TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 D D D D D D D D TLV2332 D OR P PACKAGE (TOP VIEW) Wide Range of Supply Voltages Over Specified Temperature Range: TA = – 40°C to 85°C . . . 2 V to 8 V Fully Characterized at 3 V and 5 V Single-Supply Operation Common-Mode Input-Voltage Range Extends Below the Negative Rail and up to VDD – 1 V at TA = 25°C Output Voltage Range Includes Negative Rail High Input Impedance . . . 1012 Ω Typ ESD-Protection Circuitry Designed-In Latch-Up Immunity 1OUT 1IN – 1IN + VDD– / GND 1 8 2 7 3 6 4 5 VDD 2OUT 2IN – 2IN + TLV2332 PW PACKAGE (TOP VIEW) 1 2 3 4 1OUT 1IN– 1IN + VDD – / GND description 8 7 6 5 VDD + 2OUT 2IN – 2IN + TLV2334 D OR N PACKAGE (TOP VIEW) The TLV233x operational amplifiers are in a family of devices that has been specifically designed for use in low-voltage single-supply applications. Unlike the TLV2322 which is optimized for ultra-low power, the TLV233x is designed to provide a combination of low power and good ac performance. Each amplifier is fully functional down to a minimum supply voltage of 2 V, is fully characterized, tested, and specified at both 3-V and 5-V power supplies. The common-mode input-voltage range includes the negative rail and extends to within 1 V of the positive rail. 1OUT 1IN – 1IN + VDD + 2IN + 2N – 2OUT 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN – 4IN + VDD – / GND 3IN + 3IN – 3OUT TLV2334 PW PACKAGE (TOP VIEW) Having a maximum supply current of only 310 µA per amplifier over full temperature range, the TLV233x devices offer a combination of good ac performance and microampere supply currents. From a 3-V power supply, the amplifier’s typical slew rate is 0.38 V/µs and its bandwidth is 300 kHz. 1OUT 1IN – 1IN + VDD + 2IN + 2IN – 2OUT 1 14 7 8 4OUT 4IN – 4IN + VDD – / GND 3IN + 3IN – 3OUT AVAILABLE OPTIONS TA – 40°C to 85°C VIOmax AT 25°C PACKAGED DEVICES SMALL OUTLINE† (D) PLASTIC DIP (N) PLASTIC DIP (P) TSSOP‡ (PW) CHIP FORM§ (Y) 9 mV TLV2332ID — TLV2332IP TLV2332IPWLE TLV2332Y 10 mV TLV2334ID TLV2334IN — TLV2334IPWLE TLV2334Y † The D package is available taped and reeled. Add R suffix to the device type (e.g., TLV2332IDR). ‡ The PW package is only available left-end taped and reeled (e.g., TLV2332IPWLE). § Chip forms are tested at 25°C only. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. LinCMOS is a trademark of Texas Instruments Incorporated. Copyright 1997, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 description (continued) These amplifiers offer a level of ac performance greater than that of many other devices operating at comparable power levels. The TLV233x operational amplifiers are especially well suited for use in low-current or battery-powered applications. Low-voltage and low-power operation has been made possible by using the Texas Instruments silicon-gate LinCMOS technology. The LinCMOS process also features extremely high input impedance and ultra-low bias currents making these amplifiers ideal for interfacing to high-impedance sources such as sensor circuits or filter applications. To facilitate the design of small portable equipment, the TLV233x is made available in a wide range of package options, including the small-outline and thin-shrink small-outline package (TSSOP). The TSSOP package has significantly reduced dimensions compared to a standard surface-mount package. Its maximum height of only 1.1 mm makes it particularly attractive when space is critical. The device inputs and outputs are designed to withstand –100-mA currents without sustaining latch-up. The TLV233x incorporates internal ESD-protection circuits that prevents functional failures at voltages up to 2000 V as tested under MIL-STD 883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance. TLV2332Y chip information This chip, when properly assembled, display characteristics similar to the TLV2332. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. BONDING PAD ASSIGNMENTS (5) (4) (3) 1IN + (2) (6) VDD (8) (3) + (2) 1IN – (1) 1OUT – (5) 59 2OUT (7) + – (6) 2IN + 2IN – (4) VDD – / GND CHIP THICKNESS: 15 MILS TYPICAL (1) (7) (8) BONDING PADS: 4 × 4 MILS MINIMUM TJmax = 150°C TOLERANCES ARE ± 10%. 72 ALL DIMENSIONS ARE IN MILS. PIN (4) IS INTERNALLY CONNECTED TO BACKSIDE OF CHIP. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 TLV2334Y chip information This chip, when properly assembled, displays characteristics similar to the TLV2334. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform. VDD (4) BONDING PAD ASSIGNMENTS (14) (13) (12) (11) (10) (9) (8) 1IN + (3) + – 1IN – 2IN + 2IN – 68 3IN + (1) 1OUT (2) (5) + (6) (7) 2OUT – (10) + (8) 3OUT (9) – 3IN – (12) + 4IN + (1) (2) (3) (4) (5) (6) (7) 4IN – (14) (13) 4OUT – (11) 108 VDD– /GND CHIP THICKNESS: 15 MILS TYPICAL BONDING PADS: 4 × 4 MILS MINIMUM TJmax = 150°C TOLERANCES ARE ± 10%. ALL DIMENSIONS ARE IN MILS. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 equivalent schematic (each amplifier) VDD P4 P3 R6 P2 P1 IN – N5 R2 R1 IN + R5 P5 C1 N3 P6 OUT N4 N1 R3 D1 N2 N6 N7 D2 R4 R7 GND ACTUAL DEVICE COMPONENT COUNT† COMPONENT TLV2332 TLV2334 Transistors 54 108 Resistors 14 28 Diodes 4 8 Capacitors 2 4 † Includes both amplifiers and all ESD, bias, and trim circuitry. