 30 40 50 60 70 80 90 100 100 1 -5 - 50 100 1.5 3 2 10 IF - Forward Current (mA) Figure 14. Relative Luminous Intensity vs. Forward Current Δ λ d - Change of Dom. Wavelength (nm) I Vrel - Relative Luminous Intensity super red Figure 12. Relative Luminous Intensity vs. Ambient Temperature Δ λ d - Change of Dom. Wavelength (nm) 1 17042 2.5 17040 0 100 Figure 11. Change of Forward Voltage vs. Ambient Temperature 0.0 - 50 1 0.01 - 25 Tamb - Ambient Temperature (°C) 17039 super red 16314 580 600 620 640 660 λ - Wavelength (nm) Figure 16. Relative Intensity vs. Wavelength Document Number 81284 Rev. 1.0, 22-Feb-08 TLM.32. 10 250 50 mA 200 30 mA 150 100 soft orange 50 0 10 mA - 50 - 100 - 150 - 200 - 50 17020 1 0.1 0.01 - 25 0 25 50 75 Tamb - Ambient Temperature (°C) 1 100 10 IF - Forward Current (mA) 17023 2.5 soft orange 2.0 1.5 1.0 1.5 soft orange 1.0 0.5 0.0 - 0.5 - 1.0 d 0.5 100 Figure 20. Relative Luminous Intensity vs. Forward Current - Change of Dom. Wavelength (nm) Figure 17. Change of Forward Voltage vs. Ambient Temperature IV rel - Relative Luminous Intensity soft orange IV rel - Relative Luminous Intensity VF - Change of Forward Voltage (mV) Vishay Semiconductors 0.0 - 50 17021 - 1.5 - 25 0 25 50 75 100 Tamb - Ambient Temperature (°C) 1.2 IV rel - Relative Luminous Intensity soft orange 4 2 0 -2 -4 -6 - 50 17022 IF - Forward Current (mA) Figure 21. Change of Dominant Wavelength vs. Forward Current 6 d - Change of Dom. Wavelength (nm) Figure 18. Relative Luminous Intensity vs. Ambient Temperature 10 20 30 40 50 60 70 80 90 100 17024 - 25 0 25 50 75 100 Tamb - Ambient Temperature (°C) Figure 19. Change of Dominant Wavelength vs. Ambient Temperature Document Number 81284 Rev. 1.0, 22-Feb-08 yellow 1.0 0.8 0.6 0.4 0.2 0.0 540 16008 560 580 600 620 640 λ - Wavelength (nm) Figure 22. Relative Intensity vs. Wavelength www.vishay.com 7 TLM.32. 250 10 30 mA 200 50 mA IV rel - Relative Luminous Intensity Δ VF - Change of Forward Voltage (mV) Vishay Semiconductors yellow 150 100 50 0 10 mA - 50 - 100 - 150 - 200 - 50 17015 1 0.1 0.01 - 25 0 25 50 75 Tamb - Ambient Temperature (°C) 100 1 10 Figure 26. Relative Luminous Intensity vs. Forward Current - Change of Dom. Wavelength (nm) 2.5 yellow 2.0 1.5 1.0 1.5 yellow 1.0 0.5 0.0 - 0.5 - 1.0 d 0.5 100 IF - Forward Current (mA) 17018 Figure 23. Change of Forward Voltage vs. Ambient Temperature IV rel - Relative Luminous Intensity yellow 0.0 - 50 17016 - 1.5 - 25 0 25 50 75 Tamb - Ambient Temperature (°C) 100 Figure 24. Relative Luminous Intensity vs. Ambient Temperature IF - Forward Current (mA) Figure 27. Change of Dominant Wavelength vs. Forward Current 6 0.12 yellow 4 0.10 IF - Forward Current (A) Δλd - Change of Dom. Wavelength (nm) 10 20 30 40 50 60 70 80 90 100 17019 2 0 -2 -4 -6 - 50 17017 - 25 0 25 50 75 Tamb - Ambient Temperature (°C) 100 Figure 25. Change of Dominant Wavelength vs. Ambient Temperature www.vishay.com 8 0.08 tP/T = 0.005 0.05 0.5 0.06 0.04 0.02 0.00 10 -5 17044 10 -4 10 -3 10 -2 10 -1 10 0 101 10 2 tP - Pulse Length (s) Figure 28. Forward Current vs. Pulse Length Document Number 81284 Rev. 1.0, 22-Feb-08 TLM.32. Vishay Semiconductors TAPING DIMENSIONS in millimeters Anode 3.5 3.1 Cathode 2.2 2.0 4.0 3.6 5.75 5.25 8.3 7.7 3.6 3.4 Cathode 1.85 1.65 1.6 1.4 4.1 3.9 4.1 3.9 0.25 2.05 1.95 18596 REEL DIMENSIONS in millimeters 10.4 8.4 120° 4.5 3.5 2.5 1.5 13.00 12.75 62.5 60.0 Identification Label: Vishay Type Group Tape Code Production Code Quantity Document Number 81284 Rev. 1.0, 22-Feb-08 321 329 14.4 max. 18857 www.vishay.com 9 TLM.32. Vishay Semiconductors RECOMMENDED PAD DESIGN Dimensions in millimeters (Wave-Soldering), RthJA = 270 K/W 16260 RECOMMENDED PAD DESIGN Dimensions in millimeters (Reflow-Soldering), RthJA = 270 K/W 16261 www.vishay.com 10 Document Number 81284 Rev. 1.0, 22-Feb-08 TLM.32. Vishay Semiconductors OPTIONAL PAD DESIGN Dimensions in millimeters (Wave-Soldering), RthJA = 290 K/W 16262 OPTIONAL PAD DESIGN Dimensions in millimeters (Reflow-Soldering), RthJA = 290 K/W 16263 Document Number 81284 Rev. 1.0, 22-Feb-08 www.vishay.com 11 TLM.32. Vishay Semiconductors PACKAGE