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 absolute maximum ratings over operating free-air temperature (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD ± Input voltage range, VI (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VDD Input current, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 mA Duration of short-circuit current at (or below) TA = 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to network ground. 2. Differential voltages are at the noninverting input with respect to the inverting input. 3. The output may be shorted to either supply. Temperature and /or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section). DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 85°C POWER RATING D–8 725 mW 5.8 mW/°C 377 mW D–14 950 mW 7.6 mW/°C 494 mW N 1575 mW 12.6 mW/°C 819 mW P 1000 mW 8.0 mW/°C 520 mW PW–8 525 mW 4.2 mW/°C 273 mW PW–14 700 mW 5.6 mW/°C 364 mW recommended operating conditions Supply voltage, VDD Common mode input voltage, Common-mode voltage VIC VDD = 3 V VDD = 5 V Operating free-air temperature, TA POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MIN MAX 2 8 – 0.2 1.8 – 0.2 3.8 – 40 85 UNIT V V °C 5 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 TLV2332I electrical characteristics at specified free-air temperature TLV2332I PARAMETER VIO Input offset voltage TEST CONDITIONS VO = 1 V, VIC = 1 V,, RS = 50 Ω, RL = 100 kΩ TA† VDD = 3 V MIN TYP MAX VDD = 5 V MIN TYP MAX 25°C 0.6 1.1 11 Average temperature coefficient of input offset voltage 25°C to 85°C IIO Input offset current (see Note 4) VO = 1 V,, VIC = 1 V IIB Input bias current (see Note 4) VO = 1 V,, VIC = 1 V 25°C 0.6 85°C 175 VIC = 1 V, VID = 100 mV mV, IOH = – 1 mA High-level High level output voltage VOL Low level output voltage Low-level AVD Large-signal g g differential voltage amplification VIC = 1 V, RL = 100 kΩ kΩ, See Note 6 CMRR Common mode rejection ratio Common-mode VO = 1 V, min, VIC = VICRmin RS = 50 Ω VIC = 1 V, VID = – 100 mV mV, IOL = 1 mA kSVR Supply-voltage y g rejection j ratio (∆VDD /∆VIO) VIC = 1 V, VO = 1 V, V RS = 50 Ω IDD Supply current VO = 1 V, VIC = 1 V V, No load 11 1 1.7 25°C 0.1 0.1 85°C 22 25°C – 0.2 to 2 Full range – 0.2 to 1.8 25°C 1.75 Full range 1.7 Common-mode input voltage range (see Note 5) VOH 1000 24 2000 200 µV/°C 1000 0.6 – 0.3 to 2.3 – 0.2 to 4 2000 – 0.3 to 4.2 1.9 3.2 pA pA V – 0.2 to 3.8 3.9 V 25°C 3 115 150 95 150 mV Full range 190 25°C 25 Full range 15 25°C 65 Full range 60 25°C 70 Full range 65 83 190 25 170 V/mV 15 92 65 91 dB 60 94 70 94 dB 25°C Full range 65 160 500 210 620 † Full range is – 40°C to 85°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA are determined mathematically. 5. This range also applies to each input individually. 6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 3 V, VO = 0.5 V to 1.5 V. 6 9 mV Full range αVIO VICR 9 UNIT POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 560 800 µA TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 TLV2332I operating characteristics at specified free-air temperature, VDD = 3 V PARAMETER SR Slew rate at unity gain TEST CONDITIONS VIC = 1 V, RL = 100 kΩ kΩ, See Figure 34 VI(PP) = 1 V, CL = 20 pF F, TA TLV2332I MIN TYP 25°C 0.38 85°C 0.29 25°C 32 MAX UNIT V/µs Vn Equivalent input noise voltage f =1 kHz, See Figure 35 RS = 20 Ω, BOM Maximum output output-swing swing bandwidth VO = VOH, RL = 100 kΩ, CL = 20 pF,, See Figure 34 25°C 34 85°C 32 B1 Unity gain bandwidth Unity-gain VI = 10 mV,, RL = 100 kΩ, CL = 20 pF,, See Figure 36 25°C 300 85°C 235 f = B1, RL = 100 kΩ, 42° Phase margin VI = 10 mV, CL = 20 pF, See Figure 36 – 40°C φm 25°C 39° 85°C 36° nV/√Hz kHz kHz TLV2332I operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER SR Slew rate at unity gain TEST CONDITIONS VIC = 1 V V, RL = 100 kΩ,, CL = 20 pF, S Figure See Fi 34 VI(PP) = 1 V RS = 20 Ω, 5V VI(PP) = 2 2.5 TA TLV2332I MIN TYP 25°C 0.43 85°C 0.35 25°C 0.40 85°C 0.32 25°C 32 Vn Equivalent input noise voltage f =1 kHz, See Figure 35 BOM swing bandwidth Maximum output output-swing VO = VOH, RL = 100 kΩ, CL = 20 pF,, See Figure 34 25°C 55 85°C 45 B1 Unity gain bandwidth Unity-gain VI = 10 mV,, RL = 100 kΩ, CL = 20 pF,, See Figure 36 25°C 525 85°C 370 f = B1, RL = 100 kΩ, 43° Phase margin VI = 10 mV, CL = 20 pF, See Figure 36 – 40°C φm 25°C 40° 85°C 38° POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX UNIT V/µs nV/√Hz kHz kHz 7 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 TLV2334I electrical characteristics at specified free-air temperature TLV2334I PARAMETER TEST CONDITIONS TA† VDD = 3 V MIN TYP MAX VDD = 5 V MIN TYP MAX 0.6 1.1 Input offset voltage VO = 1 V, VIC = 1 V, RS = 50 Ω, Ω RL = 100 kΩ 25°C VIO αVIO Average temperature coefficient of input offset voltage IIO Input offset current (see Note 4) V VIC = 1 V VO = 1 V, IIB Input bias current (see Note 4) VO = 1 V, V VIC = 1 V VICR 12 VIC = 1 V, VID = 100 mV mV, IOH = – 1 mA VOL Low level output voltage Low-level AVD Large-signal g g differential voltage amplification VIC = 1 V, RL = 100 kΩ kΩ, See Note 6 CMRR Common mode rejection ratio Common-mode VO = 1 V, VIC = VICRmin min, RS = 50 Ω VIC = 1 V, VID = – 100 mV mV, IOL = 1 mA 12 1 25°C 0.1 85°C 22 25°C 0.6 85°C 175 25°C – 0.2 to 2 Full range – 0.2 to 1.8 25°C 1.75 Full range 1.7 Common-mode input voltage g range (see Note 5) High level output voltage High-level µV/°C 1.7 0.1 1000 24 2000 200 1000 0.6 – 0.3 to 2.3 – 0.2 to 4 2000 – 0.3 to 4.2 3.2 pA V – 0.2 to 3.8 1.9 pA V 3.9 V 25°C 3 115 150 95 150 mV Full range 190 25°C 25 Full range 15 25°C 65 Full range 60 83 190 25 170 V/mV 15 92 65 91 dB Supply-voltage y g rejection j ratio (∆VDD /∆VIO) VDD = 3 V to 5 V, VIC = 1 V V, VO = 1 V V, RS = 50 Ω 25°C 70 kSVR Full range 65 IDD Supply current VO = 1 V, VIC = 1 V, No load Full range 60 94 70 94 dB 25°C 65 320 1000 420 1200 † Full range is – 40°C to 85°C. NOTES: 4. The typical values of input bias current and input offset current below 5 pA are determined mathematically. 5. This range also applies to each input individually. 6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 3 V, VO = 0.5 V to 1.5 V. 8 10 mV Full range 25°C to 85°C VOH 10 UNIT POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1120 1600 µA TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 TLV2334I operating characteristics at specified free-air temperature, VDD = 3 V PARAMETER SR Slew rate at unity gain TEST CONDITIONS VIC = 1 V, RL = 100 kΩ kΩ, See Figure 34 VI(PP) = 1 V, CL = 20 pF F, TA TLV2334I MIN TYP 25°C 0.38 85°C 0.29 25°C 32 UNIT V/µs Vn Equivalent input noise voltage f = 1 kHz, See Figure 35 RS = 20 Ω, BOM Maximum output output-swing swing bandwidth VO = VOH, RL = 100 kΩ, CL = 20 pF,, See Figure 34 25°C 34 85°C 32 B1 Unity gain bandwidth Unity-gain VI = 10 mV,, RL = 100 kΩ, CL = 20 pF,, See Figure 36 25°C 300 85°C 235 – 40°C 42° Phase margin VI = 10 mV, CL = 20 pF, S Figure See Fi 36 f = B1, RL = 100 kΩ, 25°C 39° 85°C 36° φm MAX nV/√Hz kHz kHz TLV2334I operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER SR Slew rate at unity gain TEST CONDITIONS VIC = 1 V V, RL = 100 kΩ,, CL = 20 pF, S Figure See Fi 34 VI(PP) = 1 V 5V VI(PP) = 2 2.5 TA TLV2334I MIN TYP 25°C 0.43 85°C 0.35 25°C 0.40 85°C 0.32 25°C 32 Vn Equivalent input noise voltage f = 1 kHz, See Figure 35 RS = 20 Ω, BOM swing bandwidth Maximum output output-swing VO = VOH, RL = 100 kΩ, CL = 20 pF,, See Figure 34 25°C 55 85°C 45 B1 Unity gain bandwidth Unity-gain VI = 10 mV,, RL = 100 kΩ, CL = 20 pF,, See Figure 36 25°C 525 85°C 370 f = B1, RL = 100 kΩ, – 40°C 43° Phase margin VI = 10 mV, CL = 20 pF, S Figure Fi See 36 25°C 40° 85°C 38° φm POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX UNIT V/µs nV/√Hz kHz kHz 9 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 TLV2332Y electrical characteristics, TA = 25°C TLV2332Y PARAMETER VIO Input offset voltage IIO IIB Input offset current (see Note 4) Input bias current (see Note 4) TEST CONDITIONS VO = 1 V, RS = 50 Ω, VIC = 1 V, RL = 100 kΩ VO = 1 V, VO = 1 V, VIC = 1 V VIC = 1 V VDD = 3 V MIN TYP MAX MIN VDD = 5 V TYP MAX UNIT 0.6 1.1 mV 0.1 0.1 pA 0.6 0.6 pA – 0.3 to 2.3 – 0.3 to 4.2 V VICR Common-mode input voltage range (see Note 5) VOH High-level output voltage VIC = 1 V, IOH = – 1 mA VID = 100 mV, 1.9 3.9 V VOL Low-level output voltage VIC = 1 V, IOL = 1 mA VID = 100 mV, 115 95 mV AVD Large-signal differential voltage amplification VIC = 1 V, See Note 6 RL = 100 kΩ, 83 170 V/mV CMRR Common-mode rejection ratio VO = 1 V, RS = 50 Ω VIC = VICRmin, 92 91 dB kSVR Supply-voltage rejection ratio (∆VDD /∆VID) VO = 1 V, RS = 50 Ω VIC = 1 V, 94 94 dB IDD Supply current VO = 1 V, No load VIC = 1 V, 160 210 µA NOTES: 4. 5. 6. 10 The typical values of input bias current and input offset current below 5 pA are determined mathematically. This range also applies to each input individually. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 3 V, VO = 0.5 V to 1.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 TLV2334Y electrical characteristics, TA = 25°C TLV2334Y PARAMETER VIO Input offset voltage IIO IIB Input offset current (see Note 4) Input bias current (see Note 4) TEST CONDITIONS VO = 1 V, RS = 50 Ω, VIC = 1 V RL = 100 kΩ VO = 1 V, VO = 1 V, VIC = 1 V VIC = 1 V VDD = 3 V MIN TYP MAX VDD = 5 V TYP MAX UNIT MIN 0.6 1.1 mV 0.1 0.1 pA 0.6 0.6 pA – 0.3 to 2.3 – 0.3 to 4.2 V VICR Common-mode input voltage range (see Note 5) VOH High-level output voltage VIC = 1 V, VID = 100 mV, IOH = – 1 mA 1.9 3.9 V VOL Low-level output voltage VIC = 1 V, IOL = 1 mA VID = – 100 mV, 115 95 mV AVD Large-signal differential voltage amplification VIC = 1 V, See Note 6 RL = 100 kΩ, 83 170 V/mV CMRR Common-mode rejection ratio VO = 1 V, RS = 50 Ω VIC = VICRmin, 92 91 dB kSVR Supply-voltage rejection ratio (∆VDD /∆VID) VIC = 1 V, RS = 50 Ω VO = 1 V, 94 94 dB IDD Supply current VO = 1 V, No load VIC = 1 V, 320 420 µA NOTES: 4. The typical values of input bias current offset current below 5 pA are determined mathematically. 5. This range also applies to each input individually. 6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 3 V, VO = 0.5 V to 1.