DIMENSIONS in millimeters Drawing-No. : 6.541-5054.01-4 Issue: 2; 02.12.05 16276_2 SOLDERING PROFILE IR Reflow Soldering Profile for Lead (Pb)-free Soldering TTW Soldering Preconditioning acc. to JEDEC Level 2a 300 300 200 max. 30 s 150 max. 100 s max. 120 s 100 max. ramp up 3 °C/s 50 5s 200 second wave 235 °C to 260 °C first wave full line: typical dotted line: process limits ca. 2 K/s ca. 200 K/s 150 100 °C to 130 °C 100 ca. 5 K/s 2 K/s 50 max. ramp down 6 °C/s lead temperature 250 Temperature (°C) 250 Temperature (°C) max. 260 °C 245 °C 255 °C 240 °C 217 °C 948626-1 (acc. to CECC00802) forced cooling 0 0 0 50 19885 100 150 Time (s) 200 250 300 50 100 150 200 250 Time (s) max. 2 cycles allowed Figure 29. Vishay Lead (Pb)-free Reflow Soldering Profile (acc. to J-STD-020B) www.vishay.com 12 0 Figure 30. Double Wave Soldering of Opto Devices (all Packages) Document Number 81284 Rev. 1.0, 22-Feb-08 TLM.32. Vishay Semiconductors LABEL OF FAN FOLD BOX EXAMPLE: 106 E F 37 TLMK3200-GS18 8000 U2 B A C G D 21063 A) Type of component B) PTC = manufacturing plant C) SEL - selection code (bin): e.g.: U2 = code for luminous intensity group D) Batch/date code E) Total quantity F) Company code G) Code for lead (Pb)-free classification (e3) DRY PACKING The reel is packed in an anti-humidity bag to protect the devices from absorbing moisture during transportation and storage. RECOMMENDED METHOD OF STORAGE Dry box storage is recommended as soon as the aluminum bag has been opened to prevent moisture absorption. The following conditions should be observed, if dry boxes are not available: • Storage temperature 10 °C to 30 °C • Storage humidity ≤ 60 % RH max. After more than 672 h under these conditions moisture content will be too high for reflow soldering. In case of moisture absorption, the devices will recover to the former condition by drying under the following condition: 192 h at 40 °C + 5 °C/- 0 °C and < 5 % RH (dry air/nitrogen) or 96 h at 60 °C + 5 °C and < 5 % RH for all device containers or 24 h at 100 °C + 5 °C not suitable for reel or tubes. An EIA JEDEC standard JESD22-A112 level 2a label is included on all dry bags. L E V E L CAUTION This bag contains MOISTURE –SENSITIVE DEVICES 2a 1. Shelf life in sealed bag 12 months at <40°C and < 90% relative humidity (RH) 2. After this bag is opened devices that will be subjected to infrared reflow, vapor-phase reflow, or equivalent processing (peak package body temp. 260°C) must be: a) Mounted within 672 hours at factory condition of < 30°C/60%RH or b) Stored at <10% RH. 3. Devices require baking before mounting if: a) Humidity Indicator Card is >10% when read at 23°C + 5°C or b) 2a or 2b is not met. 4. If baking is required, devices may be baked for: 192 hours at 40°C + 5°C/-0°C and <5%RH (dry air/nitrogen) or o or 96 hours at 60±5 Cand <5%RH For all device containers 24 hours at 100±5°C Not suitable for reels or tubes Bag Seal Date: ______________________________ (If blank, see bar code label) Aluminum bag Note: LEVEL defined by EIA JEDEC Standard JESD22-A113 Label Reel 15973 FINAL PACKING The sealed reel is packed into a cardboard box. A secondary cardboard box is used for shipping purposes. Document Number 81284 Rev. 1.0, 22-Feb-08 19786 Example of JESD22-A112 level 2a label ESD PRECAUTION Proper storage and handling procedures should be followed to prevent ESD damage to the devices especially when they are removed from the antistatic shielding bag. Electro-static sensitive devices warning labels are on the packaging. VISHAY SEMICONDUCTORS STANDARD BAR CODE LABELS The Vishay Semiconductors standard bar code labels are printed at final packing areas. The labels are on each packing unit and contain Vishay Semiconductors specific data. www.vishay.com 13 TLM.32. Vishay Semiconductors OZONE DEPLETING SUBSTANCES POLICY STATEMENT It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively. 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA. 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany www.vishay.com 14 Document Number 81284 Rev. 1.0, 22-Feb-08 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1