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO αVIO Input offset voltage Distribution 1–4 Input offset voltage temperature coefficient Distribution 5–8 IIB IIO Input bias current vs Free-air temperature Input offset current vs Free-air temperature 9 VIC Common-mode input voltage vs Supply voltage 10 VOH High-level output voltage vs High-level output current vs Supply voltage vs Free-air temperature 11 12 13 VOL Low-level output voltage vs Common-mode input voltage vs Free-air temperature vs Differential input voltage vs Low-level output current 14 15, 16 17 18 AVD Large-signal differential voltage amplification vs Supply voltage vs Free-air temperature vs Frequency 19 20 21, 22 IDD Supply current vs Supply voltage vs Free-air temperature 23 24 SR Slew rate vs Supply voltage vs Free-air temperature 25 26 VO(PP) Maximum peak-to-peak output voltage vs Frequency 27 B1 Unity-gain bandwidth vs Supply voltage vs Free-air temperature 28 29 φm Phase margin vs Supply voltage vs Free-air temperature vs Load capacitance 30 31 32 Phase shift vs Frequency 21, 22 Equivalent input noise voltage vs Frequency 33 Vn 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2332 INPUT OFFSET VOLTAGE 50 DISTRIBUTION OF TLV2332 INPUT OFFSET VOLTAGE 60 VDD = 3 V TA = 25°C P Package 50 Percentage of Units – % Percentage of Units – % 40 30 20 10 VDD = 5 V TA = 25°C P Package 40 30 20 10 0 –5 –4 –3 –2 –1 0 1 2 3 VIO – Input Offset Voltage – mV 4 0 –5 –4 –3 –2 –1 0 1 2 3 VIO – Input Offset Voltage – mV 5 5 4 5 Figure 2 Figure 1 DISTRIBUTION OF TLV2334 INPUT OFFSET VOLTAGE 50 4 DISTRIBUTION OF TLV2334 INPUT OFFSET VOLTAGE 60 VDD = 3 V TA = 25°C N Package 50 VDD = 5 V TA = 25°C N Package Percentage of Units – % Percentage of Units – % 40 30 20 40 30 20 10 10 0 –5 –4 –3 –2 –1 0 1 2 3 4 5 0 –5 –4 –3 –2 –1 0 1 2 3 VIO – Input Offset Voltage – mV VIO – Input Offset Voltage – mV Figure 3 Figure 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2332 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLV2332 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 60 50 VDD = 3 V TA = 25°C to 85°C P Package 50 Percentage of Units – % Percentage of Units – % 40 30 20 10 40 VDD = 5 V TA = 25°C to 85°C P Package Outliers: (1) 33 mV/°C 30 20 10 0 – 10 – 8 – 6 – 4 – 2 0 2 4 6 8 αVIO – Temperature Coefficient – µV/°C 0 – 10 – 8 – 6 – 4 – 2 0 2 4 6 8 αVIO – Temperature Coefficient – µV/°C 10 Figure 5 Figure 6 DISTRIBUTION OF TLV2334 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLV2334 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 50 60 VDD = 3 V TA = 25°C to 85°C N Package 50 Percentage of Units – % Percentage of Units – % 40 30 20 10 0 –10 – 8 VDD = 5 V TA = 25°C to 85°C N Package Outliers: (1) 33 mV/°C 40 30 20 10 –6 –4 –2 0 2 4 6 8 10 0 –10 – 8 αVIO – Temperature Coefficient – µV/°C –6 –4 –2 0 Figure 8 POST OFFICE BOX 655303 2 4 6 8 αVIO – Temperature Coefficient – µV/°C Figure 7 14 10 • DALLAS, TEXAS 75265 10 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 COMMON-MODE INPUT VOLTAGE vs SUPPLY VOLTAGE INPUT BIAS CURRENT AND INPUT OFFSET CURRENT vs FREE-AIR TEMPERATURE 8 104 VDD = 3 V VIC = 1 V See Note A 103 102 VVIC IC – Common-Mode Input Voltage – V IIB I IB and IIIO IO – Input Bias and Input Offset Currents – pA TYPICAL CHARACTERISTICS IIB 101 IIO 1 0.1 25 TA = 25°C Positive Limit 6 4 2 0 45 65 85 105 TA – Free-Air Temperature – °C 0 125 2 4 6 VDD – Supply Voltage – V 8 NOTE: The typical values of input bias current and input offset current below 5 pA were determined mathematically. Figure 9 Figure 10 HIGH-LEVEL OUTPUT VOLTAGE vs SUPPLY VOLTAGE HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 8 VIC = 1 V VID = 100 mV TA = 25°C 4 VV0H OH – High-Level Output Voltage – V VV0H OH – High-Level Output Voltage – V 5 VDD = 5 V 3 VDD = 3 V 2 1 VIC = 1 V VID = 100 mV RL = 100 kΩ TA = 25°C 6 4 2 0 0 0 –2 –4 –6 –8 0 IOH – High-Level Output Current – mA 2 4 6 VDD – Supply Voltage – V 8 Figure 12 Figure 11 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 TYPICAL CHARACTERISTICS HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 2.4 700 VDD = 3 V VIC = 1 V VID = 100 mV 1.8 1.2 0.6 IOH = – 500 µA IOH = – 1 mA IOH = – 2 mA IOH = – 3 mA IOH = – 4 mA 0 – 75 – 50 VDD = 5 V IOL = 5 mA TA = 25°C 650 VOL VOL – Low-Level Output Voltage – mV VV0H OH – High-Level Output Voltage – V 3 LOW-LEVEL OUTPUT VOLTAGE vs COMMON-MODE INPUT VOLTAGE – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 600 550 VID = –100 mV 500 450 400 VID = –1 V 350 300 125 0 0.5 1 1.5 2 2.5 3 3.5 VIC – Common-Mode Input Voltage – V Figure 13 Figure 14 LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 185 170 900 VDD = 3 V VIC = 1 V VID = – 100 mV IOL = 1 mA VOL VOL – Low-Level Output Voltage – mV VOL VOL – Low-Level Output Voltage – mV 200 LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 155 140 125 110 95 80 65 50 – 75 800 700 VDD = 5 V VIC = 0.5 V VID = – 1 V IOL = 5 mA 600 500 400 300 200 100 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 125 0 – 75 – 50 Figure 15 16 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 4 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 TYPICAL CHARACTERISTICS LOW-LEVEL OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE 1 VDD = 5 V VIC = |VID / 2| IOL = 5 mA TA = 25°C 700 600 VOL VOL – Low-Level Output Voltage – V VOL VOL – Low-Level Output Voltage – mV 800 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 500 400 300 200 100 VIC = 1 V VID = – 100 mV TA = 25°C 0.9 0.8 VDD = 5 V 0.7 0.6 0.5 VDD = 3 V 0.4 0.3 0.2 0.1 0 0 0 –1 –2 –3 –4 –5 –6 –7 VID – Differential Input Voltage – V –8 7 1 2 3 4 5 6 IOL – Low-Level Output Current – mA 0 Figure 17 Figure 18 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs SUPPLY VOLTAGE LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE 500 500 RL = 100 kΩ 450 450 A VD – Large-Signal Differential Voltage Amplification – V/mV A VD – Large-Signal Differential Voltage Amplification – V/mV RL = 100 kΩ 400 350 TA = – 40°C 300 250 TA = 25°C 200 150 TA = 85°C 100 50 0 8 0 2 4 6 8 400 350 300 250 VDD = 5 V 200 150 VDD = 3 V 100 50 0 – 75 – 50 – 25 0 25 50 75 100 125 TA – Free-Air Temperature – °C VDD – Supply Voltage – V Figure 19 Figure 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 TYPICAL CHARACTERISTICS 107 – 60° VDD = 3 V RL = 100 kΩ CL = 20 pF TA = 25°C 106 105 – 30° 0° 104 30° Phase Shift A VD – Large-Signal Differential Voltage Amplification LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY AVD 103 60° 102 90° Phase Shift 101 120° 1 150° 0.1 1 10 100 1k 10 k 180° 1M 100 k f – Frequency – Hz Figure 21 107 – 60° VDD = 5 V RL = 100 kΩ CL = 20 pF TA = 25°C 106 105 104 0° 30° AVD 103 60° 102 90° Phase Shift 101 120° 1 150° 0.1 1 10 100 1k 10 k f – Frequency – Hz 100 k Figure 22 18 – 30° POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 180° 1M Phase Shift A VD – Large-Signal Differential Voltage Amplification LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT vs FREQUENCY TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 TYPICAL CHARACTERISTICS SUPPLY CURRENT vs FREE-AIR TEMPERATURE SUPPLY CURRENT vs SUPPLY VOLTAGE 400 450 VIC = 1 V VO = 1 V No Load 350 TA = – 40°C 350 uA IIDD A DD – Supply Current – µ uA IIDD A DD – Supply Current – µ 400 300 TA = 25°C 250 200 TA = 85°C 150 100 300 250 VDD = 5 V VDD = 3 V 200 150 100 50 50 0 VIC = 1 V VO = 1 V No Load 0 2 4 6 0 – 75 8 – 50 VDD – Supply Voltage – V – 25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 23 Figure 24 SLEW RATE vs SUPPLY VOLTAGE 0.9 0.9 0.7 0.8 V/µ s SR – Slew Rate – V/us V/µ s SR – Slew Rate – V/us SLEW RATE vs FREE-AIR TEMPERATURE VIC = 1 V VI(PP) = 1 V AV = 1 RL = 100 kΩ CL = 20 pF TA = 25°C 0.8 125 0.6 0.5 0.7 VIC = 1 V VI(PP) = 1 V AV = 1 RL = 100 kΩ CL = 20 pF 0.6 0.5 VDD = 5 V 0.4 VDD = 3 V 0.4 0.3 0.3 0 2 4 6 VDD – Supply Voltage – V 8 0.2 – 75 – 50 – 25 0 25 50 75 100 125 TA – Free-Air Temperature – °C Figure 25 Figure 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 TYPICAL CHARACTERISTICS UNITY-GAIN BANDWIDTH vs SUPPLY VOLTAGE 1000 5 VI = 10 mV RL = 100 kΩ CL = 20 pF TA = 25°C RL = 100 kΩ 900 VDD = 5 V 4 B1 – Unity-Gain Bandwidth – kHz B1 V O(PP) – Maximum Peak-to-Peak Output Voltage – V MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY TA = – 40°C 3 VDD = 3 V 2 TA = 85°C 1 800 700 600 500 400 300 TA = 25°C 200 0 1 10 100 f – Frequency – kHz 0 1000 1 2 Figure 27 1000 VI = 10 mV RL = 100 kΩ CL = 20 pF B1 – Unity-Gain Bandwidth – kHz B1 900 800 700 600 VDD = 5 V 500 400 VDD = 3 V 300 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C Figure 29 20 4 Figure 28 UNITY-GAIN BANDWIDTH vs FREE-AIR TEMPERATURE 200 – 75 3 5 6 VDD – Supply Voltage – V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 7 8 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 TYPICAL CHARACTERISTICS PHASE MARGIN vs SUPPLY VOLTAGE PHASE MARGIN vs FREE-AIR TEMPERATURE 50° 45° VI = 10 mV RL = 100 kΩ CL = 20 pF TA = 25°C 48° 43° 44° xm φ m – Phase Margin xm φ m – Phase Margin 46° VI = 10 mV RL = 100 kΩ CL = 20 pF 42° 40° 38° 36° 34° 43° VDD = 5 V 39° VDD = 3 V 37° 32° 30° 0 1 2 3 4 5 6 7 35° – 75 – 50 – 25 0 25 50 75 100 TA – Free-Air Temperature – °C 8 VDD – Supply Voltage – V Figure 31 Figure 30 PHASE MARGIN vs LOAD CAPACITANCE EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 44° 300 VVn nVxHz Hz n – Equivalent Input Noise Voltage – nV/ VI = 10 mV RL = 100 KΩ TA = 25°C 42° xm φ m – Phase Margin 40° VDD = 5 V 38° VDD = 3 V 36° 34° 32° 30° 28° 0 125 RS = 20 Ω TA = 25°C 250 200 150 100 VDD = 5 V VDD = 3 V 50 0 20 40 60 80 100 1 CL – Load Capacitance – pF 10 100 1000 f – Frequency – Hz Figure 32 Figure 33 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 PARAMETER MEASUREMENT INFORMATION single-supply versus split-supply test circuits Because the TLV233x is optimized for single-supply operation, circuit configurations used for the various tests often present some inconvenience since the input signal, in many cases, must be offset from ground. This inconvenience can be avoided by testing the device with split supplies and the output load tied to the negative rail. A comparison of single-supply versus split-supply test circuits is shown below. The use of either circuit gives the same result. VDD VDD + – + VI – VO VO + VI RL CL CL RL VDD – (a) SINGLE SUPPLY (b) SPLIT SUPPLY Figure 34. Unity-Gain Amplifier 2 kΩ 2 kΩ VDD VDD + 20 Ω – 1/2 VDD – VO + + 20 Ω 20 Ω VO 20 Ω VDD – (a) SINGLE SUPPLY (b) SPLIT SUPPLY Figure 35. Noise-Test Circuit 10 kΩ 10 kΩ VDD VDD + 100 Ω VI – 1/2 VDD + VI 100 Ω VO – + CL CL VDD – (a) SINGLE SUPPLY (b) SPLIT SUPPLY Figure 36. Gain-of-100 Inverting Amplifier 22 POST OFFICE BOX 655303 VO • DALLAS, TEXAS 75265 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 PARAMETER MEASUREMENT INFORMATION input bias current Because of the high input impedance of the TLV233x operational amplifier, attempts to measure the input bias current can result in erroneous readings. The bias current at normal ambient temperature is typically less than 1 pA, a value that is easily exceeded by leakages on the test socket. Two suggestions are offered to avoid erroneous measurements: • • Isolate the device from other potential leakage sources. Use a grounded shield around and between the device inputs (see Figure 37). Leakages that would otherwise flow to the inputs are shunted away. Compensate for the leakage of the test socket by actually performing an input bias current test (using a picoammeter) with no device in the test socket. The actual input bias current can then be calculated by subtracting the open-socket leakage readings from the readings obtained with a device in the test socket. Many automatic testers as well as some bench-top operational amplifier testers use the servo-loop technique with a resistor in series with the device input to measure the input bias current (the voltage drop across the series resistor is measured and the bias current is calculated). This method requires that a device be inserted into a test socket to obtain a correct reading; therefore, an open-socket reading is not feasible using this method. 8 5 V = VIC 1 4 Figure 37. Isolation Metal Around Device Inputs (P package) low-level output voltage To obtain low-level supply-voltage operation, some compromise is necessary in the input stage. This compromise results in the device low-level output voltage being dependent on both the common-mode input voltage level as well as the differential input voltage level. When attempting to correlate low-level output readings with those quoted in the electrical specifications, these two conditions should be observed. If conditions other than these are to be used, please refer to the Typical Characteristics section of this data sheet. input offset voltage temperature coefficient Erroneous readings often result from attempts to measure temperature coefficient of input offset voltage. This parameter is actually a calculation using input offset voltage measurements obtained at two different temperatures. When one (or both) of the temperatures is below freezing, moisture can collect on both the device and the test socket. This moisture results in leakage and contact resistance which can cause erroneous input offset voltage readings. The isolation techniques previously mentioned have no effect on the leakage since the moisture also covers the isolation metal itself, thereby rendering it useless. These measurements should be performed at temperatures above freezing to minimize error. full-power response Full-power response, the frequency above which the operational amplifier slew rate limits the output voltage swing, is often specified two ways: full-linear response and full-peak response. The full-linear response is POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 PARAMETER MEASUREMENT INFORMATION generally measured by monitoring the distortion level of the output while increasing the frequency of a sinusoidal input signal until the maximum frequency is found above which the output contains significant distortion. The full-peak response is defined as the maximum output frequency, without regard to distortion, above which full peak-to-peak output swing cannot be maintained. Because there is no industry-wide accepted value for significant distortion, the full-peak response is specified in this data sheet and is measured using the circuit of Figure 34. The initial setup involves the use of a sinusoidal input to determine the maximum peak-to-peak output of the device (the amplitude of the sinusoidal wave is increased until clipping occurs). The sinusoidal wave is then replaced with a square wave of the same amplitude. The frequency is then increased until the maximum peak-to-peak output can no longer be maintained (Figure 38). A square wave is used to allow a more accurate determination of the point at which the maximum peak-to-peak output is reached. (a) f = 100 Hz (b) BOM > f > 100 Hz (c) f = BOM (d) f > BOM Figure 38. Full-Power-Response Output Signal test time Inadequate test time is a frequent problem, especially when testing CMOS devices in a high-volume, short-test-time environment. Internal capacitances are inherently higher in CMOS than in bipolar and BiFET devices and require longer test times than their bipolar and BiFET counterparts. The problem becomes more pronounced with reduced supply levels and lower temperatures. APPLICATION INFORMATION single-supply operation While the TLV233x performs well using dualpower supplies (also called balanced or split supplies), the design is optimized for singlesupply operation. This includes an input commonmode voltage range that encompasses ground as well as an output voltage range that pulls down to ground. The supply voltage range extends down to 2 V, thus allowing operation with supply levels commonly available for TTL and HCMOS. Many single-supply applications require that a voltage be applied to one input to establish a reference level that is above ground. This virtual ground can be generated using two large resistors, but a preferred technique is to use a virtual-ground generator such as the TLE2426 (see Figure 39). 24 POST OFFICE BOX 655303 VDD R2 R1 VI – TLE2426 ǒ Ǔ VO + V O + V –V DD I 2 R2 R1 ) VDD 2 Figure 39. Inverting Amplifier With Voltage Reference • DALLAS, TEXAS 75265 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 APPLICATION INFORMATION single-supply operation (continued) The TLE2426 supplies an accurate voltage equal to VDD/2, while consuming very little power and is suitable for supply voltages of greater than 4 V. The TLV233x works well in conjunction with digital logic; however, when powering both linear devices and digital logic from the same power supply, the following precautions are recommended: • • Power the linear devices from separate bypassed supply lines (see Figure 40); otherwise, the linear device supply rails can fluctuate due to voltage drops caused by high switching currents in the digital logic. Use proper bypass techniques to reduce the probability of noise-induced errors. Single capacitive decoupling is often adequate; however, RC decoupling may be necessary in high-frequency applications. – + Logic Logic Logic Power Supply (a) COMMON-SUPPLY RAILS – + Logic Logic Logic Power Supply (b) SEPARATE-BYPASSED SUPPLY RAILS (preferred) Figure 40. Common Versus Separate Supply Rails input characteristics The TLV233x is specified with a minimum and a maximum input voltage that, if exceeded at either input, could cause the device to malfunction. Exceeding this specified range is a common problem, especially in single-supply operation. The lower the range limit includes the negative rail, while the upper range limit is specified at VDD – 1 V at TA = 25°C and at VDD – 1.2 V at all other temperatures. The use of the polysilicon-gate process and the careful input circuit design gives the TLV233x very good input offset voltage drift characteristics relative to conventional metal-gate processes. Offset voltage drift in CMOS devices is highly influenced by threshold voltage shifts caused by polarization of the phosphorus dopant implanted in the oxide. Placing the phosphorus dopant in a conductor (such as a polysilicon gate) alleviates the polarization problem, thus reducing threshold voltage shifts by more than an order of magnitude. The offset voltage drift with time has been calculated to be typically 0.1 µV/month, including the first month of operation. Because of the extremely high input impedance and resulting low bias-current requirements, the TLV233x is well suited for low-level signal processing; however, leakage currents on printed-circuit boards and sockets can easily exceed bias-current requirements and cause a degradation in device performance. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 APPLICATION INFORMATION input characteristics (continued) It is good practice to include guard rings around inputs (similar to those of Figure 37 in the Parameter Measurement Information section). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input (see Figure 41). The inputs of any unused amplifiers should be tied to ground to avoid possible oscillation. – VI + VO VI – + (a) NONINVERTING AMPLIFIER VO (b) INVERTING AMPLIFIER – + VI VO (c) UNITY-GAIN AMPLIFIER Figure 41. Guard-Ring Schemes noise performance The noise specifications in operational amplifiers circuits are greatly dependent on the current in the first-stage differential amplifier. The low input bias-current requirements of the TLV233x results in a very low noise current, which is insignificant in most applications. This feature makes the device especially favorable over bipolar devices when using values of circuit impedance greater than 50 kΩ, since bipolar devices exhibit greater noise currents. feedback Operational amplifiers circuits nearly always employ feedback, and since feedback is the first prerequisite for oscillation, caution is appropriate. Most oscillation problems result from driving capacitive loads and ignoring stray input capacitance. A small-value capacitor connected in parallel with the feedback resistor is an effective remedy (see Figure 42). The value of this capacitor is optimized empirically. electrostatic-discharge protection – + Figure 42. Compensation for Input Capacitance The TLV233x incorporates an internal electrostatic-discharge (ESD)-protection circuit that prevents functional failures at voltages up to 2000 V as tested under MIL-PRF-38535. Method 3015.2. Care should be exercised, however, when handling these devices as exposure to ESD may result in the degradation of the device parametric performance. The protection circuit also causes the input bias currents to be temperature dependent and have the characteristics of a reverse-biased diode. 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 APPLICATION INFORMATION latch-up Because CMOS devices are susceptible to latch-up due to their inherent parasitic thyristors, the TLV233x inputs and outputs are designed to withstand – 100-mA surge currents without sustaining latch-up; however, techniques should be used to reduce the chance of latch-up whenever possible. Internal-protection diodes should not by design be forward biased. Applied input and output voltage should not exceed the supply voltage by more than 300 mV. Care should be exercised when using capacitive coupling on pulse generators. Supply transients should be shunted by the use of decoupling capacitors (0.1 µF typical) located across the supply rails as close to the device as possible. The current path established if latch-up occurs is usually between the positive supply rail and ground and can be triggered by surges on the supply lines and/or voltages on either the output or inputs that exceed the supply voltage. Once latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and usually results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages. output characteristics The output stage of the TLV233x is designed to sink and source relatively high amounts of current (see Typical Characteristics). If the output is subjected to a short-circuit condition, this highcurrent capability can cause device damage under certain conditions. Output current capability increases with supply voltage. Although the TLV233x possesses excellent high-level output voltage and current capability, methods are available for boosting this capability if needed. The simplest method involves the use of a pullup resistor (RP) connected from the output to the positive supply rail (see Figure 43). There are two disadvantages to the use of this circuit. First, the NMOS pulldown transistor N4 (see equivalent schematic) must sink a comparatively large amount of current. In this circuit, N4 behaves like a linear resistor with an on resistance between approximately 60 Ω and 180 Ω, depending on how hard the operational amplifier input is driven. With very low values of RP , a voltage offset from 0 V at the output occurs. Secondly, pullup resistor RP acts as a drain load to N4 and the gain of the operational amplifier is reduced at output voltage levels where N5 is not supplying the output current. VDD IP – VI RP R + VO IF R2 IL R1 P * VO + IVDD )I )I F L P IP = Pullup Current Required by the Operational Amplifier (typically 500 µA) RL Figure 43. Resistive Pullup to Increase VOH 2.5 V – VI VO + CL TA = 25°C f = 1 kHz VI(PP) = 1 V – 2.5 V Figure 44. Test Circuit for Output Characteristics All operating characteristics of the TLV233x are measured using a 20-pF load. The device drives higher capacitive loads; however, as output load capacitance increases, the resulting response pole occurs at lower frequencies thereby causing ringing, peaking, or even oscillation (see Figure 44 and Figure 45). In many cases, adding some compensation in the form of a series resistor in the feedback loop alleviates the problem. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 APPLICATION INFORMATION output characteristics (continued) (a) CL = 20 pF, RL = NO LOAD (b) CL = 170 pF, RL = NO LOAD Figure 45. Effect of Capacitive Loads 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 (c) CL = 190 pF, RL = NO LOAD TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 MECHANICAL INFORMATION D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN PINS ** 0.050 (1,27) 8 14 16 A MAX 0.197 (5,00) 0.344 (8,75) 0.394 (10,00) A MIN 0.189 (4,80) 0.337 (8,55) 0.386 (9,80) DIM 0.020 (0,51) 0.014 (0,35) 14 0.010 (0,25) M 8 0.244 (6,20) 0.228 (5,80) 0.008 (0,20) NOM 0.157 (4,00) 0.150 (3,81) 1 Gage Plane 7 A 0.010 (0,25) 0°– 8° 0.044 (1,12) 0.016 (0,40) Seating Plane 0.069 (1,75) MAX 0.010 (0,25) 0.004 (0,10) 0.004 (0,10) 4040047 / B 03/95 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). Four center pins are connected to die mount pad. Falls within JEDEC MS-012 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 MECHANICAL INFORMATION N (R-PDIP-T**) PLASTIC DUAL-IN-LINE PACKAGE 16 PIN SHOWN PINS ** 14 16 18 20 A MAX 0.775 (19,69) 0.775 (19,69) 0.920 (23.37) 0.975 (24,77) A MIN 0.745 (18,92) 0.745 (18,92) 0.850 (21.59) 0.940 (23,88) DIM A 16 9 0.260 (6,60) 0.240 (6,10) 1 8 0.070 (1,78) MAX 0.035 (0,89) MAX 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0.010 (0,25) M 0°– 15° 0.010 (0,25) NOM 14/18 PIN ONLY 4040049/C 08/95 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.) 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 MECHANICAL INFORMATION P (R-PDIP-T8) PLASTIC DUAL-IN-LINE PACKAGE 0.400 (10,60) 0.355 (9,02) 8 5 0.260 (6,60) 0.240 (6,10) 1 4 0.070 (1,78) MAX 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0°– 15° 0.010 (0,25) M 0.010 (0,25) NOM 4040082 / B 03/95 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 TLV2332, TLV2332Y, TLV2334, TLV2334Y LinCMOS LOW-VOLTAGE MEDIUM-POWER OPERATIONAL AMPLIFIERS SLOS189 – FEBRUARY 1997 MECHANICAL INFORMATION PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0,32 0,19 0,65 14 0,13 M 8 0,15 NOM 4,50 4,30 6,70 6,10 Gage Plane 0,25 1 7 0°– 8° 0,75 0,50 A Seating Plane 1,20 MAX 0,10 0,10 MIN PINS ** 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064 / D 10/95 NOTES: A. B. C. D. 32 All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 1998, Texas Instruments Incorporated